
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Caphammer: Exploiting Capacitor Vulnerability of
Energy Harvesting Systems

Jongouk Choi, Jaeseok Choi, Hyunwoo Joe, and Changhee Jung

Abstract—An energy harvesting system (EHS) has emerged as
an alternative to traditional battery-operated Internet of Things
(IoT) devices. An EHS harnesses ambient energy and stores
it in a small capacitor, enabling batteryless operation when
sufficient energy is available. However, capacitors are susceptible
to malicious charging/discharging and over-voltages, which can
lead to a loss of capacitance. With the capacitor vulnerability
in mind, this paper introduces a capacitor hammering attack,
simply Caphammer, that can undermine the security of every
EHS. The idea is that Caphammer can degrade the capacitance
by using frequent power outages. Once Caphammer degrades
the capacitor of the victim EHS, it can suffer from denial of
service, data corruption, data encryption failure, and abnormal
termination. To defeat Caphammer, this paper presents FanCap,
a capacitor bank scheduling scheme that can dynamically trans-
form energy storage organization, taking into account the ca-
pacitor vulnerability. The experimental results demonstrate that
FanCap can successfully thwart Caphammer with a negligible
run-time overhead.

Index Terms—Energy harvesting, Capacitor, Hardware Secu-
rity, Reliability

I. INTRODUCTION

The number of connected objects in the Internet of Things
(IoT) is growing, enabling new application areas such as im-
plantable medical devices, wearables, and smart homes. Pow-
ering these IoT devices presents a significant challenge due
to their large batteries, limited lifespan, and high replacement
costs. This has sparked significant interest in energy harvesting
system (EHS) technologies, which capture free ambient energy
from their surroundings and offer the intriguing possibility of
battery-less computing [19], [21], [23], [26], [50], [57].

Manuscript received March 30, 2024; accepted July 15, 2024. The work
of Jongouk Choi and Jaeseok Choi was supported by NSF under Grant
2314680. The work of Hyunwoo Joe was supported by the Institute of
Information & Communications Technology Planning & Evaluation (IITP)
Grant funded by the Korea Government (MSIT) through the Development
of Core Technology for Autonomous Energy-Driven Computing System SW
in Power-Instable Environment under Grant 2021-0-00360 and through the
Lightweight Edge Device for Resilient Interaction under Grant 24HR3120.
The work of Changhee Jung was supported by NSF under Grant 2001124
(CAREER), Grant 2153749, and Grant 2314681. This article was presented
at the International Conference on Embedded Software (EMSOFT) 2024 and
appeared as part of the ESWEEK-TCAD special issue (Hyunwoo Joe is the
co-first author) (Corresponding author: Jongouk Choi).

Jongouk Choi is with the Department of Computer Science, University of
Central Florida, Orlando, FL USA (e-mail: jongouk.choi@ucf.edu).

Jaeseok Choi is with the Department of Computer Science, University of
Central Florida, Orlando, FL USA.

Hyunwoo Joe is with the Mobility UX Research Section, Electronics and
Telecommunications Research Institute (ETRI) and University of Science and
Technology (UST), Daejeon, South Korea.

Changhee Jung is with the Department of Computer Science, Purdue
University, West Lafayette, IN USA.

0 10k 20k 30k 40k 50k
of Cycles

−50

−25

0

Pe
rc

en
t.

De
cr

ea
se

 in
 C

ap
ac

ita
nc

e

0.22F (Square)
0.22F (Over-voltage)

50mF (Square)
50mF (Over-voltage)

Fig. 1: Capacitor degradation under square wave voltages. A capac-
itor is considered as dead at 20% degradation [43].

However, since energy harvesting sources are unreliable, the
resulting power is inherently unstable, causing frequent and
unpredictable power outages. To this end, an EHS leverages
a capacitor as energy storage that can buffer the harvested
energy; if a sufficient amount of energy is secured in the
capacitor, an EHS spends the buffered energy to operate the
target device. To achieve crash consistency across power fail-
ure, an EHS is equipped with a non-volatile memory (NVM)
and a just-in-time (JIT) checkpointing mechanism that keeps
monitoring the energy level of the capacitor and checkpoints
volatile data (i.e., all registers) when power is about to be cut
off [17]. The takeaway is that the capacitor is at the heart of
energy harvesting, as it is such an essential component for any
EHS to endure frequent power failures.

Unfortunately, capacitors are unreliable in frequent power
outages, leading to capacitance loss [22] To demonstrate the
capacitor reliability issue and its impact, we conducted direct
injections of square wave voltages (5V) to two capacitors of
typical EHS devices at 1Hz; 0.22F and 50mF are used on
typical EHS platforms (0.22F on MSP430 [2] and 50mF on
Powercast EVB [64]), respectively. Figure 1 shows how the
capacitance degrades over time under the malicious square
wave voltage input. It turns out that the two capacitors are both
degraded by 10% in terms of capacitance in 30 hours—and
they continue to degrade over time. Furthermore, we also
injected over-voltage (5V) square wave signals into the capac-
itors and observed a significant drop in capacitance, as shown
in Figure 1; the maximum voltage level of the capacitors
is 5V [64]. This is because the capacitor materials can be
decomposed at a high voltage, which leads to a resistance
increase, i.e., capacitance decrease [16]

With the capacitor vulnerability in mind, this paper presents
a capacitor hammering attack, simply Caphammer, that can
undermine the security of every EHS. The idea is that
Caphammer can degrade the capacitance by exploiting fre-
quent power outages with or without over-voltages. Since they
are a norm of EHS due to ambient energy sources’ unreliable
nature, attackers can stealthily launch Caphammer without a

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

hassle. Moreover, launching Caphammer is straightforward
and thus easy to succeed. If attackers control the energy
harvesting source or spoof it with strong input power signals,
they can readily stress the capacitor of the victim EHS by re-
peatedly powering it on/off. This abrupt charging/discharging
degrades the capacitance.

After the capacitor is compromised by Caphammer, it can
lead the victim EHS to security breaches. If the capacitor starts
to malfunction due to the capacitance degradation, the EHS
cannot precisely monitor the exact amount of energy available
in the storage. The EHS ends up overestimating the amount
of energy that the victim capacitor can provide, leading to the
failure of the JIT checkpointing. In other words, EHS cannot
possibly complete the saving of all registers due to power
failure during the checkpointing. That is because the victim
capacitor cannot buffer the same amount of energy as intact
energy storage. By exploiting the JIT checkpointing failure,
Caphammer can launch denial of service, data corruption, data
encryption failure, and abnormal termination.

Surprisingly, our findings indicate that existing EHS
devices, such as the Powercast Wireless Sensor Node
(WSN) [64], WISP [12], and glucose monitor [6], are suscepti-
ble to Caphammer. This vulnerability poses a significant threat
to the practice and success of EHS-based IoT. We reported this
vulnerability to Powercast, a major EHS manufacturer, and
it has recently been confirmed by them. Consequently, there
exists a compelling need for an effective countermeasure capa-
ble of preventing Caphammer without incurring a significant
performance overhead or requiring expensive hardware costs.

To this end, this paper presents FanCap, a capacitor bank
scheduling scheme that can transform energy storage or-
ganization—leveraging programmable stacked parallel-series
switched capacitor banks—and mitigate Caphammer attacks
proactively. FanCap exploits two unique characteristics of a
capacitor and EHS. First, EHS does not boot until its capacitor
is fully charged, and it is thus assured that a program can
make as much progress as the full capacitor allows in the
wake of power failure—unless it is under attack. Second, a
capacitor has a resilient nature, i.e., it can be self-healed when
it becomes idle [22]. Thus, even if Caphammer degrades a
capacitor, it can be recovered by being isolated in quarantine.

With that in mind, FanCap can detect an attack scenario at
reboot time by checking whether EHS has made the assured
progress since the prior power-on time. If the EHS encountered
power failure before making the progress, i.e., they were
under attack, FanCap reconfigures the capacitor banks into
separate parallel capacitors. They take turns powering the EHS
while waiting for their turn in quarantine. In this way, even
if one of the capacitors was under attack, it can restore its
original capacitance, thanks to its resilient nature, during the
quarantine period while the others are used. Once all the
parallel capacitors complete their quarantine and Caphammer
is defeated, FanCap gets back on track by reconfiguring the
capacitor banks to their original organization.

The upshot is that FanCap stands out as a lightweight
and practical countermeasure. FanCap effectively mitigates
Caphammer without causing a significant performance over-
head. The capacitor bank reconfiguration can be quickly done,

and it maintains the original capacitance, ensuring the same
energy buffering capacity. Our experimental results confirm
that FanCap successfully thwarts Caphammer, with an average
performance and energy overhead of just 4%.

The contributions of this paper are as follows:
• We discover that current EHS devices are vulnerable to

our novel capacitor hammering attack (Caphammer).
• We demonstrate that Caphammer causes critical security

implications such as denial of service, data corruption,
abnormal termination, and encryption failure in EHS
devices. We have also made responsible disclosure to the
corresponding EHS manufacturers.

• We propose a capacitor bank scheduler called FanCap
that can proactively defeat Caphammer and restore the
original capacitance by exploiting unique characteristics
of a capacitor and EHS.

II. BACKGROUND AND MOTIVATION

A. Energy Harvesting System Architecture

Due to the unreliable nature of ambient energy sources, an
EHS suffers frequent power outages. To address the issue,
EHS leverages a low-power microcontroller (MCU) such as
TI-MSP430 [2] with a capacitor—as energy storage—to in-
termittently compute only when sufficient energy is buffered
in the capacitor. On the other hand, if the buffered energy
is depleted, the EHS dies due to the lack of enough energy
to power the MCU, i.e., it is power-interrupted. With that
in mind, researchers equip EHS with byte-addressable NVM
as the main memory and some form of crash consistency to
checkpoint necessary data at run time and restore them in the
wake of the power failure.

B. Crash Consistency for Correct Power Failure Recovery

To achieve correct power failure recovery, EHS often creates
a checkpoint on which the volatile registers are saved into the
NVM in order to roll back to the most recently checkpointed
states when the power comes back after an outage. Never-
theless, this simple checkpointing mechanism alone cannot
always achieve correct recovery due to the inconsistency
of data in NVM. In other words, NVM data can become
corrupted across power failure when a write-after-read (WAR)
dependency exists [18], [25], [27]–[30], [39]–[42], [55], [57],
[67], [68].

The memory inconsistency stems from the program control
rolling back across WAR dependence during power failure re-
covery, reading values updated by stores left behind the failure.
That being said, a solution to this issue is to move forward
for recovery instead of rolling back; this is so-called roll-
forward recovery [17], [49]. With roll-forward recovery, when
power is restored, the mechanism resumes the interrupted
program at the same failure point, avoiding the crossing of
WAR dependence. Consequently, these hardware roll-forward
recovery schemes can naturally achieve crash consistency.

There are two most popular hardware roll-forward recovery
schemes called NVP [49] and QuickRecall [17]. To achieve
energy-efficient checkpoint/recovery, NVP uses a hybrid reg-
ister file (HRF) circuitry comprising standard flip-flops and

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

non-volatile flip-flops (NVFF). Since the volatile and non-
volatile flip-flops are laid out right next to each other in the
circuit, their data movement is fast, enabling instant regis-
ter checkpoint/recovery. However, the HRF requires intrusive
microarchitecture modification. To lower the hardware cost,
QuickRecall dedicates a part of NVM as register checkpoint
storage instead of using NVFF. Both schemes exploit the
roll-forward recovery for crash consistency based on another
mechanism called just-in-time (JIT) checkpointing.
Just-In-Time (JIT) checkpointing: JIT checkpointing saves
volatile registers to their checkpoint storage (NVFF as with
NVP or NVM as with QuickRecall)—when EHS is about to
encounter power failure. To recognize the impending power
failure, the EHS is equipped with a voltage monitor to measure
the output voltage of a capacitor. If the voltage level is lower
than a pre-defined threshold, i.e., Vbackup for power-failure-
free checkpointing of all registers, then the voltage monitor
assumes that power is about to be cut off. Thus, the monitor
sends a signal to the controller logic to let the processor copy
all registers to their checkpoint storage, i.e., NVFF or NVM.

Note that EHS can identify when a sufficient amount of
energy is secured in the capacitor to start the MCU. NVP
and QuickRecall first buffer harvested energy in the capacitor.
The voltage monitor then judges whether the buffered energy
is enough to operate the MCU by comparing the capacitor’s
current-voltage level to another pre-defined threshold Von. If
the voltage level became greater than the threshold since the
last power failure, the voltage monitor sends a wake-up signal
to the controller to restore checkpointed registers and, in turn,
resume the power-interrupted) program. The takeaway is that
the capacitor is at the heart of energy harvesting—because it
is an essential part for EHS to survive across power failure.

C. Capacitor Degradation

Unfortunately, capacitors can be degraded and lose their
initial capacitance due to the unreliability issue [22]. When a
capacitor is degraded, the JIT checkpointing can be interrupted
since the buffered energy in the capacitor is insufficient; this
is called a capacitor error [22].
Continuous Charge/Discharge. Continuous charging/dis-
charging can degrade the original capacitance due to electro-
chemical corrosion, which can, in turn, cause capacitor loss
or formation of additional dielectric layer [13]. Continuous
charging/discharging behaviors are particularly interesting in
that they are a norm of EHS, i.e., one can readily exploit the
behaviors to launch a hardware security attack.
Over-Voltage. The over-voltages damage a capacitor film and
raise the leakage current flow [56] and operating temperature.
The dielectric material inside the capacitor can be damaged
or stressed, leading to a reduction in the capacitance value.
Also, over-voltages can increase the Equivalent Series Re-
sistance (ESR) of the capacitor, resulting in higher power
losses and reduced efficiency. Prior works conducted aging
tests to see the over-voltage effect [16]. They injected over-
voltage square wave signals into a given capacitor (above the
nominal voltage) and measured the capacitance under room
temperature at about 25°C without cooling or heating. The

maximum operating voltage of the capacitor is 2.5V, which
is a typical specification for supercapacitors [61]. From the
experiments, they found that the capacitance is reduced when
the operating voltage is higher than the capacitor’s nominal
voltage. They also established a relationship between the life
expectancy and voltage and defined an exponential function
to estimate the lifespan of a capacitor, Texp, as follows:
Texp(U, θ) = c1 · e(U

c2+
θ
c3), where (c1, c2, c3) are the constant

parameters (negative), and U and θ are the voltage and the
temperature, respectively.

Based on the findings, we explored the impact of over-
voltages on EHS. We observed that over-voltages can signif-
icantly degrade capacitors, resulting in checkpoint failures in
both NVP [49] and QuickRecall [17]. The capacitors showed
considerable aging under higher voltages, particularly above
3.0V, leading to an increase in ESR. When the capacitor’s
degradation reaches 10%, the EHS experiences failures in
JIT checkpointing. This is primarily due to the degraded
capacitor’s inability to store the same amount of energy as an
intact energy storage system. Consequently, the system cannot
complete JIT checkpointing at the same checkpoint voltage
threshold, e.g., Vbackup.

The continuous charging and discharging, along with over-
voltages, are particularly noteworthy because they are common
in EHS. More importantly, attackers can readily exploit them
to launch a stealthy hardware security attack. Even if attackers
control the frequency of power outages, it can be challenging
to distinguish between an ordinary harvesting situation and an
attack scenario.

D. Capacitor Resilience

Despite the capacitor vulnerability, i.e., capacitance degra-
dation, a (super)capacitor can be recovered during idle time
due to its resilient nature [22], [43]. A previous study il-
lustrates the capacitor recovery phenomenon by constantly
injecting square wave voltage into a capacitor and leaving
it idle [22], [43]. With the resilient nature of capacitors
in mind, we propose an OS-driven solution (FanCap), the
countermeasure of Caphammer which dynamically quarantines
the victim capacitor, leaving it idle, so that it can restore the
original capacitance; the detailed discussion is deferred to §V.

III. THREAT MODEL

A. Energy Harvesting System Features

Applications The current EHS applications are mostly wire-
less sensor node, implantable medical devices, highway toll
card, and wearables [65]. They harvest ambient energy and
run an infinite loop that repeatedly senses and alarms when
something turns out to be wrong based on the sensing result;
users can also read the sensor data by scanning the device
(e.g., RFID). For example, a continuous glucose monitor is
a type of wearable medical devices that can be used for
diabetic patients [6], [51]. The device can harvest energy from
blood pressure and monitor/log the user’s health status, such
as temperature and blood sugar/glucose. When the glucose
level is too low or too high, the device sends an alarm to
end-user. The beauty of this solution is that the monitoring

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

Applications Platform / PMU V. Monitor/
Regulator

Capacity
Monitor

Sensors [17], [22], [31], [53], [54], [59], [60] TI-MSP430 [2] Yes No
Healthcare/Robot [9], [33], [47] TI-BQ25570 [3] Yes No

TABLE I: Properties of EHS Applications: PMU stands for power
management unit.

is possible without blood sampling, even when the inpatient
sleeps or walks around. For such applications, Microchip and
Powercast sensor devices are widely used [63], [64].
Weak Input Power. The actual harvested power for EHS
devices is very weak (0∼2000µW [32]). In this harsh envi-
ronment, the EHS devices can operate for a short amount of
time (e.g., 15ms [36]) quickly depleting the buffered energy,
but hibernate for a long time (e.g., more than 1s).
OS/Runtime support for power failure recovery. EHS
devices use either OS or run-time system that controls the
underlying crash consistency support—that leverages the JIT
checkpointing. This paper will discuss about their vulnerability
and possible security implications in §IV-C.
Voltage Margin. For the JIT checkpointing, current EHS
devices have a checkpoint voltage margin because the voltage
monitor can suffer a signal delay that can lead to checkpoint
failure. However, since the margin can only be used for
checkpointing, not for computation/progress, it is not practical
to have a large margin; if they had a large voltage margin,
the device would quickly stop the program execution and
checkpoint data, leading to more power failure than having a
small margin. That is why none of the prior works uses such
a large voltage margin; instead, their voltage margin is only
0.01% to 7% [17], [49]. This paper assumes that the voltage
margin can be enlarged at most by 10%, as suggested in a
recent work [22].
Lack of Maintenance. EHS devices are mostly unmanaged
once deployed, primarily due to their battery-free design.
The lifetime of EHS is either infinite or determined by the
manufacturers, which eliminates the need for users to actively
manage and monitor the systems regularly. Users can rely on
EHS to function without the need for continuous maintenance
or status checks until they receive any notice or specific
indications that require their attention.
Lack of Capacity Monitor. Most EHS schemes omit a
capacity monitor in their platform or power management unit
(PMU), assuming capacitors are reliable (Table I). Moreover,
a capacity monitor is overkill for power-hungry EHS devices,
as it requires charging the capacitor with a known current and
measuring the voltage to calculate capacitance. This process
prevents EHS devices from performing tasks, as they must
avoid using the buffered energy to ensure accurate monitoring.

B. Attacker’s Goal and Scenario

The adversary’s objective is to degrade a capacitor in the
victim’s EHS device covertly, causing a checkpoint failure and
silent data corruption. If Caphammer is executed successfully,
the victim device cannot save sensor data in NVM or send
alarms when necessary. Consequently, users can only access
outdated data from the victim device. It is essential to highlight
that naive physical access attacks and attempts to damage

(a) User Case: An en-
ergy harvesting device
is placed underneath a
vehicle’s windshield

Attack

(b) Attack Case 1: Ad-
versaries degrade a vic-
tim capacitor remotely
outside of the vehicle.

VICTIM

ATTACK
DEVICE

(c) Attack Case 2: Ad-
versaries degrade a victim
capacitor remotely from
another vehicle.

Fig. 2: Attack Scenario

the victim device, such as using strong microwaves, would
be readily detected. For instance, physically tampering with
the victim devices or energy harvesting sources would draw
the attention of users or administrators, resulting in detection
in most cases. In contrast, the Caphammer does not assume
physical access to the device or source within its threat model.
Equipment. We assume that attackers can employ an radio
frequency (RF) signal jammer or an electromagnetic fault
injection (EMFI) device [38] to initiate a remote attack
(Caphammer); we found that adversaries can also employ the
EMFI device to inject the over-voltages to a victim capac-
itor. Such malicious signals can penetrate common physical
barriers like walls and windows. The attack devices will be
described more detail in §IV-D.
Remote Attack. Caphammer can be launched remotely by
using the attack devices. The attack distance depends on the
capabilities of the attacker; attackers can go farther away from
the target as long as they can exploit power outages with their
devices.We argue that such a remote attack is practical due to
the maintenance-free nature of EHS (§III-A), yet it would be
also easy to come close to the victim devices without attracting
users’ concern just like placing a Trojan horse in guard-free
systems. It’s important to note that we are not assuming that
attackers intend to physically damage or toast the victim device
with the attack devices.
Attack Scenario An user wears an energy-harvesting glucose
sensor device on his/her arm or places a RF toll transponder
under a vehicle’s windshield, as shown in Fig. 2(a). In this
case, adversaries cannot physically access and damage the
targeted EHS device. We assume that adversaries can move
around and pass by the victim device without getting caught
due to the maintenance-free nature of EHS. When attackers
are near to the victim as shown in Fig. 2(b), they launch
Caphammer using attack devices concealed. Also, as shown in
Fig. 2(c), to attack a toll transponder in a victim’s car parked in
a public lot, adversaries can park their vehicles within 5 meters
of the victim’s car and launch Caphammer. In our experiment,
the attack lasted about 5 hours.

IV. CAPHAMMER

A. Caphammer Design at a High Level

To launch Caphammer, attackers exploit one of two strate-
gies, i.e., flooding or spoofing, by using the attack devices.
Attackers can intermittently flood the victim EHS with strong
synthetic power that can be combined with the original power

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

signal being harvested or directly feed malicious power inputs
to the EHS spoofing the original energy harvesting source.

First, for the flooding attack, attackers use the attack device
to intermittently add a significant amount of RF energy to the
original ambient energy—harvested from the RF source—and
quickly drop it, so that the combined input power fed to
the victim device is akin to the square wave voltages. Since
the strong input power is what EHS devices desire due to
the power-hungry nature of EHS devices, the power flooding
attack would be considered as a good harvesting condition in
the user’s perspective. In other words, the users would not
even expect that their capacitor can be damaged with a strong
input power, which makes Caphammer a practical/unexpected
hardware attack.

Second, for the spoofing attack, attackers first sense when
the original harvesting source cannot provide a power signal,
which is detected by a harvester of the attack device. Then,
the attackers supply the malicious power using the attack
device—spoofing the original energy harvesting source—while
it is idle. In this case, since the attack device is the only
available power source, attackers can more easily generate the
high-voltage square wave signals. Both flooding and spoofing
attack strategies can launch Caphammer by inducing a target
capacitor to be repeatedly charged and discharged as long as
their square wave voltages are meticulously prepared.

B. Synthesizing Malicious Power Inputs

Unfortunately, it is insufficient to just provide the target
device with malicious voltages (square wave high voltages)
unless they are carefully synthesized considering the capac-
itor’s behavior. If attackers end up using naive square wave
voltages, it might be impossible, or at least take a while,
to launch Caphammer (i.e., damaging the capacitor) due to
the resilient nature of a capacitor—especially when the charg-
ing/discharging rate is low. For example, as shown in Fig. 3(a),
the naive power signal causes only one power outage in three
power cycles; the device reboots after the third rising edge of
the signal and hibernates after the third falling edge. The mali-
cious/efficient voltages, on the other hand, cause three power
outages (at each falling edge of the input signal), as shown
in Fig. 3(b). With this in mind, this paper proposes a two-
step heuristic approach for generating efficient square wave
power signals that can launch Caphammer: (1) estimating its
charging and discharging times, and (2) synthesizing efficient
square wave voltages by considering the resulting charging
and discharging times.
Step 1. Attackers first provide strong power for charging the
capacitor until the EHS device is booted; the higher the input
power, the more stressed the capacitor is because a sudden
increase in voltage generates a higher inrush current to the
victim capacitor, resulting in high peak-to-peak voltage, as
shown in the first charge cycle as shown in Fig. 3(b). Then,
they measure the capacitor charging time, i.e., how long the
power has been provided to the device to wake it up (i.e.,
reboot) since the last power-off point. To identify when the
target EHS device is powered off and on without physically
accessing it, we assume attackers can measure a change in

Input
voltage

Falling edge Rising edge

time
Voltage
in Cap.

time

V_off

V_on peak-to-peak voltage

Input
voltage

Cap. charging Cap. discharging

time
Voltage
in Cap.

time

V_off

V_on

peak-to-peak voltage

peak-to-peak voltage

(a) Naive voltage inputs

Input
voltage

Falling edge Rising edge

time
Voltage
in Cap.

time

V_off

V_on peak-to-peak voltage

Input
voltage

Cap. charging Cap. discharging

time
Voltage
in Cap.

time

V_off

V_on

peak-to-peak voltage

peak-to-peak voltage

(b) Efficient voltage inputs

Fig. 3: Comparison of two square wave voltages; capacitor’s voltage
fluctuation (bottom) is controlled by attacker’s input voltages (top).

the electromagnetic (EM) field of the victim. A jamming
device can remotely measure such EM field changes when
the victim is powered on and off. Similarly, to estimate the
discharging time of the capacitor, the attackers stop providing
stable power when the target EHS device is awake by turning
off the disguised energy source (i.e., the jamming device for
either spoofing or flooding attacks). Then they measure the
power-on period (capacitor discharging time) of the device,
i.e., how long it can sustain without harvested power input.
Step 2. This step leverages the capacitor charging/discharging
times determined in Step 1. Taking this into consideration
in the preparation of efficient square voltage synthesis, the
attackers generate a power signal whose falling and rising
edges correspond to capacitor discharging and charging points,
respectively, as shown in Fig. 6(b). They feed the resulting
voltages to the target device. As a result, such synthesized
square wave voltages can achieve high peak-to-peak voltage,
accelerating the attack process.
Discussion. Attackers can also employ a heuristic approach
to synthesize power signals by utilizing square-wave voltages
without the EM measurement. Specifically, they can provide
strong power to charge the capacitor and then halt the power
supply during program execution, aligning the falling edges
of their power inputs with capacitor discharging points. Con-
versely, to synchronize the rising edges of their power inputs
with capacitor charging points, attackers initially extend a half
of the square wave to ensure a victim power outage within a
single cycle. Using these initial power inputs, they monitor the
launch of Caphammer over time. If Caphammer is not initi-
ated, they progressively shorten the power-off duration. This
iterative process allows attackers to ultimately synthesize their
power signal. Moreover, attackers can regulate the degradation
rate of the capacitor by controlling the electromagnetic (EM)
field strength—though this paper defers a detailed, fine-grained
analysis of this aspect to our future work.

C. Security Vulnerabilities

Data Corruption and Abnormal Termination. Caphammer
easily causes a data corruption problem. Due to the mal-
functioning capacitor damaged by Caphammer, the victim
processor is likely to fail to make a checkpoint that saves
necessary data, e.g., registers, in NVM for recovery purposes.
Then, the victim would have only partial or corrupted data
in NVM, thereby causing the wrong recovery across power
failure. In particular, when special purpose registers such as
a program counter (PC) or stack pointer are not checkpointed

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

correctly (in a power failure atomic manner), the victim will
jump into an invalid PC or access outside of the NVM region
beyond the limit of the designated stack area, in the wake of
power failure, thereby causing an abnormal termination.
Denial of Service. Caphammer leads to a denial of service
(DoS) issue, specifically, a lack of forward execution progress.
This paper reveals that the DoS problem can manifest in
atomic tasks and I/O operations. Since these atomic functions
must be executed without any power failure interruptions, their
length (execution time) is constrained by the capacitor’s size.
In other words, these functions are designed to complete within
a single capacitor charge cycle [60], [67]. Consequently, if the
capacitor is degraded by Caphammer, the atomic functions can
never be completed across power failures, no matter how many
times the victim device is rebooted. This situation results in
the DoS problem.
Encryption Failure. To achieve confidentiality for EHS de-
vices, prior works [10] employ an AES-CTR (counter mode)
encryption algorithm. This mechanism utilizes a counter to
generate a one-time pad (OTP) string, which is always unique
by updating the counter once it is used. Then, it XORs a
plaintext (PT) with the OTP for encryption. It is important to
note that this algorithm is implemented using custom hardware
support in the memory controller. It persists both PT and OTP
in a power-failure-atomic way with the JIT checkpointing. It
can flush all the write pending queue contents to NVM when
power is about to be cut off.

Unfortunately, prior works are vulnerable to Caphammer,
leading to an encryption failure problem. Caphammer can
cause the victim to fail in storing encrypted data and its
associated security metadata as a pair [10] with a power failure
occurring between the data store and the metadata store. In this
scenario, JIT flushing cannot be completed due to insufficient
energy provided by the damaged capacitor, i.e., the victim EHS
cannot decrypt the encrypted data across power failures since
its associated metadata was lost.

D. Validating and Evaluating Caphammer

Experimental Setting. To demonstrate Caphammer, we con-
ducted experiments targeting a real EHS sensor device,
Powercast WSN [63], [64]. Furthermore, as a proof of
concept, we conducted additional experiments with a TI-
MSP430FR5994 [2] evaluation board and Powercast P2110-
EVB [64]. 0.22F and 50mF are used on typical EHS plat-
forms (0.22F on MSP430 and 50mF on Powercast EVB; both
capacitors have an absolute maximum voltage rating of 5.5V,
but the recommended operating voltage rating is 2.5V or less.
To power the EHS, we used a Powercast TX91501-3W RF
transmitter with a 915 MHz frequency and a 6.1 dBi patch
antenna; the transmitter was placed 50cm from the victim.

On the evaluation board, we ported the prior works called
QuickRecall [17] and Samoyed [59]. Both QuickRecall and
Samoyed enable JIT checkpointing for power failure recovery;
however, Samoyed disables the JIT checkpointing during a
peripheral operation to avoid possible memory inconsistency
problem, i.e., the JIT checkpointing does not work for pe-
ripheral operations. With the two prior works, we repeatedly

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Distance (m)

05001000150020002500300035004000

Vo
lta

ge
 (V

)

modeled measured

Fig. 4: Caphammer attack model and measurement. We measured the
required voltage levels at different distances to launch Caphammer.

ran benchmark applications [17], [35] on the board. For JIT
checkpointing, we set the checkpoint voltage (V ckpt), power-
off voltage (V off), and power-on voltage (V on) thresholds
as 2.00003V, 1.8V, and 3.3V, respectively (as a prior work
states [17]). Moreover, we allocated a checkpoint storage
starting at 0x33016 in NVM space. To launch Caphammer,
we used a RF jamming device and an EMFI device. For the
RF jamming device, we used an Arduino Nano and a 915
MHz EBYTE LoRa Module supplying a 3.1 dBi antenna. For
the EMFI device, we developed a small device that is capable
of generating approximately 0-4kV [38].

We discovered that high voltage square wave signals induce
capacitor degradation within 20k capacitor charge cycles. This
degradation subsequently leads to the checkpoint failure issue,
as discussed in §II-C. In particular, attackers should consider
the input voltage level to ensure effective execution of the
attack as: P = E2

377 , where P is the power density (W/m2),
E is the electric field strength (V/m), and 377 represents the
impedance of free space. With the model, they also need to
consider possible energy loss along the space path modeled
as: free space path loss = (4 ∗ π ∗ r/λ)2 where r and λ are
the distance and the wavelength, respectively. The implication
is that if attackers move farther away from the target, they
should increase the voltage level to make a stronger EMFI
device; we successfully launched Caphammer, intentionally
generating the checkpoint signal, 10cm∼3m away from the
target device with a small EMFI device as described in Fig. 4.
EHS Sensor with Silent Data Corruption We conducted
experiments with EHS applications that collect data from
sensors and process the data to generate outputs [60], [62]. The
applications make a checkpoint to persist the sensing data in a
designated NVM storage when power failure occurs by using
the same JIT checkpointing—along with other volatile data—
for crash consistency (§II-B). As discussed, since the JIT
checkpointing can be failed by Caphammer, the sensor data
storage can also be corrupted. In particular, such sensor data
corruption is not easily noticeable due to the non-transparent
nature of sensor operation; this is being called silent data
corruption (SDC) [14].

To analyze the SDC problem, we implemented an RF-
based sensor node, emulating an EHS glucose monitor. For
the sensor node, we attached a temperature sensor to an
MSP430FR5994 evaluation board with a one-digit, seven-
segment LCD, in a similar way of prior works [62]. In this de-
sign, the node initially buffers temperature sensor data. Then,
it computes the data and determines whether the temperature
exceeds a predetermined threshold. If this is the case, the
sensor node should increase the output number and display it
on the LCD, alerting users. While the node is operating in this

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

(a) Normal case (b) Wrong output (c) Wrong output

LOCK

(d) Door lock (L)

UNLOCK

(e) Door unlock (U)

LOCK

(f) Wrong output

Fig. 5: Silent data corruption in two EHS devices. The displayed
character in (b) and (c) should be ”3” as in (a). Also, the displayed
character in (f) should be ”U” when a door is unlocked as in (e).

manner, we launched Caphammer. According to experiment
results, the sensor node was susceptible to Caphammer, which
caused the checkpoint failure issue. The output number in the
LCD sensor should have been increased as shown in Fig. 5(a);
however, the data were corrupted, preventing the number from
being updated as shown in Fig. 5(b). Even worse, the data was
not updated at all when the attack lasted for a long time as
shown in Fig. 5(c).

We also implemented an RF-based door sensor node—
which is attractive thanks to easy installation without elec-
trical wiring work—by leveraging the specifications of prior
work [62]. As such, we mounted an EHS device that was
equipped with an one-digit seven-segment LCD and a motion
sensor (GY-521/MPU-6050) to a door as shown in Fig. 5(d).
In this design, the EHS device repeatedly senses/buffers a
position of the sensor module. Then, it processes the buffered
data and finally checks whether the door is opened or not
(locked or unlocked). If opened, the sensor node is supposed
to show ”U” (unlocked) on the LCD—as shown in Fig. 5(e)—
and in turn alarm the users (if configured). While the door
sensor node is operating in this way, attackers attempt to
launch Caphammer remotely outside the door.

Our experiments demonstrate that the sensor node is indeed
vulnerable to Caphammer, and attackers can launch it suc-
cessfully. We found that attackers can cause a power outage
as soon as the victim EHS detects the door opening; however,
the EHS is not able to checkpoint the sensed data in NVM
before the impending power failure. When the EHS tries to
access the data in the wake of the failure, it ends up reading
wrong data, i.e., old status telling the door is locked. As shown
in Fig. 5(f), although the door is unlocked, the output character
on the LCD remains ”L” (locked) under Caphammer, failing
to alarm the users. Thus, by leveraging the problem, attackers
can finally break into the victim’s home.
Breaking Over-Voltage Protection Protecting capacitors
against malicious charging has been explored at the logic
level such as over-voltage protection (OVP) and transient-
voltage suppression (TVS). However, it is challenging to
thwart Caphammer with conventional OVP/TVS techniques
since they only protect MCU, not the capacitor banks; we
managed to launch Caphammer in the presence of MSP430’s
built-in OVP. That being said, to defeat the attack, fusing extra
OVP/TVS to each capacitor bank is required, which is not only
costly but also power-consuming, thus being overkill for EHS.

same data across power failure

time

Volatile

JIT checkpoint

Memory address Memory dump
volatile

volatile

non-volatile checkpoint storage

Restore

(a) Normal case: All volatile data remain the same across power failure.

JIT checkpoint failure

volatile

volatile

non-volatile checkpoint storage

Restore

time Memory address Memory dump

(b) DoS problem: Due to checkpoint failure for all volatile states, a processor
restarts from a previously checkpointed point across power failure.

JIT checkpoint failure

volatile

volatile

non-volatile checkpoint storage Data corruption

Restore

time Memory address Memory dump

Pointer crash

(c) Abnormal termination: A processor restores a corrupted pointer value
across power failure, then it accesses an invalid memory space out of NVM
causing abnormal termination.

Same cipher text

time Memory address Memory dump

Security metadata lost

(d) Encryption failure: A processor loses security metadata across power
failure.

Fig. 6: Security Implications. Shaded boxes represent the data cor-
ruption across power failure. In all examples, PC counter is remained
the same, which is stored at 0x033038.

E. Proof-of-Concept Study

Prior Works with DoS. To investigate the DoS problem, we
tested benchmark applications [22], [35] with our evaluation
boards where the JIT checkpointing is enabled by default.
As shown in Fig. 6(a), the EHS device must be able to
checkpoint volatile data at a designated memory space and
restore them across power failure. However, we found that the
checkpoint storage remained the same across power failure
without updates, when Caphammer is launched, as described
in Fig. 6(b). In this figure, the PC value must be 0x7568
across power failure; however, the victim restores the old
value, 0x756A, which is a checkpointed PC value at the
previous power-off time, i.e., the processor keeps repeating the
task from the previous recovery point, leading to the DoS.In
particular, we found this problem occurs in all software-based
checkpoint/recovery schemes that divide the entire program
into a series of recoverable tasks [36], [67].
Prior Works with Abnormal Termination. Caphammer also
causes an abnormal termination as shown in Fig. 6(c). We
found that the victim triggered the JIT checkpointing at the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

Application Scheme Type of
vulner. Corrupted data Location

aes QuickRecall a,c,d,e RF
metadata

random (a,c,d),
AES encryptData()

in aec.c (c,e)
Samoyed a,c,d RF random (a,c,d)

door sensor QuickRecall a,c,d RF
sensor data

random (a,c,d)
RXDATA

Samoyed a,c,d RF random (a,c,d)

bitcount QuickRecall a,c,d RF random (a,c,d)
Samoyed a,c,d RF random (a,c,d)

stringsearch QuickRecall a,c,d RF random (a,c,d)
Samoyed a,c,d RF random (a,c,d)

dijkstra QuickRecall a,c,d RF random (a,c,d)
Samoyed a,c,d RF random (a,c,d)

crc16 QuickRecall a,c,d RF,HWREG,
CRCINIRES

random (a,c,d)
crc.c (c)

Samoyed a,c,d RF random (a,c,d)

crc32 QuickRecall a,c,d RF,HWREG,
CRCINIRES

random (a,c,d)
crc.c (c)

Samoyed a,c,d RF random (a,c,d)

fir QuickRecall a,c,d RF random (a,c,d)
Samoyed a,c,d RF random (a,c,d)

dhrystone QuickRecall a,c,d RF random (a,c,d)
Samoyed a,c,d RF random (a,c,d)

fft QuickRecall a,c,d RF,HWREG,
DSPLIB DATA

random (a,c,d),
msp cmplx fft fixed q15.c

Samoyed a,c,d RF random (a,c,d)

basicmath QuickRecall a,c,d RF random (a,c,d)
Samoyed a,c,d RF random (a,c,d)

blinker QuickRecall a,c,d RF random (a,c,d)
Samoyed a,c,d RF random (a,c,d)

TABLE II: Security vulnerability analysis in QuickRecall and
Samoyed. In the third and fifth column, a,c,d, and e represent
abnormal termination, data corruption, DoS, and encryption failure,
respectively. In the fourth column, RF represents register file.

moment of a power outage. A program counter (0x7568) and a
stack pointer (0x721C) were safely updated at 0x033038 and
0x03303A in the designated storage, respectively. However,
some data were not checkpointed (marked in red boxes). In
particular, even though a buffer index value was originally
0 (located at 0x07214 in volatile memory space) before the
power outage, it was incorrectly changed to 0x0063 across
the outage by restoring a previously checkpointed value. In
other words, the valid value was removed by the incorrect
recovery of the power outage which results in wrong value
restoration. In this case, the victim resumed the interrupted
program from the power outage point, 0x7568, but used the
wrong index value ending up causing the resulting pointer to
access an illegal address outside of NVM space. Consequently,
the victim suffered from an abnormal termination.
Prior Works with Encryption failure. If power failure occurs
between encrypted data store and its associated metadata
store, the victim would suffer from the data encryption failure
in the wake of the power failure. As discussed in §IV-C,
prior works implement the custom logic in the memory
controller of the EHS device to accelerate the counter-mode
encryption/decryption [10], [45] with JIT flushing support that
ensures the power-failure-atomic write of both encrypted data
and its associated metadata together to NVM. When the JIT
flushing failed by Caphammer, the victim could not persist
both the ciphertext and its associative metadata correctly.
Figure 6(d) demonstrates the encryption failure problem. A
ciphertext was encrypted with associated security metadata
located at 0x001D00. However, due to the JIT flushing failure,
the metadata was lost across power failure.
Vulnerability Report. Table II summarizes security implica-
tions caused by Caphammer in prior works [17], [59]. Over-
all, the hardware-based schemes (Samoyed and QuickRecall)
suffer abnormal termination (a), data corruption (c), DoS (d),
and encryption failure (e) in every benchmark application [17],

[35] that we have tested when Caphammer is launched; any
program point is vulnerable when Caphammer is launched
(within 20k cycles). In particular, QuickRecall can also corrupt
important data, such as security metadata, sensor data, and
shared memory in a HW engine in aes, door sensor, crc16,
crc32, and fft applications, by Caphammer; we found that a
recent work called CatNap [60] has the same vulnerability—
though the work is not opened to public.

V. COUNTERMEASURE

To defeat Caphammer, this paper introduces FanCap that
detects the attack, ensures correct recovery, and provides a
quality of service with the energy storage transformation.
Detection of Caphammer. To detect Caphammer, this paper
leverages one essential observation, i.e., EHS devices do not
boot the microcontroller (MCU) until their capacitor is fully
charged [17], [49], [67]. In other words, when the device is
ready to resume its program execution in the wake of power
failure, the capacitor must always have fully buffered (charged)
energy at the resumption point for the failure recovery. The
implication is that the system can make as much progress
as the full capacitor allows, even if no additional energy is
harvested along the way. In particular, we refer to the assured
progress time—for which the EHS device can sustain under
the fully buffered energy—as the safe power-on period (SP).
Detection Strategy. By the definition of SP, the EHS device
must be awake during the assured progress time. To check
whether SP is secured at run time, FanCap OS leverages a
watchdog timer. FanCap sets the timer interval to the SP and
checks whether the timer has been expired within each power-
on period. If the timer was not expired during one power-on
period at all, e.g., the third power-off period in Fig. 7, FanCap
considers the EHS device to be malfunctioning due to the
capacitor degradation by Caphammer in that the SP turns out
to be violated though it must not be in normal cases. To defeat
the attack, FanCap transforms the energy storage organization.
How to Calculate Safe Power-On Period? To measure SP,
it is required to know the capacitance since the EHS relies on
only the capacitor when there is no harvested energy (§II-A).
When the capacitor is the only power source for the device, it
is possible to estimate the available energy input as follows:
Available Energy Input = 1

2Cbuf ∗ (V 2
max − V 2

min), where
Cbuf is capacitance given by users, Vmax and Vmin are the
power-on and the power-off voltage level, respectively.

With the estimated available energy, FanCap can measure
the SP by leveraging a simple model [20]: Etot = Ptott =
VddIleakt + CmspV

2
dd, where Vdd, Ileak, and Cmsp are input

voltage to a microcontroller (MCU), leakage current, and the
MCU capacitance, respectively. If any of them is unknown,
FanCap could adapt the simple leakage current and capaci-
tance model [66]. Given all this, FanCap finds the SP in a
way that the available energy input should always be greater
than the energy consumption.

However, the calculated SP may be inaccurate, causing
detection errors. Especially, false negatives are problematic
since they imply that the capacitor is already degraded, causing
security breaches. To prevent such false negatives, FanCap

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

timeline

Power-off Safe
Power-on

Period

If (expected cond. not
match &&
 frequency > threshold)

1. Measure the power failure frequency and compare it with a threshold
2. Estimate the source condition based on capacitor charging and discharging time.

NVP

NVP

Power-off Power-off

…

HammerOS

Safe!
Unsafe!

transform!

expired Not expired

Energy buffer transformation

Safe
Power-on

Period

expired

Power-off Safe
Power-on

Period

expired

Energy buffer transformation

Vo
lta

ge
 in

 c
ap

.

Fig. 7: FanCap overview: FanCap detects Caphammer with a watchdog timer. On detection, FanCap changes its operating mode.

conservatively estimates the SP rather than considering the
worst-case power-consuming scenario. In other words, FanCap
does not consider additional power consumption from periph-
erals or the maximum current consumption mode of devices.
Thanks to the conservative estimation of SP, it switches to a
quarantine mode in a proactive way before any damage occurs;
we found out that when SP is violated, there is about 2% ca-
pacitance degradation (§VI-C)—that is normally not happened
without Caphammer attacks. Due to its proactive detection,
FanCap may cause false positives. However, even in the
event of false positives, FanCap incurs a trivial performance
overhead since it only reorganizes energy storage formation
when the capacitors are being degraded, and switches back to
the normal mode when they are recovered—though we did not
observe false positives in our experiments (§VI).

FanCap is not currently leveraging the worst-case power
analysis since it makes SP shorter—for given capacitor size—
compared to the average analysis, thereby increasing the pos-
sibility of false negatives (checkpoint-failure occurs). FanCap
could have used the best-case power analysis to ensure the
absence of false negatives. However, this would incur too many
false positives due to the huge gap between the resulting SP
(bounded by static analysis) and the real best-case (longest)
progress time. To this end, FanCap chooses the average time as
a middle-ground approach. Nevertheless, FanCap can always
detect Caphammer except only one case where the best-case
execution progress is made for all intermittent cycles, which
is practically impossible.
Why Safe Power-On Period (SP)? Users could notice
Caphammer by monitoring the power failure frequency since
the attack increases the frequency. However, the frequency-
based detection is not only expensive but also inaccurate. First,
it requires additional hardware support such as a persistent
timer [24] to measure the power failure frequency. Unfortu-
nately, since the persistent timer also leverages the capacitor-
based JIT checkpointing for timekeeping (including power-
off time), it causes additional capacitor charging time and
has the same vulnerability issue. In addition, another type of
persistent timer [11], that leverage SRAM remanence decay,
cannot accurately measure the power failure frequency against
spoofing attacks. When attackers do not supply any power as
part of spoofing attacks, the timer can lose all data in SRAM,
i.e., the timer cannot measure the power-off time.

More importantly, attackers can easily fool the frequency-
based detection by varying the frequency in an arbitrary
manner. That is, even if the naive detection successfully once
notices Caphammer, attackers can change the frequency at
their disposal and eventually launch Caphammer bypassing

the detection logic. To address the problem, FanCap leverages
the SP-based detection that is accurate without requiring the
expensive hardware support.
Energy Storage Transformation FanCap has an unique
capability that shields the capacitor (i.e., energy storage) from
Caphammer through an energy transformation mechanism.
Initially, FanCap establishes the energy storage configuration
as a parallel–series switched capacitor circuit, ensuring reliable
and energy-efficient storage. This approach contrasts with the
use of a single capacitor, which can lead to higher operating
voltages and ripple currents [34], i.e., the parallel-series ca-
pacitor banks are more reliable than the single capacitor bank
against Caphammer. This initial configuration is referred to as
the normal mode in this paper.

Upon detecting an Caphammer attack (or capacitor degra-
dation), FanCap alerts users and recovers the energy storage
from degradation by exploiting its self-recovery characteristic
(§II-D). FanCap transforms the capacitor bank organization by
connecting only one capacitor to use and disconnecting all the
others, while keeping the same capacitance as the normal mode
organization [52]—we call this is a quarantine mode. When
FanCap detects the attacks, FanCap transforms the energy
storage to the quarantine mode. Although the circuit seems
to be changed, the overall capacitance of the transformed
energy storage remains the same. Hence, no matter how many
times the energy storage organization is reconfigured, FanCap
seldom affects the execution time of program.

In particular, FanCap lets each capacitor bank take turns
powering the EHS device by controlling the switches ac-
cordingly in the quarantine mode; other unused capacitors
wait for a turn in quarantine and get recovered thanks to the
resilience nature of a capacitor (§II-D). In this way, although
one of the capacitors was under attack in each energy storage
transformation, the degraded capacitor can be recovered during
the quarantine period, while others are used. An important
issue is when to pick the next capacitor from the quarantine
to be used in the upcoming power-on period, putting the one
that was used/degraded in quarantine. In fact, this capacitor
scheduling process should be repeated until all the capacitors
are recovered, defeating Caphammer.

FanCap performs the capacitor scheduling in a round-robin
(RR) manner; each capacitor gets a single time quantum.
When every capacitor finishes its quarantine and defeats
Caphammer, FanCap gets back on track by reforming the
capacitor banks to their original organization. To make sure
the recovery of a degraded capacitor, this paper defines the
quarantine period as the time for which the capacitor has not
been used since the last use point. Thus, the quarantine period

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

must be the same as a single time quantum of the RR capacitor
scheduling. At a high level, the following shows how FanCap
schedules capacitors to defeat the detected Caphammer.

At design time, to ensure a sufficiently long quaran-
tine period, FanCap leverages the recovery model of a ca-
pacitor used in the EHS device [43] (§II-D) defined as:
Crecovery(t, T, Vend) = a∗exp(− t

τ1
)+ b∗exp(− t

−τ2
), where

a and b characterize the capacitor state, and τ1 and τ2 are the
time constants governing the recovery rate of the capacitor.
We get these parameters from the device manual, and thus
FanCap figures out the time taken for a degraded capacitor to
get recovered using the above recovery model.

To see if the current quarantine period finishes, FanCap
measures the accumulated power-on time across outages.
FanCap checks whether the time is greater than the quarantine
period along the way. If so, FanCap signals the energy
storage to schedule the next capacitor putting the used one
in quarantine. During each time quantum, FanCap ensures
SP in every capacitor bank organization. If SP is violated
before the time quantum ends, FanCap schedules the next
capacitor to be used in the following power-on period as an
exceptional case. This process continues until all capacitors
are fully recovered. However, if SP cannot be ensured in all
organizations, FanCap assumes that the capacitor banks are
damaged. Note that repeating the quarantine mode can wear
out capacitor switches, which use flash memory. To mitigate
this issue, once all capacitors are recovered, FanCap stops
rotating the capacitor banks and returns to the original parallel-
series switched capacitor circuit organization.

For energy storage transformation, FanCap leverages the
JIT checkpointing mechanism with controllable switches. If
capacitor scheduling is required, FanCap will turn on/off
controllable state-retaining switches that are connected to
MCU through GPIO pins [8] at a power-off time. In particular,
FanCap turns on/off the capacitor switches after checkpoint-
ing data; otherwise, it can fail checkpointing because the
energy storage transformation can directly cause a power
failure. Although it seems that FanCap requires increasing the
checkpoint voltage level to ensure both JIT checkpointing and
energy storage transformation, the voltage level adjustment is
unnecessary in reality. Since the capacitor switches are con-
trollable with a way lower voltage level than NVM, FanCap
can start the energy storage transformation after finishing the
data checkpointing by using the residue energy.
Applicability. FanCap is scalable, allowing flexible adaptation
to various EHS devices. For large and complex devices,
such as multi-core solutions [31], battery-less sensors [7],
[58], and mobile gaming devices [47], which utilize multiple
capacitor banks for energy storage, FanCap can reconfig-
ure the capacitor bank organization through programmable
capacitor switches. For lightweight EHS devices utilizing a
single capacitor bank [37], [44], [53], [54], FanCap discon-
nects the capacitor bank and operates in quarantine mode
upon detecting Caphammer. Without relying on the attacked
capacitor, FanCap disables the JIT checkpoint mechanism but
enables a software-based crash consistency solution, executing
a sequence of recoverable tasks. However, the solution may
encounter the DoS issue in quarantine mode, where any

1 2 3 4 5 6 7 8 9 10
Time (hr.)

0

50

100

Th
ro

ug
hp

ut
(%

)

Samoyed CapOS FanCap

Fig. 8: Attack detection and recovery analysis: 0% throughput
represents a denial of service.

ae
s

do
or

 se
ns

or bc

st
rin

gs
ea

rc
h

di
jk

st
ra

cr
c1

6

cr
c3

2 fir

dh
ry

st
on

e fft

ba
sic

m
at

h

bl
in

ke
r

gm
ea

n(
To

ta
l)

1.00

1.05

1.10

1.15

1.20

No
rm

al
ize

d
Ex

ec
. t

im
e

Ov
er

he
ad

FanCap(30cm) FanCap(50cm) CapOS(30cm) CapOS(50cm)

Fig. 9: Normalized execution time overhead of FanCap and CapOS
without Caphammer attacks. The baseline is Samoyed.

lengthy task could potentially become stagnated, as discussed
in §IV-C. To address this issue, FanCap reconnects the capac-
itor once it is recovered.

VI. EVALUATION

A. Evaluation Setting

We implemented FanCap on MSP430FR5994 [2]. For se-
curity analysis, we compared FanCap with Samoyed [59] and
CapOS [22], while launching Caphammer. In particular, Ca-
pOS is the state-of-the-art for addressing capacitor degradation
by using an acknowledgment (ACK) as a checkpoint barrier.
CapOS persists the ACK, treating it as the last register to be
checkpointed after saving all registers in NVM [22]. When the
ACK becomes corrupted, CapOS identifies the capacitor issue
and initiates a software-based crash consistency scheme.

For performance analysis, we used the same set of ap-
plications tested in Sec. IV-E [20], [22] and measured the
execution time of each application running FanCap, Samoyed,
and CapOS. To set up the energy harvesting environment, we
employed a Powercast RF generator positioned at distances of
30 cm and 50 cm from the evaluation board equipped with a
P2110-EVB RF energy harvester. We used 50mF capacitor as
an energy buffer and configured the voltage thresholds in the
same manner as described in Sec. IV-D.

B. Security Analysis

We conducted experiments by running benchmarks with
FanCap, Samoyed, and CapOS while launching Caphammer;
we used the spoofing model for the attack (§IV). While
Caphammer was ongoing, we measured the average through-
put of each benchmark. Throughput was calculated by count-
ing the number of application completions within one hour:

of completions
1 hour . We set the throughput of Samoyed without

Caphammer as the baseline. From the experiments, we found
that FanCap continued program execution, while Samoyed and
CapOS experienced abnormal termination or DoS after 5 hours
of Caphammer, across all tested benchmarks, as shown in
Fig. 8. In particular, we found that CapOS could not defend

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

against Caphammer. This is because when the victim failed
to trigger the JIT checkpointing under Caphammer, the ACK
remained uncorrupted. As a result, CapOS could not detect
Caphammer, leading to the DoS.

C. Performance Analysis

Figure 9 describes the normalized run-time overhead of
FanCap and CapOS, compared to the baseline. FanCap causes
an execution time overhead of about 6% and 13%, while
CapOS causes about 5% and 11% on average, compared to
Samoyed, when the energy source is placed at 30 cm and 50
cm, respectively. The figure shows that when an energy source
is far away from the harvesting board, FanCap results in more
performance overhead. This is because the overhead caused by
its OS module increases when the harvested power becomes
poor and causes more frequent power failure; FanCap did not
encounter any false positives in all the applications we tested.
We also measured the energy-delay product (EDP) of FanCap
and Samoyed. We found that FanCap caused about 12∼37%
overhead compared to Samoyed.

D. Sensitivity Analysis

For sensitivity analysis, we also tested Samoyed and FanCap
with a different checkpoint voltage threshold. We set the
threshold as 2.2V for Samoyed—that is way higher than the
original margin (i.e., 2.00003V as stated in §IV-C). Due to
the high margin, Samoyed caused >2 slowdown compared to
FanCap, but it took more than 5 days to launch Caphammer
in Samoyed, while FanCap successfully defeated Caphammer.
We tested them on another type of evaluation board, STM32L
series [4], with Cortex-M4 and Cortex-M33 processors [1],
[5]. We found that FanCap successfully defended against
Caphammer and incurred an execution time overhead of
approximately 10% compared to the baseline, whereas other
solutions were vulnerable to Caphammer.
Discussion. Although we used electrostatic double-layer su-
percapacitors for our experiments, we believe FanCap can
work on different types of supercapacitors, such as electro-
static double-layer capacitors, pseudo-capacitors, and hybrid
capacitors. This is because all of them are susceptible to
over-voltages and charging/discharging [46], which are the
primary attack surfaces exploited by Caphammer. Also, we
discovered that different types of capacitors may have different
lifespans under Caphammer. Based on this finding, we plan to
develop a new energy storage architecture with various types
of capacitors; we leave it as our future work.

VII. OTHER RELATED WORKS

To address the capacitor aging/degradation problem, prior
works proposed new capacitor materials and novel sizing/-
packaging solutions. Recently, Pamete et al. characterized
the performance degradation of supercapacitors, studying elec-
trode degradation and electrolyte decomposition. Based on
their experiments, they suggested using new materials, such
as ionic liquids and solid-state electrolytes, to achieve better
supercapacitor performance and longevity [15]. On the other

hand, Chen et al. proposed methods to reduce operating power
fluctuations and optimize capacitor pack sizes. Furthermore,
they also found that balancing multi-cell capacitor banks
can reduce the capacitor aging and degradation rate [48].
Despite these efforts to minimize degradation, Caphammer,
to the best of our knowledge, can eventually damage the
capacitors. FanCap is the first countermeasure designed to
defeat Caphammer.

VIII. SUMMARY

This paper discovers that energy harvesting systems are
vulnerable to Caphammer i.e., a capacitor hammering attack,
degrading the capacitance readily and stealthily. To defeat
Caphammer, this paper introduces FanCap, that can detect the
attack and prevent it by transforming the capacitor banks. Our
experimental results demonstrate that FanCap can successfully
thwart Caphammer with an average slowdown of 6%.

ACKNOWLEDGEMENT

The authors thank Purdue and UCF CompArch members as
well as the anonymous reviewers for their valuable comments.
This work is in part supported by the NSF grants CNS-
2314680, CNS-2314681, and CCF-2153749.

REFERENCES

[1] Arm cortex-m4 32b mcu+fpu, up to 256kb flash+32kb sram, timers, 4
adcs (12/16-bit), 3 dacs, 2 comp., 1.8 v operation. http://www.mouser.
com/catalog/specsheets/stmicroelectronics dm00058405.pdf, Sep 2013.

[2] Msp430fr5994launchpad development kit, Mar 2016.
[3] bq25570 nano power boost charger and buck converter for energy

harvester powered applications, March 2019.
[4] Stm32l series ultra-low-power. http:/https://www.st.com/resource/en/

brochure/brstm32ulp.pdf, July 2022. Accessed: 2024-05-28.
[5] Arm cortex-m33 in a nutshell, Sep 2023. Accessed: 2023-11-08.
[6] Erin Digitale. Technology equality gap for kids’ diabetes treatment is

growing, 2021.
[7] A. Alsubhi et al. Stash: Flexible energy storage for intermittent sensors.

ACM Transactions on Embedded Computing Systems, 2024.
[8] A. Colin et al. A reconfigurable energy storage architecture for energy-

harvesting devices. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 767–781. ACM, 2018.

[9] A. Curtiss et al. Facebit: Smart face masks platform. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
5(4):1–44, 2021.

[10] A. Krishnan et al. Secure intermittent computing protocol: Protecting
state across power loss. In 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 734–739. IEEE, 2019.

[11] A. Rahmati et al. {TARDIS}: Time and remanence decay in {SRAM}
to implement secure protocols on embedded devices without clocks. In
21st {USENIX} Security Symposium), pages 221–236, 2012.

[12] A. Sample et al. Design of an rfid-based battery-free programmable
sensing platform. IEEE transactions on instrumentation and measure-
ment, 57(11):2608–2615, 2008.

[13] C. Kulkarni et al. Prognostic techniques for capacitor degradation and
health monitoring. In The Maintenance& Reliability Conference, 2011.

[14] D. Fiala et al. Detection and correction of silent data corruption for
large-scale high-performance computing. In SC’12: Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, pages 1–12. IEEE, 2012.

[15] E. Pameté et al. The many deaths of supercapacitors: degradation, aging,
and performance fading. Advanced Energy Materials, 13:2301008, 2023.

[16] F. Zheng et al. Study on effects of applied current and voltage on the
ageing of supercapacitors. Electrochimica Acta, 276:343–351, 2018.

[17] H. Jayakumar et al. Quickrecall: A low overhead hw/sw approach
for enabling computations across power cycles in transiently powered
computers. In VLSI Design and 2014 13th International Conference on
Embedded Systems, pages 330–335. IEEE, 2014.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

[18] H. Kim et al. Compiler-directed soft error resilience for lightweight
gpu register file protection. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 989–1004, 2020.

[19] J. Choi et al. Compiler-directed high-performance intermittent compu-
tation with power failure immunity. In 2022 IEEE 28th Real-Time and
Embedded Technology and Applications Symposium, pages 40–54.

[20] J. Choi et al. Achieving stagnation-free intermittent computation with
boundary-free adaptive execution. In IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 331–344, 2019.

[21] J. Choi et al. Cospec: Compiler directed speculative intermittent com-
putation. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 399–412. ACM, 2019.

[22] J. Choi et al. Capos: Capacitor error resilience for energy harvesting
systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 41(11):4539–4550, 2022.

[23] J. Choi et al. Write-light cache for energy harvesting systems. In
Proceedings of the 50th Annual International Symposium on Computer
Architecture, pages 1–13, 2023.

[24] J. Hester et al. Persistent clocks for batteryless sensing devices. ACM
Transactions on Embedded Computing Systems, 15(4):1–28, 2016.

[25] J. Jeong et al. Capri: Compiler and architecture support for whole-system
persistence. In the 31st International Symposium on High-Performance
Parallel and Distributed Computing, pages 71–83, 2022.

[26] J. Zeng et al. Replaycache: Enabling volatile cachesfor energy harvesting
systems. In 54th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 170–182, 2021.

[27] J. Zeng et al. Turnpike: Lightweight soft error resilience for in-order
cores. In MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 654–666, 2021.

[28] J. Zeng et al. Persistent processor architecture. In Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 1075–1091, 2023.

[29] J. Zeng et al. Compiler-directed whole-system persistence. In Pro-
ceedings of the 51th Annual International Symposium on Computer
Architecture, 2024.

[30] J. Zeng et al. Soft error resilience at near-zero cost. In Proceedings
of the 38th ACM International Conference on Supercomputing, pages
176–187, 2024.

[31] K. Akhunov et al. Adamica: Adaptive multicore intermittent computing.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiqui-
tous Technologies, 6(3):1–30, 2022.

[32] K. Ma et al. Architecture exploration for ambient energy harvesting
nonvolatile processors. In Proceedings of 2015 IEEE 21st Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
HPCA ’15, pages 526–537, Piscataway, NJ, USA, 2015. IEEE Press.

[33] K. Yildirim et al. Ink: Reactive kernel for tiny batteryless sensors.
In Proceedings of the 16th ACM Conference on Embedded Networked
Sensor Systems, pages 41–53, 2018.

[34] M. Chen et al. Stacked switched capacitor energy buffer architecture.
IEEE Transactions on Power Electronics, 28(11):5183–5195, 2013.

[35] M. Guthaus et al. Mibench: A free, commercially representative
embedded benchmark suite. In Workload Characterization, 2001. WWC-
4. 2001 IEEE International Workshop on, pages 3–14. IEEE, 2001.

[36] M. Kiwan et al. Alpaca: Intermittent execution without checkpoints. In
Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications.
ACM, 2017.

[37] M. Monjur et al. Soundsieve: Seconds-long audio event recognition
on intermittently-powered systems. In Proceedings of the 21st Annual
International Conference on Mobile Systems, Applications and Services,
pages 28–41, 2023.

[38] Q. Jiang et al. Glitchhiker: Uncovering vulnerabilities of image signal
transmission with iemi. In USENIX Security, volume 23, 2023.

[39] Q. Liu et al. Clover: Compiler directed lightweight soft error resilience.
ACM Sigplan Notices, 50(5):1–10, 2015.

[40] Q. Liu et al. Compiler-directed lightweight checkpointing for fine-
grained guaranteed soft error recovery. In SC’16: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 228–239. IEEE, 2016.

[41] Q. Liu et al. Low-cost soft error resilience with unified data verification
and fine-grained recovery for acoustic sensor based detection. In 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 1–12. IEEE, 2016.

[42] Q. Liu et al. ido: Compiler-directed failure atomicity for nonvolatile
memory. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 258–270. IEEE, 2018.

[43] R. Chaari et al. Capacitance recovery analysis and modelling of
supercapacitors during cycling ageing tests. 82:37–45, 2014.

[44] S. Lee et al. Intermittent learning: On-device machine learning on
intermittently powered system. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 3(4):1–30, 2019.

[45] S. Liu et al. Janus: Optimizing memory and storage support for non-
volatile memory systems. In 2019 ACM/IEEE 46th Annual International
Symposium on Computer Architecture, pages 143–156. IEEE, 2019.

[46] S. Liu et al. Review on reliability of supercapacitors in energy storage
applications. Applied Energy, 2020.

[47] V. Kortbeek et al. Bfree: Enabling battery-free sensor prototyping with
python. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 4(4):1–39, 2020.

[48] X. Chen et al. Aging and degradation of supercapacitors: Causes,
mechanisms, models and countermeasures. Molecules, 28:5028, 2023.

[49] Y. Wang et al. A 3us wake-up time nonvolatile processor based on
ferroelectric flip-flops. In ESSCIRC, 2012 Proceedings of the, pages
149–152. IEEE, 2012.

[50] Y. Zhou et al. Sweepcache: Intermittence-aware cache on the cheap. In
Proceedings of the 56th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 1059–1074, 2023.

[51] Z. Xiao et al. An implantable rfid sensor tag toward continuous glucose
monitoring. IEEE journal of biomedical and health informatics, 2015.

[52] S. Franco and J. Kang. Electric circuits fundamentals. Oxford University
Press, 1995.

[53] B. Islam and S. Nirjon. Scheduling computational and energy harvesting
tasks in deadline-aware intermittent systems. In 2020 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages
95–109. IEEE, 2020.

[54] B. Islam and S. Nirjon. Zygarde: Time-sensitive on-device deep infer-
ence and adaptation on intermiently-powered systems. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
(IMWUT/UBICOMP’20), 4(3):1–29, 2020.

[55] J. Jeong and C. Jung. Pmem-spec: persistent memory speculation
(strict persistency can trump relaxed persistency). In Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 517–529, 2021.

[56] C. Kulkarni. A physics-based degradation modeling framework for
diagnostic and prognostic studies in electrolytic capacitors. Vanderbilt
University, 2013.

[57] Q. Liu and C. Jung. Lightweight hardware support for transparent
consistency-aware checkpointing in intermittent energy-harvesting sys-
tems. In 2016 5th Non-Volatile Memory Systems and Applications
Symposium (NVMSA), pages 1–6. IEEE, 2016.

[58] Y. Luo and S. Nirjon. Smarton: Just-in-time active event detection on
energy harvesting systems. In 2021 17th International Conference on
Distributed Computing in Sensor Systems, pages 35–44. IEEE, 2021.

[59] K. Maeng and B. Lucia. Supporting peripherals in intermittent sys-
tems with just-in-time checkpoints. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 1101–1116. ACM, 2019.

[60] K. Maeng and B. Lucia. Adaptive low-overhead scheduling for periodic
and reactive intermittent execution. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 1005–1021, 2020.

[61] H. Markus and A. Gabino. Energy storage using supercapacitors: How
big is big enough? AnalogDialogue, 54(3), 2020.

[62] H. Mendis and P. Hsiu. Accumulative display updating for intermittent
systems. ACM Transactions on Embedded Computing Systems (TECS),
18(5s):1–22, 2019.

[63] MICROCHIP. Xlp 16-bit development board – for low power pic mcu
prototyping.

[64] Powercast. Lifetime power lifetime power energy harvesting energy
harvesting development kit for wireless sensors, 2017.

[65] D Pritchard. Wearable energy harvesting for charging portable electronic
devices by walking. 2020.

[66] A. Sinha and A. Chandrakasan. Jouletrack-a web based tool for
software energy profiling. In In Proceedings of the 38nd Annual Design
Automation Conference, DAC ’01, 2001.

[67] Joel Van Der Woude and Matthew Hicks. Intermittent computation
without hardware support or programmer intervention. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), pages 17–32, Savannah, GA, 2016. USENIX Association.

[68] Y. Zhang and C. Jung. Featherweight soft error resilience for gpus.
In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 245–262. IEEE, 2022.

