
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

iFKVS: Lightweight Key–Value Store for
Flash-Based Intermittently Computing Devices

Yen-Hsun Chen , Ting-En Liao , and Li-Pin Chang , Senior Member, IEEE

Abstract—Energy harvesting enables long-running sensing1

applications on tiny Internet of Things (IoT) devices without2

a battery installed. To overcome the intermittency of ambient3

energy sources, system software creates intermittent computation4

using checkpoints. While the scope of intermittent computation5

is quickly expanding, there is a strong demand for data storage6

and local data processing in such IoT devices. When considering7

data storage options, flash memory is more compelling than8

other types of nonvolatile memory due to its affordability and9

availability. We introduce iFKVS, a flash-based key–value store10

for multisensor IoT devices. In this study, we aim at supporting11

efficient key–value operations while guaranteeing the correctness12

of program execution across power interruptions. For indexing13

of multidimensional sensor data, we propose a quadtree-based14

structure for the minimization of extra writes from splitting15

and rebalancing; for checkpointing in flash storage, we propose16

a rollback-based algorithm that exploits the capabilities of17

byte-level writing and one-way bit flipping of flash memory.18

Experimental results based on a real energy-driven testbed19

demonstrate that with the same index structure design, our20

rollback-based approach obtains a significant reduction of 45%21

and 84% in the total execution time compared with checkpointing22

using write-ahead logging (WAL) and copying on write (COW),23

respectively.24

Index Terms—Checkpoint, flash storage, intermittent25

computation, key–value store.26

I. INTRODUCTION27

SMART Internet of Things (IoT) applications, such28

as building automation, transportation, healthcare, and29

surveillance, involve a large number of distributed sensing30

devices to monitor the environment and take action when nec-31

essary. Typically, such tiny IoT devices are distributed over a32

large-scale wireless network and deployed in remote locations33

for long-lasting operation without human maintenance. To34

meet the deploy-and-forget requirement, a promising direction35

for the development of IoT devices is toward batteryless36

design. Instead of draining energy from batteries, these devices37

operate with ambient energy, which can be harvested from38

Manuscript received 10 August 2024; accepted 10 August 2024. This work
was supported in part by the National Science and Technology Council,
Taiwan, under Grant MOST 110-2221-E-A49-029-MY3 and Grant NSTC
113-2221-E-A49-188-MY3. This article was presented at the International
Conference on Embedded Software (EMSOFT) 2024 and appeared as part
of the ESWEEK-TCAD special issue. This article was recommended by
Associate Editor S. Dailey. (Corresponding author: Li-Pin Chang.)

The authors are with the Department of Computer Science, College of
Computer Science, National Yang Ming Chiao Tung University, Hsinchu
30010, Taiwan (e-mail: eric246871@gmail.com; teliao0116@gmail.com;
lpchang@cs.nycu.edu.tw).

Digital Object Identifier 10.1109/TCAD.2024.3443698

solar energy [1], radio signal energy, kinetic energy, and 39

thermal energy [2]. 40

Energy-harvesting devices use capacitors as an energy 41

buffer. Because ambient energy is highly unstable, devices 42

risk losing all computation progress when the stored energy 43

is depleted. Checkpoints are therefore introduced to manage 44

the loss across power interruptions: at a proper timing, a 45

checkpoint is committed to save the program context to 46

nonvolatile memory, and on power recovery, the latest check- 47

point is restored to resume program execution. In particular, 48

continuous checkpoints are periodically committed [3], while 49

just-in-time (JIT) checkpoints are committed right before 50

the device halts due to insufficient energy [4]. In contrast, 51

atomic tasks commit changes to the global memory on their 52

completion [5]. With the proposed checkpoints and atomic 53

tasks, program execution is thus intermittent, i.e., applications 54

can be long-running across unexpected power interruptions. 55

IoT devices constantly sample readings from multiple 56

microsensors. Recent studies have shown that, instead of 57

uploading sensor data to the cloud for processing, IoT devices 58

can benefit from local data storage and processing: sensor data 59

can be digested and compressed locally to reduce the cost of 60

wireless data transmission [6], queries can be handled locally 61

in sensors for improved responsiveness [7], and in healthcare 62

applications, processing data locally in sensor devices enables 63

anonymization and access control of personally identifiable 64

data [8]. A multisensor IoT device acquires multidimensional 65

data, where each data record typically comprises a timestamp 66

and multiple sensor readings. Although a file system can easily 67

store and query time-series data, it cannot, however, handle 68

event-based queries efficiently. Such queries often involve 69

different conditions on multiple dimensions [9], e.g., “List all 70

events in the last week where the air temperature is above 71

40 ◦C and the relative humidity is above 60%.” In contrast, 72

these queries are better handled by a key–value store through 73

multidimensional data indexing. 74

The inclusion of a key–value store in energy-harvesting 75

devices cannot succeed without considering the memory cost. 76

This is because, compared to working memory, data storage 77

demands a much larger space. We consider flash memory 78

because it offers a superior capacity per unit cost and is readily 79

available on many platforms. To the best of our knowledge, 80

this study is the first on the support of intermittency for flash- 81

based key–value store. Now, in addition to fast key–value 82

operations, new design challenges arise regarding efficient 83

checkpoint operations: first, rewriting in flash is not possible 84

without erasure. With this constraint, to restore a checkpoint, 85

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0009-0000-1342-1603
https://orcid.org/0009-0001-9135-7384
https://orcid.org/0000-0001-6543-2064

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

every change that occurs after the most recent checkpoint86

must be explicitly undone from flash memory. Second, in prior87

work, checkpointing involves only the program context but not88

the storage space. Restoring the program state and undoing89

flash changes separately without global coordination creates90

inconsistency between the program and storage.91

This study presents iFKVS, a lightweight key–value store92

for energy-harvesting devices. In addition to functional cor-93

rectness, iFKVS aims for a reduction in write cost because,94

compared to reading, writing flash memory is more expensive95

in terms of time and energy. iFKVS uses two techniques to96

write flash: 1) byte logging and 2) one-way bit flipping (see97

Section II-B). For indexing of multidimensional sensor data,98

iFKVS employs a flash-efficient design of quadtrees [10], for99

which each tree node is managed as a tiny log space. This way,100

while efficient insertions are possible through fine-grained,101

out-of-place logging, existing data of a node remain intact for102

subsequent checkpoint restoration.103

Checkpointing for iFKVS is based on rollback, a backup-104

before-modify approach. iFKVS maintains a global undo log105

to collect backups of tree nodes and program contexts in106

chronological order. Thanks to our log-structured node design,107

when modifying a tree node, rather than making a full backup108

of the node, iFKVS simply marks the flash address of the109

most recent write to the node. On checkpoint restoration,110

all data written after this mark will be undone from flash111

memory. Now, when recovering from a power interruption,112

iFKVS examines the global undo log, undoes node changes,113

and restores the program context. The process of undoing114

node changes is also optimized for flash memory: rather than115

erasing changes made after the previous checkpoint, iFKVS116

neutralizes these changes by zeroing them out using one-way117

bit flipping. On the other hand, to commit a checkpoint, iFKVS118

simply makes a backup of the program context and clears119

up the global undo log. In summary, this work makes the120

following contribution:121

1) proposing a flash-efficient key–value index design for122

multidimensional sensor data;123

2) introducing a flash-efficient checkpoint algorithm to124

enable intermittent computation on a flash-based key–125

value store;126

3) presenting a mechanism for global coordination between127

the program state and flash state across checkpoints.128

We successfully implemented our iFKVS design on Texas129

Instruments MSP430F5529 SoC. For performance evaluation130

and comparison, we also implemented the proposed tree131

structure on top of two additional checkpoint techniques,132

write-ahead logging (WAL) and copying on write (COW). Our133

results show that iFKVS achieved an overhead reduction by134

up to 84% in terms of the total execution time required to135

complete a workload under realistic power fail events.136

II. BACKGROUND AND MOTIVATION137

A. Intermittent Computation138

Batteryless IoT devices harvest ambient energy, store it139

in a capacitor, and operate with this stored energy until140

it is depleted. However, when running out of the stored141

(a) (b)

Fig. 1. Concept and design of intermittent computation. (a) Program
progresses with checkpoints. (b) Memory organization of SRAM (working
memory) and flash (storage).

energy, the devices lose all volatile program context, including 142

contents in the CPU registers and volatile memory. To avoid 143

re-execution from scratch, energy-harvesting devices timely 144

commit a checkpoint to preserve the program context. A piece 145

of nonvolatile memory is thus adopted to store the program 146

state for later restoration. Fig. 1(a) shows program execution 147

with checkpoints: The program commits a checkpoint at time 148

t1 and continues to execute. Later at time t2, the device ceases 149

to operate due to a power interruption. At time t3, the capacitor 150

is sufficiently charged and the device restarts. By restoring 151

the prior checkpoint, the execution progress is reverted to that 152

at t2, i.e., only the progress between t1 and t2 is lost. Here, 153

we refer to everything that happens before the checkpoint to 154

be pre-checkpoint, and all the others to be post-checkpoint. 155

For example, restoring the checkpoint effectively discards the 156

post-checkpoint progress between t1 and t2. 157

In this study, we consider a typical memory organization, 158

which is readily available on many embedded platforms, as 159

shown in Fig. 1(b). The upper half is a piece of volatile SRAM 160

that serves as the working memory. The SRAM holds read– 161

write memory sections, including global variables and task 162

stacks. The lower half is a piece of large, nonvolatile flash 163

memory, commonly referred to as NOR flash. Because the flash 164

is byte-addressable and capable of execute-in-place (XIP), it 165

serves as a unified memory space for code storage (through 166

XIP) and sensor data storage (through key–value store). A 167

small portion of the flash memory is reserved for the program 168

context backup and the flash undo log. 169

With continuous checkpoints [3], programs continue to 170

execute after committing a checkpoint. On power recovery, 171

post-checkpoint writes must be undone from flash memory. 172

In contrast, with JIT checkpoints [4], programs suspend right 173

after committing a checkpoint. However, energy estimation is 174

not always correct [11], so JIT checkpoints are not free from 175

post-checkpoint progress and a flash undo algorithm is always 176

necessary. 177

B. Flash Memory Characteristics 178

Performance: In prior studies, both byte-addressable flash 179

memory (specifically, NOR flash) and ferroelectric RAM 180

(FRAM) are often considered in the design of energy- 181

harvesting devices. Table I shows a comparison between 182

the two. Both flash and FRAM can store executable code 183

because they are byte-addressable and pin-compatible with 184

CHEN et al.: iFKVS: LIGHTWEIGHT KEY–VALUE STORE FOR FLASH-BASED INTERMITTENTLY COMPUTING DEVICES 3

TABLE I
COMPARISON OF FLASH AND FRAM

Fig. 2. Outdoor solar power collected by a 5.4-cm2 solar panel.

the processor. Flash supports byte-level writes and is thus185

highly friendly for managing key–value index structure. While186

FRAM is erase-free, flash involves erasure of segments to187

reclaim writable memory space. We measured the latency and188

energy performance of flash memory and FRAM using the189

EnergyTrace feature from Texas Instruments MSP430F5529190

and MSP430FR5994, respectively. The lower half of Table I191

shows that the read latencies of flash and FRAM are within192

the same order of magnitude, although flash is slower than193

FRAM. In contrast, flash writes are slower and consume more194

energy and require subsequent erasure.195

Cost: Table I shows that flash holds a significant advantage196

in terms of storage design, as it costs only about 5% of the197

price of FRAM for the same 256-kB size. As of mid-2024,198

a 10-mF capacitor costs U.S. $3, and a 128-kB flash-based199

MSP430 SoC costs U.S. $9, making FRAM less attractive for200

storage-demanding sensing applications.201

Applicability: The use of flash memory is subject to the202

scenario and specification of the target application [12].203

Consider an outdoor sensing application requiring at least 512204

kB of data storage. The first issue is the ambient power. Fig. 2205

depicts that outdoor solar power from a small panel often206

exceeds 100 mW.1 In our experiments, a flash-based MSP430207

SoC operates at a duty cycle of 82% under 3.3 V×7 mA≈23208

mW with a 10-mF capacitor, so this ambient power is more209

than sufficient to drive the flash-based SoC. The second issue210

is on capacity. As of 2024, within the lineup of MSP430-211

based SoCs, the maximum embedded FRAM size is 256 kB,212

whereas embedded flash can reach 512 kB. External memory213

is considered for size expansion [13], [14]. While the largest214

external (serial) FRAM from major distributors is 16 Mb,215

the largest external NOR flash reaches 1 Gb. Nevertheless,216

when the data writing rate is extremely high [15] or when the217

ambient power is weak, flash is unlikely a viable option.218

Operations: Index management heavily involves fine-219

grained writes, e.g., adding a pointer or changing a flag bit. In220

flash, a bit of 1 can be changed to 0, but once a bit is set to 0, it221

cannot be changed. Bits in flash can only be reset to 1 through222

segment erasure. Byte writing in flash is feasible if the target223

1The power traces are used for evaluation in Section V-F.

Fig. 3. Timeline of intermittent execution and instantiation of inconsistency
between program and storage.

address is unwritten. The system software can individually set 224

a bit to 0 using a bitmask. For example, overwriting 0x55AA 225

with 0xFF77 results in 0x5522. This operation, called one- 226

way bit flipping, will be used in our approach to neutralize 227

post-checkpoint data and to change flag bits. 228

C. Motivational Example 229

A storage-enabled energy-harvesting device operates on not 230

only the program context but also the storage state. However, 231

to support intermittent computation, existing checkpoint algo- 232

rithms are concerned with the program context only, and little 233

effort has been made toward how to checkpoint on both. 234

Without proper coordination between the two, after restoring 235

a checkpoint on power recovery, an energy-harvesting device 236

risks state inconsistencies between program and storage. 237

Fig. 3 demonstrates an inconsistency resulted from 238

program-only checkpointing. The lower half depicts the flash 239

state, in which a segment, a unit for flash erasure, has four 240

words at addresses from 0F0h to 0F6Ch. The program context, 241

depicted in the upper half, is in SRAM. Let the program 242

maintains a write pointer that refers to the next available flash 243

address for writing. Now, at time t1, words X and A have 244

been written to flash and the write pointer refers to 0F4h. The 245

program commits a checkpoint at time t2 and then at time 246

t3, it samples word B from a sensor, writes B to 0F4h, and 247

advances the write pointer to 0F6h. After time t3, the device 248

undergoes a power outage. At time t4, the device restores 249

the prior checkpoint and reverts the program context to the 250

state at time t2. Notice that the write pointer, part of the 251

program context, is returned to 0F4h, and this address has 252

been occupied by word B. At time t5, the program samples 253

a new word C from the sensor and attempts to write C to 254

the already-written address 0F4h. As flash memory prohibits 255

in-place updating without prior erasure, the write results in 256

erroneous contents at address 0F4h. 257

Power events can also cause storage metadata inconsisten- 258

cies, as noted in [16]. Such errors can be avoided by extending 259

the semantics of checkpoint to the storage. Checkpointing 260

in flash memory is challenging because unlike the erase-free 261

nonvolatile memory such as FRAM, flash memory cannot 262

be rewritten without prior erasure. Restoring a checkpoint 263

requires to undo all post-checkpoint writes explicitly form 264

flash memory. For example, in Fig. 3, word B at address 265

0F4h must be erased from flash memory. However, flash 266

memory erases in terms of segments, and in this example, 267

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

the checkpoint algorithm must first create a backup of words268

X and A, erase the segment (0F0h to 0F7), and then copy269

words X and A back. In this study, our design goal is270

to maintain synchronization between program and storage271

for checkpoint operations, while also exploring innovative272

methods to efficiently neutralize post-checkpoint writes from273

flash memory.274

D. Related Work275

With energy harvesting, long-term computation employs276

checkpoints to survive power interruptions with managed277

progress loss. There are different types of checkpoint methods.278

1) Continuous checkpoints, illustrated by Choi et al. [3]279

and Maeng and Lucia [17], are committed by the system280

software in a regular time interval and restored on power281

recovery.282

2) Compiler-directed checkpoints, including the technique283

proposed by Liu et al. [18], rely on compile-time284

analysis of write-after-read (WaR) dependencies among285

variables. Checkpoints are committed at the boundaries286

of idempotent program blocks.287

3) Atomic tasks, pioneered by Maeng et al. [5], commit288

local changes to the global memory upon their comple-289

tion.290

4) JIT checkpoints, demonstrated by Maeng and Lucia [4],291

involve additional hardware to monitor the voltage of292

the capacitor. A checkpoint is committed only when the293

voltage level is critically low. Our key–value store is294

designed to be independent of the checkpointing method.295

While energy is a sacred resource in energy-harvesting296

devices, the introduction of advanced energy buffers [11], [19]297

has transformed them from dumb, wimpy devices into capable298

platforms. For example, Fraternali et al. [20] demonstrated299

wireless communication with Bluetooth low energy (BLE)300

on batteryless devices. Gobieski et al. [21] showed the301

feasibility of handwriting recognition and keyword spotting302

based on compact CNN models powered by energy harvesting.303

Montanari et al. [22] further optimized the tradeoff between304

energy usage and inference accuracy using multiresolution305

and multiexit CNN models. Mendis et al. [23] proposed306

intermittency-aware architecture search for neural networks to307

boost the chance of successful interference. Smart applications308

need extensive computation and data access, making local309

storage and retrieval of sensor data increasingly critical.310

The use of flash memory and other nonvolatile memory311

options enables the local storage of sensor data. Dai et al. [24]312

demonstrated a flash-based, log-structured file system for313

sensor devices. Exploiting the append-only property of sensing314

applications, the file system preallocates a dedicated flash315

space for each file to grow. Tsiftes et al. [25] presented Coffee316

to enhance this approach using micro-logs to optimize small317

updates. Mazumder and Hallstrom [15] proposed LoggerFS to318

explore hybrid memory organization, i.e., FRAM serves as a319

high-speed write buffer and NAND flash is the final storage320

of file data. Compared with file systems, key–value stores321

better handle event- or value-based queries. Lin et al. [6]322

presented flash-efficient implementation of a hash table and323

(a) (b) (c)

Fig. 4. Index structures for multidimensional data: (a) grid file, (b) R-tree,
and (c) quadtree.

a grid file for sensors. Fevgas and Bozanis [26] proposed 324

buffering random writes for efficient insertion into flash-based 325

grid files. Chang and Hsu [27] introduced soft lists, a flash- 326

native implementation of skip lists with efficient flash garbage 327

collection. However, in these studies, checkpointing is either 328

not discussed at all or considered too expensive. 329

iNVMFS, proposed by Wu et al. [16], is a lightweight, 330

checkpoint-enabled file system. However, iNVMFS is heavily 331

based on the in-place updating capability of erase-free FRAM, 332

which makes it incompatible with flash memory. Our work 333

deviates from iNVMFS by addressing the unique constraints 334

of flash operations. In addition, our approach handles queries 335

on multidimensional data while iNVMFS does not. 336

III. INDEXING AND CHECKPOINTING 337

This section introduces multidimensional data indexing and 338

storage checkpointing, laying the foundation for our approach. 339

Experienced readers can proceed to Section IV. 340

A. Indexing of Multisensor Data 341

For long-term sensor data storage, a file system conveniently 342

creates day directories for hour files, in which sensor data are 343

logged. This permits simple retrieval of data within a specified 344

time interval. An IoT device collects multidimensional data 345

from multiple sensors. However, queries on multisensor data 346

involve distinct conditions on different dimensions, and to 347

process such queries, a file system has no choice but inspects 348

every record in all corresponding hour files. 349

There have been excellent index designs for 350

multidimensional data, and for the ease of illustration, we 351

consider a dimension size of two. Fig. 4(a) shows a grid 352

file [6], in which data items are distributed among fixed-sized 353

cells of the grid on the XY plane. As cells occupy the same 354

size, address calculation and data transfer of cell data are 355

highly efficient. A drawback of grid files is the poor space 356

utilization under a highly uneven data distribution, and in 357

addition, cell overflows may trigger expensive rehashing of 358

the grid. Fig. 4(b) depicts an R-tree [28], which manages 359

the bounding boxes in a tree-based hierarchical manner. Like 360

B-trees, R-trees split and merge for height balancing and 361

space compacting. However, these self-balancing operations 362

introduce a large amount of writes. In addition, an R-tree may 363

CHEN et al.: iFKVS: LIGHTWEIGHT KEY–VALUE STORE FOR FLASH-BASED INTERMITTENTLY COMPUTING DEVICES 5

(a) (b) (c) (d)

Fig. 5. Various techniques for checkpointing in storage. (a) Rolling back.
b) WAL. (c) COW. (d) Log-structuring.

search multiple paths on query because it permits a partial364

overlap between boxes.365

Fig. 4(c) shows a quadtree [10], in which a node represents366

a region. When a node is full, the region it represents is parti-367

tioned into four quadrants, each of which is associated with a368

new child node. In this study, our key–value store is designed369

based on quadtrees because a few of their properties well370

match our purpose: unlike grid files, in which all cell spaces371

have been preallocated, quadtrees creates new nodes only372

when necessary. Unlike R-trees, which permit overlapping373

between bounding boxes and involve extra writes for self-374

balancing, quadtrees efficiently search in disjoint quadrants375

and do not use extra writes for rebalancing.376

B. Checkpointing in Storage377

Checkpointing in working memory is typically based378

on variables, whereas storage checkpointing involves larger379

objects (such as tree nodes or data blocks) to save metadata380

space. Existing techniques, as discussed below, share a prin-381

ciple that avoids to modify pre-checkpoint data objects.382

Fig. 5(a) illustrates the operation of rolling-back, a backup-383

before-modify approach. Suppose that we modify node C in384

the tree structure. In the first step, the pre-checkpoint node385

C is copied to a backup space and is ready for in-place386

updating. In the second step, the original node C is updated in387

place and becomes node C’. Committing a checkpoint involves388

discarding the backup node, whereas restoring the previous389

checkpoint necessitates replacing node C’ with node C, effec-390

tively reverting to the previous state. In contrast, Fig. 5(b)391

shows WAL and how it handles the same update. In the first392

step, the up-to-date node C’ is added to a log space (also393

known as the redo log) without altering the pre-checkpoint394

node C. Committing a checkpoint involves overwriting node C395

with node C’ (step 2) followed by clearing the log. Restoring396

the prior checkpoint can be done by discarding all post-397

checkpoint data, i.e., clearing the log. Both rolling back and398

WAL involve in-place node updating in their second steps,399

which seems prohibited in flash. However, this operation can400

be implemented by node logging, as will be shown in later401

sections.402

Fig. 5(c) depicts COW. The update to node C is handled403

in an out-of-place manner to avoid modifying pre-checkpoint404

data. After this, the parent node A must also be updated405

to refer to node C’, and the update is again handled in an406

out-of-place manner. The copying of nodes, operated by the407

wandering tree algorithm, propagates upstream until reaching408

the root or a post-checkpoint node. A checkpoint is committed409

(a) (b) (c)

Fig. 6. Node structure. Each node is a tiny log space. (a) Node structure.
(b) Leaf node. (c) Internal node.

by discarding nodes A and C, which are unreachable from the 410

new root A’. The prior checkpoint is restored by discarding all 411

post-checkpoint nodes, i.e., nodes A’ and C’. Fig. 5(d) shows 412

log-structuring, which performs out-of-place writing always. 413

A signature of log-structuring is the use of a mapping table 414

in the working memory, which eliminates the necessity for 415

path copying, as seen in COW. Here, updating to node C is 416

accomplished by appending a new node C’ and then updating 417

the mapping table accordingly. The mapping table must be 418

backed up and restored on checkpoint operations. 419

We implemented rolling back, WAL, and COW in our exper- 420

imental study. Notice that log structuring is not considered 421

because the tiny SRAM of the IoT platform that we use cannot 422

afford the space overhead of the node mapping table. 423

IV. LIGHTWEIGHT KEY–VALUE STORE WITH EFFICIENT 424

CHECKPOINT SUPPORT 425

A. Node and Tree Structure 426

To achieve efficient query processing with a reduced write 427

frequency, we propose a flash-efficient implementation of 428

quadtrees. A quadtree is composed by nodes, and in our design, 429

nodes contain pointers only, as shown in Fig. 6(a). A node is 430

an array of pointer slots, and because flash memory permits 431

byte writing, a pointer slot can be either available, in-use, or 432

obsolete (neutralized). An in-use pointer can be neutralized 433

by writing zeros through one-way bit flipping, as will be 434

discussed later. Our design treats a node as a tiny logging space 435

of pointers. This design greatly aids checkpoint operations 436

because new pointers are inserted in the order of time, so it 437

will be straightforward to distinguish pre-checkpoint pointers 438

from post-checkpoint ones. 439

Quadtrees always insert new data to leaf nodes. Fig. 6(b) 440

shows that two new records are inserted to a leaf node, and 441

the first two slots are allocated to pointers referring to the 442

data records. The pointer slots of a leaf node are sequentially 443

allocated to refer to new records, and when all pointer slots 444

have been used, a node-split procedure is taken. Let the 445

dimension size be two for the purpose of illustration. As 446

Fig. 6(c) shows, after the split, the original node becomes the 447

parent of four new leaf nodes (NE to NW). Here, we take a 448

few measures to simplify the node structure for saving flash 449

writes. First, to save pointers, we propose allocating the four 450

child nodes in a contiguous flash space so that the parent 451

node uses only one pointer to refer to all the child nodes. 452

Second, on node split, the node space is partitioned into equal 453

subspaces without referring to a pivot, and this saves another 454

pointer. Note that if a high data skewness is anticipated, a 455

pivot pointer can be added for pivot-based splitting. Third, 456

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 7. Our log-and-mark approach. The write mark indicates the current
write address of the log at checkpoint committing.

Fig. 8. Data layout in flash (upper half) and contents in node A and the
undo log (lower half). Gray portions are post-checkpoint data.

we introduce lazy split, which retains all data pointers of a457

node during splitting to avoid unnecessary flash writes. In458

contrast, traditional quadtrees require migrating data items459

from a parent node to its child nodes during a split.460

B. Global Undo Log461

Because key–value operations involve writing to flash,462

we detail the design of our global undo log and explain463

how it operates. Fig. 7 depicts the core idea of our design,464

the log-and-mark approach: flash writing is always handled465

through logging. Checkpoint committing marks the current466

write address of the log, and all subsequent writes that occur467

after this mark produce post-checkpoint data. Writing to flash468

is subject to two simple rules: 1) pre-checkpoint data cannot469

be modified and 2) post-checkpoint data must be undone from470

flash on checkpoint restoration.471

Fig. 8 shows an example of the flash-space layout. A472

reserved area appears at the beginning of the flash, and this473

area contains the backup space for the program state in474

addition to the global undo log. In our design, the main flash475

space is divided into two areas, one for tree nodes and the476

other for data records. The two areas are both log spaces. Node477

allocation starts at the lowest address, and record allocation478

begins at the highest address. The two disjoint areas grow479

toward each other. By separating nodes from records, pointers480

can greatly reduce the number of bits needed to refer to481

objects, as they only need to encode object offsets instead of482

full addresses.483

Writing to the node area and the record area follows the484

log-and-mark approach. The lower half of Fig. 8 shows the485

global undo log, in which all write marks are collected.486

In particular, the node area is associated with write mark487

wn, which indicates the current write address of the node488

area when the most recent checkpoint is committed. In other489

words, everything that appears before wn is considered pre-490

checkpoint, node A for instance, while anything written after491

Fig. 9. Write decision flows.

wn is classified as post-checkpoint, as represented by node B. 492

Accordingly, the record area is associated with a write mark 493

wr as the boundary between pre-checkpoint records and post- 494

checkpoint ones. Notice that because tree nodes themselves are 495

tiny logging spaces, a node may contain both pre-checkpoint 496

data and post-checkpoint ones. For example, although node 497

A is in the pre-checkpoint node area, it accepts new pointers 498

after the latest checkpoint. To reflect this, a write mark wA is 499

created for node A, marking that everything appears after wA 500

a piece of post-checkpoint data. 501

Fig. 9 details the write control flow. For example, the fourth 502

decision flow shows the procedure to add a new pointer to 503

node A in Fig. 8. Basically, when writing to an area, our design 504

examines whether this is the first write to the area after the 505

most recent checkpoint. A write mark is created for the area 506

only if it is the first write to the area, and the write mark is 507

added to the global undo log. No write mark will be created 508

on subsequent writes. Writing to an existing tree node follows 509

the same logic. Consequently, a node has a write mark in the 510

global undo log only if it has been modified since the most 511

recent checkpoint. Our design uses a tiny hash table in the 512

working memory to efficiently check for the presence of a 513

write mark in the undo log. As will be detailed later, during 514

checkpoint restoration, the write marks aid the identification 515

of post-checkpoint data, e.g., the gray portions in Fig. 8. 516

C. Key–Value Operations 517

A query on a key–value store is either a get or a scan. A get 518

operation looks for an exact match; a scan operation, or a range 519

query, returns all data records that satisfy a set of conditions 520

across different dimensions. Scans are more useful to event- 521

based queries. Our tree index follows the original quadtree 522

algorithm for query processing with the following exceptions: 523

because our nodes are log spaces, records associated with a 524

node are unsorted, requiring examination of all records during 525

query processing. In addition, with our lazy split, internal 526

nodes are not empty, so their contents must also be inspected 527

for matches. 528

Write-oriented operations include put, update, and delete. A 529

put operation inserts a new record. To handle a put request, 530

our tree index first writes a new data record and then modifies 531

the tree index. The index modification includes locating the 532

leaf node to insert, conducting node split if necessary, and 533

adding a new record pointer to the target node. Here, to support 534

CHEN et al.: iFKVS: LIGHTWEIGHT KEY–VALUE STORE FOR FLASH-BASED INTERMITTENTLY COMPUTING DEVICES 7

(a)

(b)

Fig. 10. Global undo log (a) right after checkpoint commit and (b) after
multiple post-checkpoint writes to the node area.

checkpoint operations, writing to flash must comply with the535

principle of our log-and-mark approach. As Fig. 9 shows, the536

first and the second decision flows show how to write a new537

node or a new record, while adding a new pointer to an existing538

node goes through the third or the fourth decision flow. As539

will be explained in later sections, our checkpoint method is540

based on rollback. The original rolling-back method requires541

to create a backup of a node on the first post-checkpoint542

modification to the node [see Fig. 5(a)]. Interestingly, because543

our node structure is a log, post-checkpoint writes do not affect544

pre-checkpoint data in nodes. In other words, the node backup545

step of rolling back is implemented simply by creating a node546

write mark and adding it to the global undo log.547

In this study, random deletion and update of existing data548

records are not considered, as they are less useful to sensing549

applications [6], [15], [24]. Instead, our flash cleaning policy550

removes expired data from flash, as will be shown later.551

D. Checkpoint Operations552

Commit: Checkpoints are committed periodically or on553

low-power events. To commit a checkpoint, a backup of the554

program context, including the CPU registers, data/bss section,555

and stack section, are written to a reserved flash space (see556

Fig. 8). The commit procedure is then finished by writing557

a commit record to the global undo log. A commit record558

contains a pointer referring to the program backup, a commit559

signature, and a checksum of the record. Now, because our560

method for checkpointing in flash is based on rollback, when561

a commit record has been written, all write marks in the562

global undo log are obsolete (since nothing needs to be rolled563

back). In our design, the global undo log is a circular buffer564

composed by a set of flash segments. Fig. 10(a) shows a global565

undo log of two segments, in which a new checkpoint has566

been committed by writing commit record c6. In this example,567

all write marks before the final commit record c6 can be568

discarded. Here, segment 1 can be erased but not segment 2,569

because commit record c6 must remain valid.570

Restore: A checkpoint is restored when the device recovers571

from a power interruption. The restoration procedure first572

scans the global undo log for the last commit record. A write573

mark appearing after the last commit record is a pointer to574

the start of post-checkpoint data. These data, located in the575

node area, the record area, or in a tree node, must be undone576

from flash. For example, in Fig. 10(b), write mark w7 is577

added to the global undo log to indicate that new nodes have 578

been written to the node area after the latest checkpoint. To 579

restore the flash state, the undo procedure erases all the post- 580

checkpoint nodes from the node area. Because segment x + 1 581

contains both pre-checkpoint nodes and post-checkpoint ones, 582

it undergoes erase-based undo: The undo procedure copies the 583

pre-checkpoint nodes to a backup space, erases the segment, 584

and copies the nodes back. Segment x + 2 is erased directly 585

because it contains post-checkpoint nodes only. This procedure 586

then restores the program context to resume execution. 587

The erase-based undo procedure resets the flash space 588

occupied by post-checkpoint data, ensuring that the flash 589

state is precisely reverted to its state at the latest checkpoint. 590

This involves an extra overhead of data copying. To avoid 591

this overhead, we propose relaxing the definition of global 592

consistency to ensure that the program never mistakenly writes 593

to a flash space that has already been written. To achieve 594

this, we introduce discard undo to neutralize post-checkpoint 595

data. Recall that flash is capable of one-way bit flipping, 596

i.e., individual bits can be zeroed out and this operation is 597

idempotent. Now, on checkpoint restoration, for each write 598

mark found in the global undo log, our approach scans flash 599

space after the mark and writes zero until an erased byte 600

(whose value is 0xff) is encountered. The first free addresses 601

of the node area and the record area are updated accordingly. 602

This procedure applies to tree nodes as well, and in subse- 603

quent key–value operations, zero (neutralized) pointers will be 604

ignored. 605

The undo log plays an essential role to the checkpoint 606

correctness. We safeguard write marks and commit records 607

using checksums. During a reboot scan, if the last log object 608

is a valid commit record, then both the program and storage 609

have been checkpointed; otherwise, both will be restored. For 610

the former case, recall that a commit record has a pointer to 611

the program backup, so the device simply restores the backup 612

and resumes execution. For the latter case, only the last log 613

object might fail the integrity check due to interrupted writing. 614

A corrupted commit record is discarded, and a broken write 615

mark is also discarded as its corresponding post-checkpoint 616

data are not yet written. After this, valid write marks and the 617

prior commit record in the log [e.g., w7 and c6 in Fig. 10(b)] 618

are used for flash undo and program restoration, respectively. 619

For flash undo, while the discard undo (our main proposal) 620

is idempotent, the erase-based undo requires a reserved flash 621

space with a checksum-protected header to make the copy- 622

erase-copyback procedure fail-safe. 623

E. Flash Space Cleaning 624

As flash prohibits in-place updating, new data are written to 625

free space. Over time, the amount of free space becomes insuf- 626

ficient and garbage collection must be involved. Conventional 627

copy-based garbage collection strategically selects a segment 628

for erasure, and before erasing the segment, all valid data 629

must be migrated to another free space. In spite of the extra 630

overhead of data movement, this procedure requires an extra 631

layer of indirection because data movement silently changes 632

the flash addresses of data objects. 633

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 11. Our testbed for energy-driven experiments. The target board runs
our key–value store.

Random deletion and update of sensor data are not useful634

in sensing applications [6], [15], [24]. In contrast, queries are635

more concerned with recent events [9], so old data can be636

expired and deleted from local storage. We propose a copy-637

free, partition-based flash cleaning method. The entire flash638

memory is divided into a few equal-sized partitions, each of639

which is managed by an independent instance of our tree640

index. With this design, query processing involves all tree641

instances. Partitions are used in a first-in–first-out manner for642

writing: new data are written to the current partition, and when643

it is full, the oldest partition is erased. Notice that because644

the oldest partition contains a pre-checkpoint tree instance, the645

partition is marked but cannot be erased until a new checkpoint646

has been committed. This partition-based method not only647

eliminates the need for data copying but also ensures wear648

leveling in flash memory.649

Both the performance of insertion and query scale with650

the quadtree algorithm. The overhead of commit is bounded651

by the log size due to the recycling of obsolete log segments,652

and the overhead of restore depends on the amount of post-653

checkpoint data for undo, i.e., the checkpoint interval length.654

V. EXPERIMENTAL RESULTS655

A. Experimental Setup656

1) Parameters and Metrics: We implemented our657

approach, called iFKVS, based on a Texas Instruments658

LaunchPad. The platform involves an MSP430F5229 SoC,659

which is equipped with a 16-bit MSP430 embedded processor.660

The processor is rated at 8 MHz and is integrated with 8661

kB of SRAM and 128 kB of flash. The flash segment size662

is 512 bytes. Our iFKVS implementation uses less than 200663

bytes of SRAM for the volatile program context, including the664

read–write sections for data, bss, and stack. Furthermore, its665

executable code in flash is less than 7 kB. In addition to the666

executable binary, the embedded flash is shared by the global667

undo log and our key–value store. In particular, the latter668

part uses 80 kB, which is partitioned into four equal-sized669

partitions. The node size and the record size are 64 and 8670

bytes, respectively.671

We conducted experiments on an energy-driven testbed, as672

depicted in Fig. 11. The target board runs our key–value store,673

and its power source involves a power supply and a 10-mF674

capacitor. The power supply, a Keysight E36312A, delivers 7675

mA at 3.3 V to the system. In this configuration, the target676

board draws more power than the power supply can provide,677

resulting in the target board remaining nonfunctional until the678

TABLE II
CHECKPOINT DESIGNS OF NVRAM-BASED FILE SYSTEMS

capacitor has charged sufficiently. A separate controller board 679

(powered by an adaptor) monitors the voltage of the capacitor 680

through its ADC. The capacitor discharges when the target 681

board is in operation. When the capacitor voltage drops below 682

2.3 V, the controller turns off the transistor switch to detach 683

the capacitor from the target board for charging. This also 684

causes a blackout to the target board. If the capacitor voltage 685

raises to 3.3 V during charging, the controller turns on the 686

transistor switch to attach the capacitor to the target board, 687

and the target board is powered on. 688

The experimental dataset is constructed based on the 689

database of real weather stations [29]. Each data record in 690

our dataset consists of a timestamp, a relative humidity, and 691

a temperature level. According to the database, we set the 692

relative humidity between 0% and 100% at a resolution of 693

0.1% and the temperature level between −20 ◦F and 100 ◦F at 694

a resolution of 0.1 ◦F. We use fixed-point numbers to represent 695

the humidity and temperature values. Based on the value 696

intervals, we utilize a uniform distribution to generate twenty 697

thousand records for one dataset and a normal distribution for 698

the same number of records in the other dataset. The quadtree 699

does not index sequential timestamps to avoid skewness. For 700

multidimensional queries, the timestamp of matched records is 701

inspected separately. During experiments, a dataset is entirely 702

written to the key–value store, and a checkpoint is committed 703

every 100 insertions. Checkpoints are restored when the target 704

recovers from asynchronous power events. 705

Our primary performance metric is the total execution time, 706

which includes not only the overhead of inserting the entire 707

dataset into the key–value store but also the latency contributed 708

by periodic checkpoint committing and restoring a checkpoint 709

in the event of power recovery. The shorter the total execution 710

time is, the lower the overheads of key–value operations and 711

checkpoint operations are. We also report the latency of each 712

type of operation for analysis. 713

2) Methods Under Evaluation: While we are not aware 714

of directly comparable prior studies, we select the NVRAM- 715

based file systems in Table II as evaluation baselines, with 716

necessary modifications for flash compatibility. 717

iNVMFS [16] employs WAL on file system metadata and 718

COW on file data blocks. As previously shown in Fig. 5(b), 719

post-checkpoint writes are appended to a redo log and later 720

written back to their destination addresses. The writing-back 721

procedure is idempotent on flash, allowing it to be safely 722

repeated if interrupted. We revise iNVMFS by 1) disabling 723

in-place overwriting of post-checkpoint data and 2) dropping 724

the COW feature as sensor data records are never modified. 725

BPFS [30] is based on COW, as shown in Fig. 5(c). BPFS 726

exploits NVRAM atomic writes to avoid path copying on 727

small updates. As atomic writing is not available in flash, 728

CHEN et al.: iFKVS: LIGHTWEIGHT KEY–VALUE STORE FOR FLASH-BASED INTERMITTENTLY COMPUTING DEVICES 9

(a) (b)

Fig. 12. Overall performance under different data distributions. (a) Total
execution times. (b) Power event counts.

we revise BPFS by 1) logging small updates in a post-729

checkpoint node and 2) copying a pre-checkpoint node on its730

first update. Path copying consumes free space at a high rate,731

leaving many obsolete nodes in flash memory. After filling732

up the current flash partition, the revised BPFS initiates copy-733

based compaction if the partition’s space utilization is lower734

than a threshold. The revised BPFS achieve a level of space735

utilization comparable with other methods.736

PMFS [31] uses rollback on metadata and COW on data737

blocks. PMFS performs rollback through in-place overwriting738

because NVRAM is erase-free, but it degrades into erase-based739

undo for flash compatibility. Instead of modifying PMFS, we740

compare iFKVS with erase-based undo against iFKVS with741

discard undo (our main proposal) in Section V-E.742

We refer to our iFKVS as RB for its rollback-based design.743

Similarly, we denote the revised iNVMFS as WAL, and the744

revised BPFS as COW. All these methods share the quadtree745

structure and the partition-based space cleaning policy.746

B. Total Execution Time747

Fig. 12(a) shows the total execution time of RB (equiv-748

alently, our iFKVS), WAL, and COW. The total execution749

time involves the time to insert all the 20 000 data records750

and the time to commit a checkpoint every 100 insertion751

operations. In addition, the time also includes the overhead752

to restore a checkpoint on power recovery. Results show753

that RB completes the workload much earlier than WAL and754

COW. Specifically, under the uniform data distribution, RB755

finishes inserting all the records in 39 s, achieving significant756

reductions of 45% and 84% compared with WAL and COW,757

respectively. Results also show that all the methods have758

longer execution times under the normal data distribution. This759

is because with the normal distribution, keys in each dimension760

(humidity or temperature) are more concentrated. Popular tree761

paths grow deeper than others, leading to key–value operations762

along these paths taking more time to complete.763

Among the factors that contribute to the total execution764

time, the insertion overhead is the primary factor, followed by765

the overhead of checkpoint commit. This is because insertion766

and commit are the two most frequent operations during the767

workload. Now, RB has the lightest overhead to insert a record,768

because it creates a write mark in the global undo log only on769

the first post-checkpoint modification to a node, to the node770

area, or to the record area. Subsequent post-checkpoint writes771

proceed without writing extra information to the undo log. To772

Fig. 13. Capacitor voltage with respect to workload progress with the uniform
dataset. Notice that the x-axis denotes the progress rather than the wall-clock
time.

Fig. 14. Time overhead of insertion operations.

commit a checkpoint, RB simply discards the contents in the 773

global undo log. In contrast, WAL must add a log record to 774

the redo log on every write. In addition, when committing a 775

checkpoint, for every log record, WAL must copy the written 776

data from the log record to the destination flash address. As for 777

COW, when an insertion operation goes to a pre-checkpoint 778

node, COW has to copy the node and all pre-checkpoint 779

nodes along the path toward the root node. In addition, when 780

the current partition is full, COW compacts the partition (in 781

an out-of-place manner) and commits a checkpoint. In other 782

words, the highest runtime overhead of COW results from 783

the wandering tree algorithm and the partition compaction 784

procedure. 785

Another factor that contributes to the total execution time 786

is checkpoint restoration. Fig. 12(b) shows the power event 787

counts. While RB experiences 6 times of power interruption, 788

WAL and COW encounter 12 and 40 times of power outage, 789

respectively, under the uniform data distribution. Furthermore, 790

Fig. 13 depicts the voltage of the capacitor throughout the 791

progress of the entire workload. RB pushes the progress much 792

faster than WAL and COW, i.e., it undergoes much fewer 793

charging cycles throughout the workload. In contrast, WAL 794

and COW progress slowly and the capacitor is recharged more 795

often. The frequent checkpoint restoration operations upon 796

device restarts further increase their total execution times. 797

C. Key–Value Operation Overhead 798

In this section, we report the average, maximum, and 799

minimal latencies of key–value operations, including insertion 800

and query. Fig. 14 shows the insertion latency. The trend 801

in the insertion latencies appears highly consistent with the 802

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 15. Time overhead of range query operations.

trend in the total execution times, as insertion is the most803

frequent operations in the workload. Insertion with a normal804

distribution is slower than with a uniform distribution because805

popular tree paths are relatively deeper and insertion on806

these paths are slower. RB is the fastest on insertion thanks807

to the log-and-mark design: it adds a write mark to the808

global undo log to distinguish pre-checkpoint data and post-809

checkpoint data. WAL takes about three times as long as810

RB to insert a record on average (1.1 ms versus 0.3 ms).811

This is because WAL amplifies the write cost by including812

a target flash address in each log record in addition to the813

written data. Furthermore, when searching the tree index814

during insertion, WAL examines the redo log for updates to a815

node. Searching for updates takes extra time, even though we816

have implemented a tiny hash table in the working memory817

to aid the search. COW is the slowest on insertion, about nine818

times slower than RB on average (2.9 ms versus 0.3 ms).819

Notably, the maximum latency of COW is extremely high.820

This is attributed to the high cost of copying a full path for821

the wandering tree algorithm.822

We evaluate the query performance upon the completion823

of the workload because at this time, the key–value store has824

been fully stressed and contains sufficiently many records for825

query. Specifically, RB, WAL, and COW have about 4500826

valid records in flash before our query test. We present results827

of range queries (scan) rather than point queries (get) because828

get is hardly useful to sensing applications. In addition, get829

is a subset of scan. In this test, we specify a random range830

on each dimension and retrieve the first 256 records from831

the key–value store. Fig. 15 shows that RB and COW are832

comparable in terms of the query latency. In contrast, WAL833

performs noticeably worse than the other two, because every834

time when reading a tree node, WAL must examine the redo835

log for any recent updates to the node. The queries are faster836

under a normal distribution as they cover unpopular (shorter)837

paths.838

D. Checkpoint Operation Overhead839

Fig. 16(a) shows the time overhead of checkpoint commit840

for RB, WAL, and COW. Notably, RB commits a checkpoint841

much faster than WAL and COW. The overhead to commit842

a checkpoint with RB includes 1) making a backup of the843

program context; 2) writing a commit record to the global undo844

log; and 3) erasing unused segments of the global undo log845

(see Fig. 10). For the first item, based on DMA, the process846

of backing up the 200 bytes of SRAM program context to847

(a) (b)

Fig. 16. Time overhead (a) to commit a checkpoint and (b) to restore a
checkpoint. Data distribution is uniform.

flash memory accounts for less than 10% of the total commit 848

latency. For the third item, RB merely erases one segment 849

after three times of commit on average. This is because RB 850

slowly consumes the global undo log space by writing tiny 851

write marks to the log only on the first post-checkpoint write 852

to an area or node (see Fig. 9). 853

The commit overhead of WAL is much higher than that of 854

RB. On every write, WAL adds a log record consisting of a 855

target flash address and the written data, and therefore it must 856

erase segments from its redo log more often. In addition, WAL 857

must also write back all the pending log records in its redo 858

log to complete checkpoint commit. Here, COW shows an 859

extremely high overhead. COW basically switches the root to 860

commit a checkpoint. However, due to its quick consumption 861

of flash space through path copying, if the current partition 862

is full and its space utilization for valid records is low, COW 863

compacts the partition to free up space. We measured that 864

COW improves the valid record count by about 1.7 times 865

through compaction, making it comparable to RB and WAL. 866

Fig. 16(b) shows the time overhead to restore a checkpoint. 867

While commit is a periodic event, restore is conducted only 868

upon power recovery. To restore a checkpoint, RB loads the 869

backup of program context and undoes post-checkpoint flash 870

writes from flash. As detailed in Section IV-D, instead of 871

employing the expensive erase-based undo, RB uses discard 872

undo, which efficiently neutralizes all post-checkpoint data 873

through one-way bit flipping. In contrast, for WAL, all post- 874

checkpoint data is contained within its redo log, and therefore 875

on checkpoint restoration, WAL erases the redo log to discard 876

all post-the checkpoint writes. COW suffers from the highest 877

overhead to restore a checkpoint. This is because COW 878

consumes flash space at a high rate and, on checkpoint 879

restoration, a large amount of post-checkpoint data must be 880

erased from flash. 881

Fig. 17 shows the CDF of iFKVS (RB) operation latencies. 882

Insert and commit show a stable latency, with exceptions of 883

slow insertion due to node splitting and slow commit for 884

erasing log segments. The restore latency is proportional to the 885

amount of post-checkpoint data undone, and the scan latency 886

depends on the tree heights of the scanned records. 887

Based on the technique in [32], we test the checkpoint 888

correctness by replaying the workload on iFKVS with and 889

without power events. Besides random blackouts, we inject 890

asynchronous power fails to checkpoint commit, checkpoint 891

restore, and record insertion. When done replaying the work- 892

load, we retrieve all records through the quadtree and hash 893

CHEN et al.: iFKVS: LIGHTWEIGHT KEY–VALUE STORE FOR FLASH-BASED INTERMITTENTLY COMPUTING DEVICES 11

(a) (b) (c) (d)

Fig. 17. CDF of iFKVS (RB) op. latencies under uniform. (a) Insert.
(b) Commit. (c) Restore. (d) Scan.

(a) (b)

Fig. 18. Evaluating iFKVS (RB) with (a) lazy or regular node split and
(b) discard undo or erase undo. Data distribution is uniform.

their contents. The quadtree and the undo log are not hashed894

as they are affected by power events. The correctness of our895

checkpoint operation is verified by the consistent hash values896

observed both with and without power events.897

E. Differential Evaluation898

We evaluate our iFKVS design by turning on and off899

individual features. Fig. 18(a) shows the insertion latency with900

and without our lazy split method. With lazy split, when a node901

splits, the node retains all its data (pointers actually) without902

migrating them to its new child nodes. Lazy split reduces903

the average insertion latency by about 20% and significantly904

lowers the maximum time length. Fig. 18(b) depicts the time905

overheads to restore a checkpoint with the proposed discard906

undo method and the erase-based undo method. While discard907

undo neutralizes post-checkpoint data through bit flipping,908

erase undo must undergo a copy-erase-copyback procedure to909

erase post-checkpoint data from flash. Our results indicate that910

restoring a checkpoint with discard undo requires only 26%911

of the time compared with using erase undo.912

F. Irregular Power Traces913

We also evaluate our iFKVS using irregular power traces. To914

collect power traces, we place a 5.4-cm2 solar panel alongside915

a road, where passing pedestrians can obstruct the sunlight.916

We record the power output of the panel, and the power traces917

are stored in the power supply for replay. A fragment of the918

traces can be found in Fig. 2. Due to the ample solar power,919

we scale down the amplitude of the traces by 0.1× to emulate920

the power from a smaller solar panel. Fig. 19(a) shows the921

total execution times of RB and WAL, and RB completes the922

workload much earlier than WAL. COW is not included here923

because it suffers from stagnation during checkpoint recovery924

and does not complete the workload. Fig. 19(b) depicts the925

(a) (b)

Fig. 19. (a) Total execution times and (b) capacitor voltage under irregular
power traces. Data distribution is uniform.

TABLE III
ENERGY ANALYSIS SUMMARY

capacitor voltage, showing 1) unpredictable fluctuation in the 926

voltage level due to an unstable power input and 2) more 927

charging cycles for WAL throughout the workload due to its 928

high operational overheads. 929

G. Flash Lifetime Analysis 930

Two major factors determine the flash lifespan: 1) the data 931

sampling (writing) rate and 2) the flash size. In Section V-B, 932

iFKVS completes 20 000 record insertions in about 39 s and 933

performs 914 segment erases. This reflects a sampling rate of 934

(20 000/39 s)≈513 Hz. As ambient conditions like temperature 935

and humidity do not change abruptly, we assume a practical 936

sampling rate of 10 Hz. Therefore, 20 000 record insertions 937

require (20 000/10) × 1 s = 2000 s. iFKVS rotates partitions 938

to ensure even erasure (see Section IV-E). Consider a 256-kB 939

flash memory, which has 512 segments. At a 10-Hz sampling 940

rate, evenly erasing all the 512 segments once requires 2000 s× 941

(512/914) ≈ 1120 s. According to [33], flash endures 105
942

erases, so it takes 1120 s × 105 ≈ 3.6 years to retire the flash 943

memory. This analysis does not involve the undo log; however, 944

its wear can be managed by adjusting the log length. 945

H. Energy Analysis 946

We evaluate iFKVS using three power levels, 7 mA (the 947

default), 6 mA, and 5 mA, at 3.3 V. Table III reports the 948

total execution times and charge cycle counts for each power 949

level, and the observed duty cycles (active periods) for these 950

levels are 82%, 66%, and 49%, respectively. The reduction 951

in the power strength significantly amplifies the execution 952

overhead, highlighting the loss of post-checkpoint progress, 953

slow charging, and cost of checkpoint restoration. 954

Both the microprocessor and flash memory contribute to 955

energy consumption. We monitor how many flash reads, 956

writes, and erases are used for indexing and checkpointing, 957

and we replay these amounts of flash operations without the 958

iFKVS stack. The flash-only replay uses 19.9 s in 3 charge 959

cycles, while the full iFKVS stack uses 38.9 s in 6 cycles. 960

Therefore, storage-related flash operations contribute to about 961

half of the total energy usage. 962

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

We also modify our flash-based iFKVS to run on an FRAM-963

based SoC MSP430FR5994. We observe that the FRAM-based964

iFKVS completes the workload in 11.7 s with 1 charge965

cycle. Here, FRAM demonstrates its power efficiency for966

both program execution and storage management. However, as967

discussed in Section II-B, flash is more cost-efficient, with its968

applicability depending on sustainable power consumption.969

VI. CONCLUSION970

In the foreseeable future, near-data processing will be971

crucial for energy-harvesting sensing applications. This work972

aims to close the gap between intermittent computation and973

flash-based key–value storage. We target on two issues. First,974

checkpointing must involve not only the program context but975

also the storage state to achieve global consistency. Second,976

writes after the most recent checkpoint must be undone from977

flash memory for fast power recovery. We propose a global978

undo log that guarantees the synchrony between the states979

of the program and the storage. For checkpointing in flash,980

we propose a novel log-and-mark approach, which treats981

everything as a log space, including the node area, the record982

area, and each individual node. With this, post-checkpoint983

data can be easily identified and undone from flash. Based984

on a unique property of flash memory, one-way bit flipping,985

we propose replacing the erase-based flash undo procedure986

with idempotent zero-filling writes. Our experiments show987

that, compared to a WAL-based approach and a COW-based988

method, our design achieves a significant reduction in the total989

execution time by 45% and 84%, respectively.990

As part of a smart building project, our system prototype is991

deployed by meeting room windows to optimize room reser-992

vation and air-conditioning plans using event-based queries on993

illumination and temperature readings. Furthermore, because994

page-based NAND flash offers a higher storage density, we995

are thrusting toward an FRAM-NAND hybrid approach for a996

cheaper, larger key–value store.997

REFERENCES998

[1] D. Brunelli, C. Moser, L. Thiele, and L. Benini, “Design of a solar-999

harvesting circuit for batteryless embedded systems,” IEEE Trans.1000

Circuits Syst. I, Reg. Papers, vol. 56, no. 11, pp. 2519–2528, Nov. 2009.1001

[2] M. Magno and D. Boyle, “Wearable energy harvesting: From body to1002

battery,” in Proc. 12th Int. Conf. Design Technol. Integr. Syst. Nanoscale1003

Era (DTIS), 2017, pp. 1–6.1004

[3] J. Choi, H. Joe, Y. Kim, and C. Jung, “Achieving stagnation-free inter-1005

mittent computation with boundary-free adaptive execution,” in Proc.1006

IEEE Real-Time Embedd. Technol. Appl. Symp., 2019, pp. 331–344.1007

[4] K. Maeng and B. Lucia, “Supporting peripherals in intermittent systems1008

with just-in-time checkpoints,” in Proc. 40th ACM SIGPLAN Conf.1009

Program. Lang. Design Implement., 2019, pp. 1101–1116. [Online].1010

Available: https://doi.org/10.1145/3314221.33146131011

[5] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent execution1012

without checkpoints,” Proc. ACM Program. Lang., vol. 1, pp. 1–30,1013

Oct. 2017.1014

[6] S. Lin, D. Zeinalipour-Yazti, V. Kalogeraki, D. Gunopulos, and1015

W. A. Najjar, “Efficient indexing data structures for flash-based sensor1016

devices,” ACM Trans. Storage, vol. 2, no. 4, pp. 468–503, 2006.1017

[Online]. Available: https://doi.org/10.1145/1210596.12106011018

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision1019

and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,1020

Oct. 2016.1021

[8] M. A. Sahi et al., “Privacy preservation in e-Healthcare environments:1022

State of the art and future directions,” IEEE Access, vol. 6, pp. 464–478,1023

2018.1024

[9] Y. Diao, D. Ganesan, G. Mathur, and P. J. Shenoy, “Rethinking data 1025

management for storage-centric sensor networks,” in Proc. CIDR, 2007, 1026

pp. 22–31. 1027

[10] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval 1028

on composite keys,” Acta Informatica, vol. 4, pp. 1–9, Mar. 1974. 1029

[11] J. Choi, H. Joe, and C. Jung, “CapOS: Capacitor error resilience for 1030

energy harvesting systems,” IEEE Trans. Comput.-Aided Design Integr. 1031

Circuits Syst., vol. 41, no. 11, pp. 4539–4550, Nov. 2022. 1032

[12] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for long- 1033

running computation on RFID-scale devices,” in Proc. 16th Int. Conf. 1034

Archit. Support Program. Lang. Oper. Syst., 2011, pp. 159–170. 1035

[13] K. Akhunov, E. Yildiz, and K. S. Yildirim, “Enabling efficient 1036

intermittent computing on brand new microcontrollers via tracking 1037

programmable voltage thresholds,” in Proc. 11th Int. Workshop Energy 1038

Harvest. Energy-Neutral Sens. Syst., 2023, pp. 16–22. 1039

[14] M. Nardello, L. Caronti, and D. Brunelli, “Intermittent intelligent camera 1040

with LEO sensor-to-satellite connectivity,” in Proc. 11th Int. Workshop 1041

Energy Harvest. Energy-Neutral Sens. Syst., 2023, pp. 79–85. 1042

[15] B. Mazumder and J. O. Hallstrom, “A fast, lightweight, and reli- 1043

able file system for wireless sensor networks,” in Proc. 13th 1044

Int. Conf. Embedd. Softw., 2016, pp. 1–10. [Online]. Available: 1045

https://doi.org/10.1145/2968478.2968486 1046

[16] Y.-J. Wu, C.-Y. Kuo, and L.-P. Chang, “iNVMFS: An efficient file 1047

system for NVRAM-based intermittent computing devices,” IEEE 1048

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 41, no. 11, 1049

pp. 3638–3649, Nov. 2022. 1050

[17] K. Maeng and B. Lucia, “Adaptive dynamic checkpointing for safe 1051

efficient intermittent computing,” in Proc. 13th USENIX Symp. Oper. 1052

Syst. Design Implement. (OSDI), 2018, pp. 129–144. 1053

[18] S. Liu, W. Zhang, M. Lv, Q. Chen, and N. Guan, “LATICS: A low- 1054

overhead adaptive task-based intermittent computing system,” IEEE 1055

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 11, 1056

pp. 3711–3723, Nov. 2020. 1057

[19] A. Colin, E. Ruppel, and B. Lucia, “A reconfigurable energy stor- 1058

age architecture for energy-harvesting devices,” in Proc. 23rd Int. 1059

Conf. Archit. Support Program. Lang. Oper. Syst., 2018, pp. 767–781. 1060

[Online]. Available: https://doi.org/10.1145/3173162.3173210 1061

[20] F. Fraternali, B. Balaji, Y. Agarwal, L. Benini, and R. Gupta, “Pible: 1062

Battery-free mote for perpetual indoor BLE applications,” in Proc. 5th 1063

Conf. Syst. Built Environ., 2018, pp. 168–171. 1064

[21] G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence beyond the 1065

edge: Inference on intermittent embedded systems,” in Proc. 24th Int. 1066

Conf. Archit. Support Program. Lang. Oper. Syst., 2019, pp. 199–213. 1067

[Online]. Available: https://doi.org/10.1145/3297858.3304011 1068

[22] A. Montanari, M. Sharma, D. Jenkus, M. Alloulah, L. Qendro, 1069

and F. Kawsar, “ePerceptive: Energy reactive embedded intelligence 1070

for batteryless sensors,” in Proc. 18th Conf. Embedd. Netw. Sens. 1071

Syst., 2020, pp. 382–394. [Online]. Available: https://doi.org/10.1145/ 1072

3384419.3430782 1073

[23] H. R. Mendis, C.-K. Kang, and P.-C. Hsiu, “Intermittent-aware neural 1074

architecture search,” ACM Trans. Embedd. Comput. Syst., vol. 20, no. 5s, 1075

pp. 1–27, 2021. 1076

[24] H. Dai, M. Neufeld, and R. Han, “ELF: An efficient log-structured flash 1077

file system for micro sensor nodes,” in Proc. 2nd Int. Conf. Embedd. 1078

Netw. Sens. Syst., 2004, pp. 176–187. 1079

[25] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt, “Enabling large-scale storage 1080

in sensor networks with the coffee file system,” in Proc. Int. Conf. Inf. 1081

Process. Sens. Netw., 2009, pp. 349–360. 1082

[26] A. Fevgas and P. Bozanis, “Grid-file: Towards to a flash efficient multi- 1083

dimensional index,” in Proc. 26th Int. Conf. Data Manage. Cloud, Grid 1084

P2P Syst., 2015, pp. 285–294. 1085

[27] L.-P. Chang and C.-H. Hsu, “Soft lists: A native index structure for nor- 1086

flash-based embedded devices,” in Proc. Asia South Pac. Design Autom. 1087

Conf., 2009, pp. 799–804. 1088

[28] A. Guttman, “R-trees: A dynamic index structure for spatial search- 1089

ing,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1984, pp. 47–57. 1090

[29] “Colorado agricultural meteorological network (CoAgMET) 1091

data set.” Accessed: Jul. 1, 2023. [Online]. Available: 1092

https://coagmet.colostate.edu/ 1093

[30] J. Condit et al., “Better I/O through byte-addressable, persistent 1094

memory,” in Proc. ACM SIGOPS 22nd Symp. Oper. Syst. Princ., 2009, 1095

pp. 133–146. 1096

[31] S. R. Dulloor et al., “System software for persistent memory,” in Proc. 1097

9th Eur. Conf. Comput. Syst., 2014, pp. 1–15. 1098

[32] J. Van Der Woude and M. Hicks, “Intermittent computation without 1099

hardware support or programmer intervention,” in Proc. 12th USENIX 1100

Symp. Oper. Syst. Design Implement. (OSDI), 2016, pp. 17–32. 1101

[33] “MSP430 flash memory characteristics,” Application note, Texas 1102

Instrum., Dallas, TX, USA, 2018. [Online]. Available: https://www.ti. 1103

com/lit/an/slaa334b/slaa334b.pdf 1104

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

