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Abstract—Pragmatic Action Charts are a minimalist Stat-
echarts variant that can be implemented relatively easily as
internal DSL in most mainstream languages. In this paper, they
are implemented as internal DSL leveraging the object-oriented
paradigm of the host language avoiding the introduction of yet
another programming language. Internal DSLS can also benefit
from appropriate instantaneous visualizations, which is usually
attributed to specialized, graphical DSLS.

Pragmatic Action Trees use the same minimalist approach
to integrate behavior trees into an arbitrary host language. To
achieve this, they are built on top of Pragmatic Action Charts. In
fact, both notations can be mixed arbitrarily to allow behavior
trees to be called if the chart is currently in a specific location
and vice versa, the chart can transfer control to another location
as soon as a behavior tree finishes its execution.

Index Terms—programming languages, domain-specific lan-
guages, statecharts, pragmatics, transient views, behavior trees

I. INTRODUCTION

There are many attempts to combine State Machines (SMs)
with General Purpose Languages (GPLs), such as the UML [1]
or various synchronous languages, e. g., Esterel [2]. They are
relatively easy to model both, in source code and graphically.
Commonly, the developer starts with one form or the other
to generate the desired artifacts. For example, UML diagrams
are often used to generate source code stubs and vice versa,
SyncCharts [3] can give a graphical Statecharts [4] repre-
sentation to an Esterel program. Usually, these approaches
employ their own DSL and Model of Computation (MoC).
Despite their usefulness and decades long presence in various
forms, they are arguably often more seen as a pattern that
should be implemented from scratch when the need arises,
rather than being a stable component in common mainstream
programming languages. This is hardly surprising considering
the sheer amount of different approaches and MoCs [5].
Besides the safety-critical domain, where the pressure and
resources are large enough, also common projects, such as
small size reactive systems, which execute periodically [6],
behavior trees in robotics [7], or game loops [8], benefit
from the SM pattern. I argue that the simplicity and therefore
usability of the SM pattern can be increased, especially for
more common projects.

I therefore present (i) the minimalist Pragmatic Action
Charts (PACs) that can be easily realized in most modern
programming language in Sec. II, (ii) the Pragmatic Action
Trees (PATs) extention for behavior trees in Sec. III, and
(iii) a demonstration of convenient tool integrations, namely

transient views of internal DSLs and compatible external DSLs
in Sec. IV. I discuss related work in Sec. V and conclude in
Sec. VI.

II. PRAGMATIC ACTION CHARTS

PACs heavily rely on their host language. In practical
Statechart projects, developers may tend to discard mealy-like
transition actions all together and program their host code in
the entry actions of transient states [9].

A. Model of Computation

A PAC is a set of locations that are divided into action α
and control γ. At clock tick, the PAC MoC executes the γ of
the current location to transition to another location and then
immediately executes the associated α of the new location.
Fig. 1 exemplifies this behavior. At reset, the current location
is set to (ε, γ0) with γ0 pointing the next location. During
the first tick, the SM transitions to (α1, γ1) and immediately
executes α1. In the second tick, γ1 then transitions to (α2, γ2)
and executes α2 and so on.

The MoC basically only consists of five rules. An action
is resolved under the Host Language (HL) (⇝) producing a
new program state s and issues a pause. A pause tick gives
the program time to react to its environment. Finally, there
are three possibilities for the γ control to decide in HL how
to proceed: Transition to a new location, pause at the current
location, or terminate the program.

All reactions take place immediately after a new location
is reached. Since immediate control can directly be written
in the host code components and to keep the MoC concise,
there is no explicit concept for immediate action chaining
on the PACs abstraction level. Same is true for cascading
immediate conditions. In comparison, SCCharts [10] have
the possibility to jump into these chains from any point
in the automaton and PACs not. This and the lack of bi-
directional communication is a trade-off towards the focus
on HL integration and simplicity, which is supported by both
SCCharts case studies [9], [11] w. r. t. HL integration. Since
immediate reactions are intended to be programmed in host
code, it seems as concept break to add immediate transitions.
Nonetheless, they can be implemented as extended feature by
guarding and copying the action parts of the target location.

An advantage of this separation is that it is relatively easy
to implement directly in the HL using the OOP paradigm. The
examples in this paper are w.l.o.g. programmed in TypeScript,
because it is relatively easy to build the subsequent transient
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ε α(s)⇝ s′

⟨α, γ, s⟩ → ⟨ε, pause ◦ γ, s′⟩
(action)

⟨pause, s⟩⇝ ⟨ε, s′⟩
⟨ε, pause ◦ γ, s⟩ → ⟨ε, γ, s′⟩

(tick)
γ(s)⇝ ⟨α, γ′, s′⟩

⟨ε, γ, s⟩ → ⟨α, γ′, s′⟩
(trans)

γ(s)⇝ ε

⟨ε, γ, s⟩ → ⟨ε, pause ◦ γ, s⟩
(pause)

γ(s)⇝ ⊥e

⟨ε, γ, s⟩ → ⟨ε, ε,⊥e⟩
(term)

Fig. 1: PAC MoC

views for modern IDEs using available visualization frame-
works available for the web. Conceptually, the approach is
not restricted to TypeScript.

B. Extended Features

Extension Synonym Description
action(α) () → (α, delegate(L1)) execute the action and re-

set
control(γ) () → (ε, γ) branch to location without

action
transition(L) () → L transition curry
root() () → L1 jump to initial curry
self() () → location(α, γ) self loop curry
pause() () → control(γ) pause curry (ε in short)
term(e) () → ⊥e terminate PAC curry
if(c, γ) () → c ? γ : pause() exec γ if c holds

Tab. 1: PACs location extensions

Several convenience methods ease the program modeling.
The first two functions provide factories for action and control
only locations. Furthermore, transition points to the given
location, root leads back to the root location, and self loops
back to the calling location. pause creates an empty control
function, which does not initiates the passing of control. In
contrast to self this does not re-evaluate the α of the location
and invokes γ again in the next tick. Finally, term terminates
the PAC, de facto signaling that a final state has been reached.
While one can argue if a SM is considered terminated if no
further behavior can be observed, explicitly marking the PAC
as terminated has practical reasons especially when dealing
with hierarchy. Therefore, the terminated ⊥ state is treated
as a special case with optional exit code e. The if instruction
only executes the control γ if the condition c holds. Otherwise,
the location pauses.

C. Concurrency Extensions

Extension Description
fork(γp, γjoin, φ0...φn−1)
forkI(γp, γjoin, φ0...φn−1) Runs φn concurrently and joins to

γjoin as soon as all φ have been ter-
minated. γp may preempt the location.

Tab. 2: PACs concurrency extensions

Although PACs main purpose are not complex concurrent
use-cases, the last extension, shown in Tab. 2, helps in the
construction of superlocations. Even without concurrent back-
and-forth communication within one tick, superlocations are
still useful to separate logical control-flows and may pass
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Fig. 2: fork() vs. forkI() semantics

1 class ABRO extends PragmaticActionChart {
2

3 constructor(
4 readonly _inputA: () => boolean,
5 readonly _inputB: () => boolean,
6 readonly _inputR: () => boolean,
7 readonly _outputO: () => void) {
8 super();
9 }

10

11 public awaitAB(): Location {
12 return this._forkI(
13 () => this._if(this._inputR, () => this.awaitAB()),
14 () => this.doneAB(),
15 new Await(this._inputA),
16 new Await(this._inputB),
17 );
18 }
19

20 public doneAB(): Location {
21 return this._location(
22 () => { return this._outputO(); },
23 this._if(this._inputR, () => this.awaitAB())
24 );
25 }
26 }

Fig. 3: ABRO PAC example

information in one direction. The fork takes two control
functions, γp and γjoin and an arbitrary number of PACs,
labeled φi. As action, the location ticks all φi and transitions
via γjoin to the next location if all φi have terminated. γp
is the control function of the superlocation. It can be used to
preempt the action.

fork represents a straight-forward extension if following
the strict action-control separation discussed at the beginning
of the section. This does, however, not suffice if one wants to
implement an Esterel-like immediate termination if all threads
have terminated. The differences are illustrated in Fig. 2. Fig. 3
shows the PAC for the synchronous Hello World program
ABRO. Note that all convenience functions simply build upon
the basic concept discussed in Sec. II-A and are written in
the HL. A developer is free to add own functions and can
overwrite the presented functionality.

III. PRAGMATIC ACTION TREES

This section illustrates how to extend the established MoC
and extensions from Sec. II to implement Pragmatic Action
Trees (PATs), an incarnation of behavior trees [12]. A Behavior
Tree (BT) is a SM that is represented as a tree with two
operators, select and sequence, that orchestrate actions, which
are the leafs of the tree. All nodes return their current state,
namely running, success, or failure. A selection node executes
its children until a child has succeeded. It returns a failure if
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none succeeds. Asymmetrically, a sequence node executes its
children as long as they succeed. It returns a failure as soon
as one child fails.

Extension Description
selector(γp, φ0...φn−1) Runs children φn until e(φn) succeeds.

Then, terminate self successfully, or with
an failure if none succeeded. γp may
preempt the location.

sequence(γp, φ0...φn−1) Runs children φn until e(φn) succeeds.
Then, terminate self successfully, or with
an failure if none succeeded. γp may
preempt the location.

selectorCtrl
(γp, γsucc, γfait, φ0...φn−1) Similar to selector but give the control

to γsucc or γfail respectively
sequenceCtrl

(γp, γsucc, γfait, φ0...φn−1) Similar to sequence but give the control
to γsucc or γfail respectively

immediate(L) Immediately executes αL and returns γL.

Tab. 3: PAT extensions

Since PATs are entirely built upon PACs using the same
MoC, one can mix both notions. Fig. 4a shows the combination
of ABRO and the DrinkTask examples. As depicted in Fig. 4b,
the PAT behaves like ABRO at the start, waiting for A and B
concurrently. Then, after both signals turn to true, the machines
traverses to the doneAB location, where the root of the BT is
located. From here, the BT executes similar to the previous
DrinkTask example in Fig. 4. The whole behavior is reset as
soon as R becomes true.

To achieve this behavior, two (resp. three including the
selector) further extensions are added. First, selector and

sequence terminate with the corresponding exit code as soon
as their children terminate. Therefore, two new versions of

selector and sequence redirect their control according to
the exit code instead of simply terminating. Second, since the
control of all locations only reacts in the following tick, the
basic PAC MoC finally has reached its limits, because the BT
could only react in the next tick under these circumstances.
The argument from Sec. II that immediate reaction should
reside either in α or γ does not hold since the locations here
serve pure structuring reasons. This would be also true if
one chains any super locations that should react immediately.
Hence, we finally introduce the immediate extension making
it available for the developer, seen in Tab. 3 and used in
Line 13 in Fig. 4a. immediate immediately executes the α
and returns the γ from its target location. As usual w. r. t. the
Synchronous Hypothesis, it demands an acyclic path so that
the macro tick can eventually finish its computation.

IV. TOOL INTEGRATION

PACs are literally executable documentations [13]. A visual
representation of the SM can be displayed instantaneously
using transient views [14] with (optional) automatic layout.
Fig. 5 shows an instance of the VS Code IDE. When compared
to the code, one recognizes that the path from the select
location to black is missing. Hence, the location is unreachable
and marked as such in red. While such oversights might be
difficult to spot in pure host code, the visualization makes this
rather obvious.

1 class ABRDrinkTask extends PragmaticActionTree {
2

3 constructor(
4 readonly _inputA: () => boolean,
5 readonly _inputB: () => boolean,
6 readonly _inputR: () => boolean) {
7 super();
8 }
9

10 public awaitAB(): Location {
11 return this._forkI(
12 () => this._if(this._inputR, ()=>this.awaitAB()),
13 () => this._immediate(() => this.doneAB()),
14 new Await(this._inputA),
15 new Await(this._inputB),
16 );
17 }
18

19 public doneAB(): Location {
20 return this._sequenceControl(
21 () => this._if(this._inputR, ()=>this.awaitAB()),
22 () => this._pause(),
23 () => this._term(),
24 this.Fridge(),
25 this.Drink());
26 }
27

28 protected Fridge(): PragmaticActionTree {
29 return new class extends PragmaticActionTree {
30 public fridgeDoorOpen(): LocationFn {
31 return this._selector(
32 () => this._pause(),
33 new Failure("Fridge open?"),
34 new Success("Open fridge"));
35 }
36 }
37 }
38

39 protected Drink(): PragmaticActionTree {
40 return new class extends PragmaticActionTree {
41 public doDrink(): LocationFn {
42 return this._sequence(
43 () => this._pause(),
44 new Success("Drink"),
45 new Success("Close fridge"));
46 }
47 }
48 }
49 }

(a) ABRDrinkTask PAT example in TypeScript

1 A: false, B: false, R: false
2 A: true, B: false, R: false
3 A: true, B: true, R: false
4 Fridge open?
5 Open fridge
6 Drink
7 Close fridge

(b) ABRDrinkTask PAT output

Fig. 4: ABRDrinkTask PAT example

Finally, if one wants to create an own external DSL for their
language, for example to add more convenience or to allow
real polyglot models, I recommend the use of the off-side
rule. The off-side rule is compatible with HLs without the use
for exotic delimiter, escape characters, and languages that use
the rule themselves. Off-side rule languages sometimes tend
to get untidy when getting large, but since the host code in
Statecharts-like languages tends to be rather small, this seems
to be less of a problem. Fig. 6 shows the Colors PAC of Fig. 5
with the black color variant in an own external DSL. The PAC
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Fig. 5: Representing the current PAC as graphical model in a dedicated view in VS Code

1 pac Colors
2 public currentColor: string = "unknown";
3

4 loc select control
5 const r = Math.random();
6 return r < 0.25 ? this.red()
7 : r < 0.50 ? this.green()
8 : r < 0.75 ? this.blue()
9 : this.black();

10

11 loc red action
12 this.currentColor="red";
13

14 loc green action
15 this.currentColor="green";
16

17 loc blue action
18 this.currentColor="blue";
19

20 loc black action
21 this.currentColor="black";

Fig. 6: The Color PAC example in an external PAC DSL

begins with the pac keyword and its id. The locations are
defined by loc and similar convenience methods as before, such
as action and control, are introduced. As suggested, the HL of
each location is indented to avoid any confusion between DSL
and HL. The code depicted in Fig. 6 can relatively easy be
translated into the TypeScript code shown in Fig. 5.

V. RELATED WORK

Closely related to this integration approach is the SyncCha-
rts [3] implementation by von Hanxleden [15]. In his work,
the C pre-processor is leveraged to provide a full SyncCharts
implementation within the HL. While this approach comes
close to an internal Statechart DSL, the Esterel-like structure
obfuscates the otherwise clear automaton structure of State-
charts. Other approaches, such as Eckel [16] in Python or
cmars statechart for Rust, model the entire SM following
the OOP (resp. trait) paradigm. Here, all SM elements, espe-
cially atomic entities, such as states, are modeled as classes.

While precise and expressive, this may be to complex for
small size projects. Statecharts languages differ especially
when it comes to the host code handling. Schulz-Rosengarten
et al. [17] use the OOP paradigm to organize host code in
methods. Additionally, SCCharts [10] are modeled textually
but are also displayed graphically instantaneously, which was
adopted by PACs in a generic way allowing an appropriate
filtering of internal DSLs within the HL. Similarly, Lingua
Franca [18], focusing on a more dataflow-oriented and dis-
tributed approach, uses the same transient view technology to
depict the interconnections between their atomic reactors. The
atomic reactor entity itself is programmed in the HL, which is
enriched by command of the runtime environment to enable
the orchestration.

Analogously to the discussed Statechart dialects, PACs
are clocked and follow the synchronous hypothesizes [19].
Usually, behavior trees [12] employ a run-to-pause semantics,
which is related to the run-to-completion semantics of the
UML [20]. The goal of simplicity is also driven by the general
notion of language-driven engineering [21], [22].

VI. CONCLUSION

Pragmatic Action Charts are a minimalist Statecharts vari-
ant that is implemented as internal DSL. However, modern
mainstream languages arguably lack extension methods to
achieve the same form of convenience as their external DSL
cousins. One idea is to provide a generic mechanism to add
keywords, such as async and await in JavaScript, which basi-
cally provide convenience for the developer when dealing with
nested callbacks. Basically, all extension methods presented
throughout the paper are candidates for convenient keywords.
As demonstrated, behavior trees can be implemented using the
same approach. The exemplary TypeScript implementation of
PACs and PATs is available as open-source project1. It serves
as inspiration and a blueprint for other language extensions.

1https://github.com/pragmatic-programming/pacts
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