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Abstract—The rising use of robots in construction aims to ease
labor-intensive and hazardous tasks. Ensuring safety in human-
robot collaboration at construction sites is crucial, necessitating
robust safety protocols and smooth interaction. This work
aims to develop an open-source framework for monitoring and
verifying safety in construction scenarios involving humans and
robots. Our proposed framework includes the co-design of two
modules: runtime monitoring against Signal Temporal Logic
(STL) requirements and real-time reachability analysis using
ProbStar. The runtime monitoring module effectively detects,
localizes, and predicts human movements within the robot’s
operational field. By employing a Kalman filter, we accurately
estimate the future paths of workers, which facilitates proactive
monitoring of worker safety. This approach enables dynamic
adjustments to the robot’s trajectory, guided by quantitatively
calculating robustness values of STL specifications in real-time.
Our approach leverages real-time data from an RGB-D camera to
promptly identify any deviations from expected behavior, further
enhancing safety measures. To address uncertainties in localization
that make the monitoring results inconclusive for safety judgments,
the verification module employs real-time probabilistic reachability
analysis to evaluate the likelihood of collisions between robots and
obstacles within the robot’s local view. We evaluate the proposed
framework across various human-robot interaction scenarios at
construction sites.

Index Terms—Human-Robot collaboration, Construction sites,
Signal Temporal Logic, Reachability Analysis, ProbStar

I. INTRODUCTION

The construction industry faces persistent challenges related
to productivity, worker safety, and health due to the various
hazards and the ever-changing nature of its tasks. Robots,
typically designed for structured environments, struggle to
adapt to the complexities of unstructured construction sites.
As a result, fully autonomous robots replacing humans may
not be the most practical solution. Previous research [1]–[3]
has explored human-robot collaboration for hazardous and
repetitive tasks such as painting, wood framing, and welding.
However, reports of worker discomfort when working alongside
robots [4] have prompted further studies to better understand

the interaction dynamics between workers and robotic systems
in various environments [5]–[8]. This complexity underscores
the critical need for robust monitoring and verification methods
to ensure the safety and efficiency of autonomous robots in
construction settings. There is a lack of perception-based, real-
time monitoring and verification for robotics, which is essential
for understanding how the presentation and training of a robot’s
internal state impact human attitudes towards robots in real-
world scenarios.

This paper introduces perception-based runtime monitoring
and collision verification algorithms for human-robot con-
struction systems. Our algorithms address the challenges of
deploying robots at a construction site through its three core
components: Localization; Predict and Monitor; and ProbStar
Reachability, as illustrated in Fig. 1.

Localization. Monitoring human-robot collaboration systems
in real-time using Signal Temporal Logic (STL) specifications
presents significant challenges. It requires the robot to avoid
the human, demanding precise knowledge of both the robot’s
and the human’s locations. Robots typically rely on camera
and LiDAR sensors to detect obstacles within their local views.
In the localization component, we estimate the coordinates of a
human by localizing workers within the robot’s local view and
processing point cloud data obtained from the robot’s RGB-D
camera.

Predict and Monitor. After localization, we focus on
prediction and monitoring. A major challenge in monitoring
STL specifications that involve future temporal logic operators
is that the calculation of robustness at time t depends on
inputs at a future time t′ > t, which are not yet available. To
tackle this challenge, we utilize a Kalman filter to estimate
the future trajectories of workers. This method allows us to
monitor worker safety and dynamically adjust the robot’s path
according to the robustness values derived from future temporal
logic-based STL specifications in real time. Importantly, in our
case study involving multiple robot systems, while each robot
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Fig. 1: Overview of the proposed vision-based runtime monitoring and verification algorithm.

localizes humans within its immediate vicinity, it does not
localize other robots. Instead, their coordinates are obtained
from a global perspective.

ProbStar Reachability. Despite employing a Kalman filter
for estimation, uncertainties in the positions of humans and
robots are inevitable in dynamic and unstructured environments
due to occlusions, sensor noise, and human unpredictability.
These uncertainties can result in incorrect monitoring outcomes,
particularly when computed robustness values fluctuate within
a narrow range of positive and negative values. To bolster
safety justification under these conditions, we conduct proba-
bilistic reachability and collision analysis for a human-robot
construction system, modeled as a linear system with inputs.

Our approach quantitatively verifies the collision probability
of the robot at runtime using the recent probabilistic star set
[9] built on a set representation named probabilistic star (or
ProbStar) which is a variant of the well-known star set used
in DNNs [10]. Mathematically, a ProbStar [11] is an affine
mapping of a truncated multivariate Gaussian distribution.
We model the inputs as a ProbStar and propagate them
through the control system to construct the reachable output
set, which contains multiple ProbStars. Note that we perform
real-time computation of reachable sets for the robot and
workers to determine the collision probability. This analysis
quantitatively verifies the risk and informs decision-making to
avoid collisions.

To evaluate our framework, we developed two case studies
that simulate real-life construction site scenarios. In Case Study
1, we assess runtime monitoring as a robot navigates through
five different locations within an apartment, encountering 1-3
human workers along the way. For each scenario, we tabulate
the total navigation time, the minimum robustness value of STL
specifications, and the Kalman filter prediction errors. In Case
Study 2, we evaluate the collision verification module with three
deployed robots. One robot navigates to two different locations,
encountering both the other robots and a human worker. For

each robot encounter, we report the collision probabilities
under potential collision conditions. Finally, we evaluate the
effectiveness of our co-design monitoring/verification strategy
by analyzing the reduction in overall reachability analysis time
and reporting the average processing times for each algorithm.

Our Contribution. In this paper, we introduce a framework
designed to monitor and ensure safety requirements for
autonomous human-robot collaboration systems. Utilizing real-
time robot perception, this framework dynamically approxi-
mates human positions to prevent collisions proactively. Below
we summarize the key contributions of the paper:

• We propose the first perception-based algorithm designed
to localize and estimate human motion within a robot’s
local view, using these predictions to monitor human-robot
systems’ safety in real-time actively.

• We integrate monitoring with probabilistic reachability and
collision analysis in real-time using ProbStar for multiple
robots at runtime under different scenarios.

• We propose the implementation of Kalman filter prediction
using ProbStar representation.

• We perform an extensive evaluation to validate the
scalability and robustness of the proposed monitoring
and reachability analysis algorithm.

• We implement the algorithm and publish it as an early
prototype ROS-integrable package that can be used for
other robotic applications. 1

Paper Organization. The remainder of the paper is orga-
nized as follows: Section II introduces the preliminaries and
outlines the problems addressed in this study. Sections III, IV,
and V provide a comprehensive overview of our proposed
algorithms to tackle these problems. Section VI describes the
experimental setup and presents the results for each module of
our algorithm. Section VII reviews related works in the field.
Finally, we present our concluding remarks in Section VIII.

1https://github.com/apalapramanik/didactic-waffle
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II. PRELIMINARIES AND PROBLEM FORMULATION

Our algorithm involves the co-design of two modules:
runtime monitoring against STL specifications and real-time
reachability analysis using ProbStar. We start by defining the
preliminary concepts for each module and outline the specific
problems we aim to address for each within this paper.

A. STL Monitoring Preliminaries

Definition 1 (STL Syntax): Consider an STL requirement
interpreted over discrete time using future logic operators.
Let X = {x1, . . . , xn} be a set of real-valued variables. A
valuation v : X → R for x ∈ X maps a variable x to a real
value. A signal w defined over X is a function T → RX that
gives the value w(t) of the variables in X at time t ∈ T , where
T = R≥0. The syntax of STL formula φ is defined as the
following grammar:

φ := ⊤ | f(Y ) > c | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | φ1 UI φ2

where Y ⊆ X , f : RY → R, c ∈ R, and I is the time
interval of the form [a, b] or [a, ∞) such that a, b ∈ T and a
≤ b.

Definition 2 (STL Quantitative Semantics): Given a real
valued function ρ of an STL formula φ, a signal w and a time
t, the STL quantitative (or robustness) semantics is recursively
defined as follows [12]:

ρ(φ,w, t) ≥ 0 ⇐⇒ (w, t) ⊨ φ,

ρ(f(Y ), w, t) = f(wY (t))− c,

ρ(¬φ,w, t) = ¬ρ(φ,w, t),

ρ(φ1 ∨ φ2, w, t) = max(ρ(φ1, w, t), ρ(φ2, w, t)),

ρ(φ1 ∧ φ2, w, t) = min(ρ(φ1, w, t), ρ(φ2, w, t)),

ρ(φ1Uφ2, w, t) = sup
t′∈[t⊕I]

min

(
ρ(φ2,w,t′)

inf
t′′∈[t,t′)

ρ(φ1, w, t
′′)

)
,

where ⊕ denotes the Minkowski sum between t and I .
Temporal operators. The syntactic definition of STL is
minimal and includes only basic operators. We can derive
other standard temporal operators as follows:

eventually ♢Iφ ≡ ⊤ UI φ
always □Iφ ≡ ¬♢I¬φ
implies φ1 −→ φ2 ≡ ¬φ1 ∨ φ2

Intuitively, a signal w satisfies a formula φ1UIφ2 at time t
if there exists a time t ∈ [t+ a, t+ b] such that w satisfies φ2

and for all the times before then w satisfies φ1.

Problem 1: (Perception-based Runtime Monitoring) Given an
STL formula φ, a signal w over N observed time steps and t0
is initial time, we require that ρ(φ,w, t) ≥ 0 ∀ t ∈ [t0, t0+N ].
For a human-robot construction system, the objective is to
detect and localize human workers using pointcloud data in
the robot’s local frame of reference and estimate their future
trajectory ŵ over a prediction of tpred time step. We aim
to ensure collision avoidance while monitoring the safety of

the human worker by computing the quantitative robustness
ρ(φ,w, t) ∀ t ∈ [t0, t0 + tpred], for formula φ.

Uncertainties and noise can lead to localization and estima-
tion errors, potentially causing incorrect monitoring outcomes.
To mitigate these issues and enhance safety assessments, the
next section introduces probabilistic reachability analysis along
with the related problem statement.

B. Probstar Reachability Preliminaries

Definition 3 (Probabilistic Star Set (or ProbStar)): A proba-
bilistic star (or simply ProbStar) Θ is a tuple ⟨c, V,N , P, l, u⟩
where c ∈ Rn is the center, V = {v1, v2, . . . , vm} is a set
of m vectors in Rn called basis vectors, P : Rm → {⊤,⊥}
is a predicate, l and u are the lower-bound and upper-bound
vectors of the predicate variables, which are random variables
of a Gaussian distribution N . We restrict the predicates to be a
conjunction of linear constraints, P (α) ≜ Cα ≤ d where, for
p linear constraints, C ∈ Rp×m, α is the vector of m-variables,
i.e. α = [α1, ...., αm]T , and d ∈ Rp×m.

The basis vectors are arranged to form the ProbStar’s n×m
basis matrix. The set of states represented by the ProbStar is
given as:

JΘK =
{
x |x = c+

m∑
i=1

(αivi), α ∼ N ,

P (α) ≜ Cα ≤ d, li ≤ αi ≤ ui

}
Definition 4 (Probability): Given a ProbStar Θ, the probabil-

ity of the ProbStar is the probability of the predicate random
variables α = [α1, α2, . . . , αm] satisfying its constraints and
bounds, i.e., P(Θ) = P(Cα ≤ d ∧ l ≤ α ≤ u, α ∼ N (µ,Σ)),
where N is a Gaussian distribution with mean µ and variance∑

. A ProbStar is an empty set if its probability is zero, i.e.,
P(Θ) = 0.

Proposition 1 (Affine Mapping): Given a ProbStar set
Θ = ⟨c, V,N , P, l, u⟩, an affine mapping of the ProbStar Θ
with the mapping matrix A and offset vector b defined by
Θ̄ = {y|y = Ax+ b, x ∈ Θ} is another ProbStar with the fol-
lowing characteristics:Θ̄ = ⟨c̄, V̄ , N̄ , P̄ , l̄, ū⟩, c̄ = Ac+ b, V̄ =
{Av1, Av2, . . . , Avm}, N̄ = N , P̄ ≡ P, l̄ ≡ l, ū ≡ u.

Proposition 2 (Intersection): The intersection of a ProbStar
Θ ≜ ⟨c, V,N , P, l, u⟩ and a half-space H ≜ {x|Hx ≤ g}
is another ProbStar with the following characteristics: Θ̄ =
Θ ∩ H = ⟨c̄, V̄ , N̄ , P̄ , l̄, ū⟩, where c̄ = c, V̄ = V , N̄ = N ,
P̄ = P ∧ P ′, P ′(α) ≜ (H × Vm)α ≤ g − H × c, Vm =
[v1v2 . . . vm], l̄ = l, ū = u

Proposition 3 (Kalman Filter using ProbStar): Given a
ProbStar set, a Kalman filter [13] reachable set is the affine
mapping of ProbStar Θ with the affine matrix A = I4 −KM
and the offset vector b = Kz, where I4 is a 4 × 4 identity
matrix, K is the Kalman gain, M is the measurement matrix,
and z is the measurement vector.

Problem 2: (Perception-based Real-time Collision Verification)
Given the initial state of the robot from odometry and initial
state of the worker in the robot’s local view, the task is to
generate an initial ProbStar set Θr for the robot and Θw for
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the human worker. From these initial sets, compute k reachable
ProbStar sets JΘk

rK and JΘk
wK for the robot and human worker,

respectively. Verify the probability of collision based on robot’s
perception by checking the intersection (proposition 2) of these
reachable sets, i.e., Pcollision(i) = P(Θi

r ∩ Θi
w ̸= ∅) from

Definition 4.

III. LOCALIZATION

This section explores the localization of humans in a robot’s
local view using point cloud data. Point clouds are a collection
of data points in a 3D coordinate system that represent an
object’s surface, making them invaluable for tasks such as
obstacle avoidance and human tracking. By processing point
cloud data, robots can effectively perceive and localize humans,
enabling safer and more efficient interactions.

In Algorithm 1, we use the YOLOv5 model [14] for human
detection. When a human is detected, the flag h msg triggers
cloud processing steps, including point cloud filtering, segmen-
tation, projection, clustering, and transformation. The depth
camera captures point cloud data µ, which is downsampled
using a 3D voxel grid filter (line 2) to create ds pcl. The ground
plane and background are removed using plane segmentation
with the SAC-MODEL PLANE model and SAC RANSAC
method [15], resulting in pl pcl (line 3). The planeless cloud
pl pcl is projected onto the ground to generate proj pcl (line
4). Using DBSCAN [16], the human’s point cloud is clustered
(line 5). The mean of the x and y coordinates of the cluster
determines the worker’s position W in the robot’s local view.

Algorithm 1: Localization and Transformation
Input: Point Cloud from depth camera µ,

Yolov5 detection flag h msg,
Robot’s pose R,
Robot’s orientation quaternion q

Output: Worker’s pose w.r.t robot W
1 if h msg then

/* Cloud Processing */

2 ds pcl = VoxelFilter(µ)
3 pl pcl = SACSegmentation(ds pcl)
4 proj pcl = Project(pl pcl)

/* Clustering and tranformation */

5 W = mean(DBSCAN(proj pcl))
6 q rot = qcurrent × conj(qprev)
7 W ′ = Transform(q rot,Wcurrent,Wprev)

8 return W ′

Next, we transform the human’s past coordinates to the
robot’s current frame of reference for accurate prediction while
the robot is in motion (Algorithm 1, line 6-7). Consider the
robot at point O1 = (o1x , o1y , o1z ) having quaternion Q1 =
(x1, y1, z1, w1) at time t1. Let W1 = (W1x ,W1y ,W1z ) be the
position of the human with respect to O1. Now, at time t2
where t2 = t1 +1, the new position of the robot is O2 and the

Fig. 2: Transformation of a human’s location to the robot’s
coordinate system.

new position of the human is W2 w.r.t. O2. Then, to perform
prediction at time t2, we require all the previous locations to be
in the same frame of reference. To achieve that we transform
the human’s location W1 w.r.t. O1 to W ′

1 in the new frame
of reference O2. For transforming any point W to W ′, the
general equations are:

W ′
1 =Wrotation +Wtranslation,

Wrotation = Qrot ×W1 × conj(Qrot),

Wtranslation =
√
(o2x − o1x)

2 + (o2y − o1y )
2 + (o2z − o1z )

2

, where Qrot = Q2×conj(Q1) and conj(Q1) is the conjugate
of quaternion Q1. In Fig 2 the robot traverses from O1 to O3

via O2. At each location, the current position of the human in
the robot’s frame of reference is identified as A,B, or C, while
the newly transformed locations from the previous frames are
denoted as A′, A′′, and B′. The transformations are represented
by R, which signifies the rotation quaternion, and T , which
represents the translation. We use the transformed position for
prediction as shown in Algorithm 2, line 2.

IV. PREDICT AND MONITOR

In this section, we discuss our algorithm for predicting
human trajectory and applying runtime monitoring in detail.

A. Runtime STL Monitoring

Our approach utilizes a Kalman filter to predict human mo-
tion based on past and current positions. We have implemented
these predictions into the STL-based runtime monitoring
to continuously assess future states and dynamically adapt
robot behavior, ensuring safe interactions. The approach is
outlined in Algorithm 2. The Kalman filtering algorithm
[13] leverages observed measurements to estimate unknown
variables over time precisely. We apply it to predict human
motion for the next tpred steps (line 2). We select the number
of time steps for predicting human motion, tpred, to balance
prediction accuracy and computational complexity for real-
time performance. An alternative strategy involves dynamically
adjusting tpred according to the robustness of STL specifications.
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Algorithm 2: Prediction and Runtime Monitoring
Input: Worker’s pose w.r.t robot W ′,

Robot’s pose R,
Number of prediction time steps tpred,
STL formula φ,
Goal Location δ,
Yolov5 detection flag h msg

Output: worker trajectory: ŵ = {(ti, x̂i)}
tpred
i=0,

Robustness value: ρ(φ, ŵ, t)
1 SetGoal(δ)
2 while goal not reached do
3 if h msg then
4 ŵ ← KalmanPrediction(W ′, tpred)
5 ρ← (φ, ŵ, tpred) /* section II-A */

6 if ρ < 0 then
7 Stop()
8 angle← CalcTurnAngle(R,W ′)
9 if angle is not none then

10 Turn(angle)

11 else
/* Goal cannot be accomplished */

12 break

13 else
14 head_to (δ)

15 else
16 head_to (δ)

In Algorithm 2, we set a goal location for the robot (line 1)
and start prediction and monitoring (lines 2-12) until the goal is
reached. After predicting human motion using the Kalman filter
(line 4), these predictions are used for robustness computation
to assess potential collisions based on the STL specification
φ (line 5). The robustness values for the distance between
the robot and the human’s future positions are computed for
the next tpred time steps. If robustness value (ρ) is less than
zero (lines 6-12), indicating a potential safety violation, the
robot stops and turns to avoid a collision. Otherwise, the
robot continues moving towards the goal, continually checking
robustness. When the robot stops, it adjusts its heading based
on the angle calculated by CalcTurnAngle (line 8), which
computes the angle between the worker and the robot’s current
orientation. Under conditions of a head-on collision (angle of
approach is 0°), the robot stops navigation completely (lines 11-
12). The robot resumes navigation once robustness is positive,
with a modified path due to the new heading angle.

V. PROBSTAR REACHABILITY ANALYSIS

In dynamic environments, uncertainties like unpredictable
movements and localization errors pose significant safety chal-
lenges in monitoring. A probabilistic approach to calculating
collision probability effectively addresses these uncertainties,
providing a more robust and quantitative verification of worker

safety. This section defines the fundamentals of probabilistic
reachability analysis for real-time collision detection and
outlines our approach in Algorithm 3.

A. Robot’s System Model

Fig. 3: Kinematic
model for two-wheeled
differential drive robot

First, we develop a system model
for our robot, i.e., a two-wheeled
differential drive robot. As shown
in Fig 3, x̂t, ŷt, and γ̂t represent the
state vector xt of the robot at time
t, where x̂ and ŷ are the position
coordinates and γ̂ is the yaw angle.
The system input u comprises v, i.e.,
the linear velocity of the robot, and
ω, the angular velocity. We define
the system dynamics in matrix form
as: x̂t+1

ŷt+1

γ̂t+1

 =

x̂t + v cos γt · dt
ŷt + v sin γt · dt

γ̂t + ω · dt

 ,

=⇒

x̂t+1

ŷt+1

γ̂t+1

 =

1 0 0
0 1 0
0 0 1

x̂t

ŷt
γ̂t

+

cos γ̂t · dt 0
sin γ̂t · dt 0

0 dt

[
v
ω

]

xt+1 = Arxt +Bru, (1)

where Ar is the state transition matrix and Br is the control
input matrix for the robot.

B. Probabilistic Reachable Set and Collision Probability

Algorithm 3 highlights the probabilistic reachability and
collision analysis for both the robot and the human. First, we
define the respective initial states for computing the reachable
sets of both the robot and the human. As shown in the
Algorithm lines 2-3, we then define the probabilistic initial set.

Probabilistic Initial Set. We get the initial state vector of
the robot from the odometry sensor and generate the initial
ProbStar with mean, variance, upper bound, and lower bound
as the input; the basis vector is based on the space occupied by
the robot (length, width) and the center is the initial state vector.
For the initial configuration, the µ is set to 0 and the σ is set
to 1. Thus, the lower and upper bounds are chosen based on
the equation: µx[0]− (aσx[0]) ≤ x[0] ≤ µx[0]+(aσx[0]), where
a is a positive coefficient. When a increases, the probability
of the inputs lying between their lower and upper bounds of
interest increases. In this case study, we choose a = 4.5. The
variance of the distribution is

∑
= diag(σ2

1 , σ
2
2 , σ

2
3), where

diag stands for a diagonal matrix. Similarly, for the human,
we consider a normal distribution for the initial set with pose
coordinates of the human as the center and an average width
and breadth of 1.79 meters for the basis vector.

Further, to compute the reachable sets of the robot we
iteratively affine map (Proposition 1) the initial ProbStar to
get the set JΘk

rK of the next k reachable sets (line 8) using the
system matrices Ar and Br (line 5) defined in section V-A(eq

126



Algorithm 3: Probabilistic Reachability Analysis
Input: Worker’s pose w.r.t robot W ′,

Robot’s state R,
Reachable set time steps k

Output: List of robot’s k reachable sets JΘk
rK,

List of worker’s k reachable sets JΘk
wK,

List of k collision probabilities JPk
collisionK

1 Function REACH(R, W ′, k):
/* ProStar initial set: section V-B */

2 Θr = InitialSet(R.pose)
3 Θw = InitialSet(W ′.x,W ′.y)
4 JΘk

rK.append(Θr), JΘk
wK.append(Θw)

/* define system matrices from V-A */

5 Ar ← I3, Br ← from equation 1
/* define matrices from Proposition 3 */

6 Aw ← I −KM , Bw ← Kz
7 for i in range(k) do

/* from Proposition 1 */

8 Θr ← Θr.AffineMap(Ar, Brur)
9 Θw ← Θw.AffineMap(Aw, Bw)

10 JΘk
rK.append(Θr), JΘk

wK.append(Θw)
/* from Proposition 2 */

11 Θoverlap ← Intersection(Θr,Θw)
/* from definition 4 */

12 Prw ← estimateProbability(Θoverlap)
13 JPk

collisionK.append(Prw)

14 return JΘk
rK, JΘk

wK, JPk
collisionK

1) and control input as velocity v and heading angle ω from
the odometer.

For computing the worker’s reachable set, we generate the
initial ProbStar with the initial state vector of x, y, vxand vy
(line 5) which is computed from Algorithm 1 and then compute
the Kalman filter reachable set JΘk

wK of next k reachable sets by
affine mapping (line 9) the initial ProbStar Θw using matrices
Aw and Bw (line 6) as defined in Proposition 3 and affine
map to get the Kalman filter reachable set. Lastly, the robot’s
collision probability with a worker is calculated. We find the
overlapping region of the robot’s reachable set with a half-
space occupied by the worker (line 11) which gives us an
overlapping ProbStar (Proposition 2). Thus, we calculate the
probability of the overlapping ProbStar Θoverlap (definition 4)
which gives us the collision probability Prw (line 12).

Remark: STL-based monitoring with ProbStar Reacha-
bility Integration. In our approach, we integrate STL-based
monitoring with probabilistic reachability analysis to optimize
computational efficiency. We verify collision probabilities only
when the robot is close to an obstacle, reducing unnecessary
calculations when the robot is distant from hazards. When
monitoring results are inconclusive due to localization uncer-
tainties, the verification module employs real-time probabilistic
reachability analysis to evaluate collision likelihood. These
results are prioritized to prevent collisions. This strategy
reduces computational load and maximizes resource utilization.

Fig. 4: Case Study 1: robot navigating from apartment entrance
(red arrow) to various locations (red dots) detecting and
maintaining a safe distance from workers during navigation.

Proximity between robots and static obstacles is determined
using odometer readings. For proximity determination between
robots and static obstacles, we rely on odometer readings.

VI. EXPERIMENTAL EVALUATION

The current research employed the Turtlebot3 waffle model
which was fitted with a 360-degree LiDAR and an RGBD
camera for sensing. Modified animated models, mimicking real
construction workers’ movements, were employed in simula-
tions to match the case study’s emphasis. The experiments were
executed on an Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz
x 8 cores, 64-bit Ubuntu 20.04.4 LTS system. The package
was created and tested on ROS Noetic and coded in Python
3.8.10 and C++14.

A. Signal Temporal Logic Specification

In this section, we carefully evaluate the algorithm at each
stage, looking closely at the trends in the outcomes for a
definite case study depicted in Fig 4. In a residential apartment
construction site created on Gazebo, we focus on the interior
finishing stage with a completed building structure and four
workers. Fig 4 illustrates our robot’s goal: navigating from
the apartment entrance to a user-defined delivery location (δ)
to deliver window materials to a construction worker. During
navigation, the robot detects humans, calculates safety distance,
and monitors time-to-collision. If safety distance or time-to-
collision (TTC) falls below the set threshold, the robot pauses,
executes a turn away from the approaching human, and then
renavigates towards the goal. In this research, we monitor the
system behavior in the case study scenario with respect to the
following STL requirements.

φsafety = □[t,t+tpred](d ≥ dsafe) (2)

φhalting = ♢[t,t+tpred](d ≤ dsafe) −→ (v = 0) (3)

φdistance = (□[t,t+tpred]d ≥ dsafe)U(φhalting), (4)
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(a) Input Point Cloud, µ (b) Plane extracted point cloud: pl pcl (c) Projected Point Cloud : proj pcl

Fig. 5: The Fig shows the input (red point cloud) and output after extracting features from the point cloud (yellow point cloud)
and projecting the cloud on the ground plane (blue point cloud)

(a) Robustness plot for φhalting

(b) Robustness plot for φdistance

Fig. 6: Quantitative Robustness plots for STL Specifications

where d =
√
(x2 + y2 + z2), dsafe is the minimum safety

distance required, v is the constant velocity of robot and t is
the current time, tpred is the number of prediction time steps
and t′ ∈ [t, t + tpred]. Colloquially, specification φsafety in
equation 2 requires that “the distance of the human should
be greater than dsafe meters from time t to t + tpred” and
specification φhalting (equation 3) additionally requires that
“when eventually the human comes closer than dsafe meters
from time t to t + tpred implies that the speed of the robot
is zero”. Thus, the robot should stop navigating when the
d ≤ dsafe. This ensures that the robot stops to avoid any
collision with the human. Further, in equation 4 we expect to
monitor the motion and the distance of the human from the
robot.

Fig. 7: Plot depicting collision avoidance over time by turning
when TTC is below threshold.

In our quest to optimize performance and ensure collision
prevention, we employ the time-to-collision (TTC) metric.
TTC is calculated using the relative velocity and distance
between the human and the robot. Thus we assess the estimated
time until a potential collision occurs. A proactive safety
measure is triggered when the calculated TTC dips below a
predetermined threshold through iterative testing. Specifically,
the robot initiates a turn in the direction opposite to the
approaching human, strategically mitigating the risk of collision.
This approach has prompted the establishment of additional
safety specifications, designed to continually monitor and
uphold the integrity of the system. The ensuing specifications
further contribute to a robust framework for maintaining a
secure and efficient robotic operation in dynamic environments.

φstop = (v = 0) ∧ (rad = 1.5) (5)
φttc = □[t,t+tpred]([ttc < ttcmin] −→ φstop) (6)

φturn = (v > 0) ∧ (rad > 1.5) (7)
φavoid = φstop −→ (♢[t′,t+tpred](ttc > ttcmin) ∧ φturn)) (8)

These specifications primarily emphasize the assessment of
time-to-collision (TTC) to prevent collisions. This involves
implementing measures such as stopping, turning, and adjusting
motion to evade potential collisions effectively.

B. Localization and Estimation

In this research, the point cloud dataset input (Fig 5a) was
subjected to voxel grid filtering. The filtering output was
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achieved by setting the voxel grid’s leaf size to ∆ where
∆ = (0.07, 0.0, 0.07). Fig 5 illustrates the progressive output
acquired after feature extraction (Fig 5b) from the point cloud
and subsequent projection onto the ground plane (Fig 5c).
Further, we used the Kalman filter to predict the next 6 steps
(tpred = 6) of a human. The Root Mean Squared Error (RMSE)
of prediction was calculated to evaluate the accuracy of the
predictions and was found to be 0.08 meters.

C. Monitoring

In light of the Kalman filter’s predicted positions of the
human for the upcoming tpred time steps, the values for
φhalting were computed. Fig 6a quantifies STL specification
robustness. The dark blue line corresponds to the “eventually”
operator (in Eq.3). Robustness stays negative when the human
is distant, turning positive within 1.25 meters. The light blue
line (representing φhalting) approaches zero when d ≤ 1.25
meters , signaling the robot to stop. Pink and red plots in Fig
6b depict system robustness for the second worker on camera.
The system adheres to φdistance (Eq. 4) for both workers,
with consistently positive values. The second human exits the
camera view at t = 64. Similarly, safety can be gauged using
Eq. 6 and Eq. 8, visually confirmed in Fig 7. Here, the plot
shows the system status when the time-to-collision (TTC) (blue
line) drops below the threshold (green line). The robot’s speed
hits zero (purple line), and its orientation changes (red line) to
avoid a collision.

To comprehensively assess the performance of the monitoring
module, we conducted a series of tests across various scenarios
and organized the results in tables. In table I, our experiments
show that the proposed approach efficiently ensures safety
in complex scenarios, even with multiple human encounters
in construction environments. The RMSE for Kalman filter
prediction varies in the range of 0.20 − 0.24m. The system
maintains a collision-free environment despite increasing
human workers, since the minimum φdistance is always positive.
However, task completion time rises with more workers, with
substantial increases like 164.46% in Bedroom 2. In some
cases, such as (B)Bath 1 and (E)Fitting 1, task completion
failed due to frequent specification violations, highlighting
the need for advanced safety control strategies beyond basic
collision avoidance. This calls for further research into using
runtime monitoring results to improve safe planning, control,
and learning processes.

D. Reachability Analysis and Collision Probability

For this evaluation, we conducted a detailed case study using
three Turtlebot robots, a static obstacle, and a human worker
within the same apartment (Fig. 8). Our goal was to determine
the collision probability of a robot with a human, other robots,
and obstacles. For convenience, we represent the three turtlebot
robots as tb0, tb1, and tb2, the human worker as h, and a static
obstacle as ob. Each robot was positioned strategically, and tb0
navigated various areas while safety monitoring and reachability
algorithms verified potential collisions.

Fig. 8: Case Study 2: Robot tb0 begins its navigation from
the apartment’s entrance, marked by a red dot to the first goal
location in bedroom 1 marked by green dot. tb0 encounters
a human worker h and robot tb1 along its path, indicated by
a blue dot. After this interaction, tb0 navigates to the living
room i.e. the second goal location marked by grey dot, where
it encounters tb2.

In our experiment, we thoroughly analyze collision proba-
bilities between the Turtlebot robot and various entities when
they are in proximity by computing k reachable sets for each
entity, where k = tpred). We consider four different cases
and, for each scenario, determine the proximity of tb0 to the
respective entity. Reachability analysis is initiated when the
distance falls below the safe threshold dsafe, which is set to
1.25 meters in our study. For a human worker, we monitor the
safety conditions from the defined STL specifications. When a
safety violation occurs or monitoring results are inconclusive
due to localization uncertainties, we trigger the reachability
analysis and verify collision probability. For other robots, the
proximity is determined from the odometry values, while a
static obstacle is simply modeled as a half-space. By leveraging
the probabilistic reachable sets, we compute reachable sets for
tb0 for the next six time stamps (t1 to t6). The collision
probability is evaluated based on the intersection of tb0’s
reachable set with the ProbStar representation of other entities.
In table II, we report the collision probabilities for each of
those cases. Results show significant insights into collision
probabilities. For example, tb0’s collision probability with tb1
starts at 0% at t1 and rises to 82.9% by t6. Similar trends
are seen with tb2, a human (h), and a static obstacle (ob).
These findings highlight the need for dynamic risk assessment
in robotic navigation, requiring continuous monitoring and
adaptation of advanced collision avoidance strategies.

In Figure 9, we present the visual representation of an
instance of a potential collision with a robot (Fig 9a), human
(Fig 9b), and static obstacle (Fig 9c). It shows the estimated
reachable position of the robot and illustrates the overlap of its
future position with the obstacle. These figures serve to visually
demonstrate the probabilistic collision analysis, highlighting
the regions where the robot’s reachable set may intersect with
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Goal (A) Bedroom 1 (B) Bath 1 (C) Living Room (D) Bedroom 2 (E) Fitting 1

n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

Time (sec) 27.65 60.90 107.79 36.84 74.14 — 69.14 80.33 115.87 45.87 90.62 121.31 33.82 94.27 —

RMSEKF (m) 0.2281 0.2367 0.2113 0.2137 0.2737 0.2009 0.2107 0.2187 0.2087 0.2392 0.2338 0.2167 0.2398 0.2071 0.2373

Min φdistance 0.0033 0.0030 0.01490 0.0005 0.0003 0.00147 0.0011 0.0396 0.01254 0.0057 0.0060 0.00213 0.0045 0.0011 0.01377

TABLE I: Performance evaluation based on the total time taken to reach a goal location, prediction RMSE for Kalman filter
(KF), and minimum STL specification robustness during navigation to various locations (see Fig 4) where n represents the
number of humans encountered on the way.

(a) Case 1: tb0 is close to tb1 (b) Case 2: tb0 is close to h (c) Case 3: tb0 is close to ob

Fig. 9: Instance of collision verification: The figure shows the overlap of tb0′s reachable set(green boxes) in the next 6 time
stamps with (9a) tb1’s reachable set (blue boxes) , (9b) human worker’s reachable set h (red boxes) and (9c) static obstacle ob
(red box)

Reachable
Set

Time Stamp
Collision Probability (%)

tb0 → tb1 tb0 → tb2 tb0 → h tb0 → ob

t1 0.00 0.3 0.9 33.8

t2 10.8 5.7 2.8 45.3

t3 50.5 12.4 15.2 62.2

t4 62.9 34.7 36.5 79.9

t5 75.2 53.5 76.3 82.4

t6 82.9 89.3 96.8 99.9

TABLE II: Collision Probability for four different cases with
six reachable sets at time t1, t2, t3, t4, t5, t6

the space occupied by other entities.

E. Timing Analysis

Table III shows the total reachability analysis time with and
without a co-design strategy, for the robot while it encounters
multiple obstacles and stops to alter its path. Our co-design
involves verifying collision probability only when an obstacle is
near the robot. By implementing this selective reachability anal-
ysis, we substantially reduce the computational time required
for real-time navigation. Specifically, this optimization results
in a significant reduction in the total reachability analysis time,

which decreases by approximately 57%− 68%. This efficiency
gain not only enhances the robot’s overall performance but
also ensures timely and accurate path adjustments in dynamic
environments.

No of Obstacle
Encounters

Time without
co-design (s)

Time with
co-design (s)

Reduction (%)

1 28 12 57.14

2 60 20 66.66

3 110 35 68.18

TABLE III: Percentage reduction in total reachability analysis
time with co-design for multiple obstacle encounters

Node Yolo
Object

Detection

Localization
and

Clustering

Monitoring Reachability
and

Collision

Processing
Time (s)

0.22 0.30 0.002 0.03

TABLE IV: Average processing times for different nodes

Lastly, Table IV highlights the processing time for each node
in our algorithm. The results indicate that both the monitoring
and reachability analysis components indicate low processing
times. This efficiency is critical for real-time applications,
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where prompt and reliable performance is crucial for safety.
The low processing times not only demonstrate the algorithm’s
capability to handle real-time data streams effectively but also
ensure that the system can respond swiftly to dynamic changes
in the environment.

VII. RELATED WORKS

Temporal logic-based monitoring. E. Bartocci et al. [17]
proposed monitoring for cyber-physical systems’ temporal
behaviors in real-time or simulation. They use temporal logic
to create monitors that observe the system and check property
satisfaction or violation, focusing on real-time properties using
Signal Temporal Logic (STL). The AMT tool [18] provides
a graphical interface to plot boolean satisfaction of user-
provided STL properties. In [19], authors introduced a dynamic
programming algorithm to compute the robustness of temporal
logic specifications for automotive system models using the
S-Taliro toolbox [20]. Breach [21] enables compositional
verification of complex automotive systems with multiple sub-
modules.

For semi-formal verification of STL requirements over
real-valued and Boolean signals, various methods include
testing-based verification [22], falsification [23], synthesis
[24], [25], and parameter mining. RTAMT [26] parses textual
specifications into abstract parse trees (APT) using ANTLR4
parser generator, then generates online monitors to evaluate
signal robustness to the specification using algorithms [27].
Real-time monitoring of STL specifications requires knowledge
of future events. Our proposed approach relies solely on
the robot’s vision to predict human motion in advance and
effectively monitor human-robot interactions on the fly.
Probabilistic Real-Time Reachability Analysis. Satisfiability
Modulo Convex (SMC) [28] and VeriSig [29] validate LiDAR-
based control systems [30], using abstract observation models
for mapping robot positions to LiDAR images. These are known
to be challenging and time-consuming. In another method, the
verification of a camera-based control system in [31] employed
programming analysis tools such as CBMC [32]. The authors
utilized piece-wise set value functions to approximate the
perception module for verification, also assuming a structured
environment to derive an approximate perception model. In
the context of camera-based autonomous landing systems, [33]
describes a verification process where a mathematical model of
the relationship between aircraft states and inputs to the neural
network controller is developed. This model is then encoded
as another neural network and combined with the controller
for verification. VerifAI [34] is a notable testing framework
that uses simulation traces to refute system-level specifications
for perception-based control systems.

The verification methods discussed for perception-based
control systems operate during the design phase and rely on a
significant assumption about the environment to create an obser-
vation model for closing the loop. Furthermore, these methods
offer qualitative outcomes, such as determining whether a
system is safe, unsafe, or unknown. In contrast, our proposed
approach addresses the issue of unrealistic environmental

assumptions by functioning effectively in dynamically changing,
unstructured environments as often seen at construction sites.
Furthermore, our verification process relies entirely on the
robot’s local perspective. This leads us to believe that our
approach is practical and suitable for real-time autonomous
robot systems.

VIII. CONCLUSIONS AND FUTURE WORK

In summary, our research introduces a novel method to
ensure safe autonomy in cyber-physical systems, particularly
at construction sites where robots collaborate with human
workers. By localizing humans and predicting their trajectories,
we achieve precise distance measurements between robots and
humans, ensuring a minimum safety distance is maintained
during navigation. We perform real-time monitoring of STL
specifications and generate robustness plots, enhancing safety
in various industrial applications through real-time autonomous
control. To address uncertainties in unstructured environments,
we conduct real-time probabilistic reachability analysis to
compute collision probabilities under proximity conditions.
We also evaluate our algorithm’s timing and performance. This
work lays the foundation for deploying autonomous robots in
safety-critical environments, with potential applications across
industries to improve safety and efficiency for workers and
society.

Looking ahead, monitoring and reachability analysis can en-
hance path planning strategies by providing real-time feedback
and predicting potential obstacles, ensuring safer and more
efficient navigation. Moreover, practical implementation on
construction sites takes into account the algorithm’s accuracy
and scalability, addressing challenges posed by varying human
speeds through robustness. Future research will focus on
scalability with fast-moving humans, integrating parallelizable
adaptive filtering techniques, and expanding hazard consid-
erations beyond human motion. Additionally, we plan to
dynamically choose the number of prediction timestamps for
Kalman filtering based on feedback from STL specifications,
enhancing adaptability and performance in real-world scenarios.
Real-life testing will employ the Husky UGV for construction
site research.
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