
Safety Assurance for Autonomous Systems with
Multiple Sensor Modalities

Anand Balakrishnan∗, Rohit Bernard∗, Shreeram Narayanan∗, Vidisha Kudalkar∗, Yiqi Zhao∗,
Parinitha Nagaraja†, Georgi Markov†, Christof Budnik†, Helmut Degen†,

Lars Lindemann∗ and Jyotirmoy V. Deshmukh∗

Abstract—Humans and autonomous cyber-physical systems
increasingly share physical space, for example, in industrial
manufacturing, autonomous taxis, warehouses, and unmanned
package delivery. This makes such autonomous CPS safety-critical
because design errors can harm the people in their shared
space. To enhance their own safe operation and the safety of
humans around them, these CPSs typically use multiple sensor
modalities to perceive the environment. Such sensor systems
include RADAR, LIDAR, ultra-wideband, SONAR, odometry,
GPS, and camera-based sensors to make estimations about their
own state and observations of the environment. Traditionally,
the observations made by different sensor streams are fused
using probabilistic models such as Bayesian filters (e.g., Kalman
filters). These filters make assumptions about the distribution
of error between the observation and the ground truth for a
given sensor and, using such assumptions, attempt to reconstruct
a state estimate by computing some weighted combination of
observations from multiple sensors (with possibly different error
distributions). However, such assumptions can be challenging to
model as environments become more complex.

Furthermore, such algorithms typically do not account for
sensor failures or shifts in the error distribution during deploy-
ment. This paper presents an algorithmic framework that defines
a notion of spatio-temporal consistency across sensor streams.
We eschew the idea of computing a fused state estimate and
instead focus on producing a consistent state estimate if the
multiple sensor observations are deemed consistent. If we detect
an inconsistency in the state estimate, we propose a conservative
over-approximation of the state estimate based on the last known
consistent estimate. We demonstrate how such a framework can be
deployed in an industrial manufacturing case study. We show that
such a framework can provide probabilistic runtime assurance
using conformal prediction techniques for statistical analyses.

I. INTRODUCTION

Many cyber-physical systems (CPSs) operate in shared
spaces with humans, and the temporal behavior of the CPS
or those of humans can evolve in a way that can cause
physical harm to humans. For example, consider an industrial
manufacturing robot; such robots can have high-momentum
manipulator arms. An accidental collision with such a robotic
arm can harm a factory floor worker navigating an area
close to the robot. As another example, consider a warehouse
where human operators must work alongside high momentum,
autonomous mobile robots or forklifts. It is crucial that such
robots also ensure the safety of their human co-workers.

In general, such multi-sensor systems have been designed
with sensor fusion techniques to combine information from
each individual sensor and reason about the environment on

a joint representation derived them [1, 2, 3, 4]. Moreover,
having an efficient and accurate sensor fusion pipeline is
essential for any downstream decision-making to be viable, as
erroneous data can lead to several potential failures, especially
in safety-critical CPSs. Thus, any data fusion technique used
for decision-making has to be robust erroneous sensor data,
including dropped network packets, environmental noise, and
adversarial environmental artifacts.

To this end, we propose the use of a second-order reasoning
about the fused state estimate in a system: a notion of signal
consistency. In this paper, we look at an industrial case study
where we use an algorithmic framework where:

1) A monitoring algorithm that compares the information
obtained from different sensor modalities and determines
if the sensors collectively provide a consistent estimate
of the environment state, or reports inconsistency.

2) The above allows us to inform a predictive monitoring
algorithm that uses the sequence of determinations of
consistency/inconsistency between the sensors to reason
about the reliability of the various sensors and predict
possible violations of the system’s safety.

We then use conformal prediction [5, 6] as a statistical testing
method for the correctness/conservativeness of our framework
in detecting inconsistencies.

Related work: Prior work on defining a notion of confor-
mance or “closeness” of trajectories in a system have relied
on defining distance metrics between signals: a small such
distance implies that the signals are spatially “close” together.
This includes the Skorokhod distance [7, 8], the (τ−ϵ)-distance
[9], dynamic time-warping distance [10], and other pseudo-
distance measures [11].

Such distances work well for offline data, but are, in general,
not feasible for fast online monitoring. In our work, we
present a more general notion of “consistency” via a δ-spatial
consistency metric, which takes distance between point-wise
observations and performs a worst-case aggregate them over a
monitoring window.

II. PRELIMINARIES

Definition 1 (Dynamical System). A dynamical system is
defined as a tuple (S,A, F, π), where S is a compact set of
states; A is a finite or infinite set of actions (that includes an
empty action); and the transition dynamics F and the stochastic

106

2024 22nd ACM-IEEE International Symposium on Formal Methods and Models for System Design (MEMOCODE)

2832-6520/24/$31.00 ©2024 IEEE
DOI 10.1109/MEMOCODE63347.2024.00018

control policy π are probability distributions. Let the state of
the system at time t be denoted st and the action it takes at
time t be sampled from π, denoted at ∼ π(a | st). Then, the
transition dynamics is a conditional probability distribution
over st+1, where st+1 ∼ F (s′ | s = st, a = at).

Let the set of non-negative reals, R≥0, denote the time
domain. A signal, z : T → D, is a mapping from a finite
subset of the time domain T ⊂ R≥0 to some set D. If 0 ̸∈ T
for some z, we say that z is a partial signal or trajectory
fragment. For a given signal z, we abuse notation to denote
the time domain over which z is defined as T (z), and the
horizon of a signal z, H(z) = max{t | t ∈ T (z)}, is the
largest time point in the signal time domain. Given a time-
domain T , we use C(T) to denote the convex closure of
T , i.e., if for every 0 ≤ ti, ti+1 ≤ H(T), for all λ ∈ [0, 1],
λti + (1− λ)ti+1 ∈ C(T).

Remark. Note that when we write s(t), for some t ̸∈ T (s),
we assume that the signal is interpolated (or extrapolated)
using a mechanism such as constant or linear interpolation (or
extrapolation), as appropriate for the state space S.

Definition 2 (State Trajectories as Signals). Given an initial
state s0 ∈ S, the state trajectory is a signal s : T → S
where the trajectory is sampled at discrete time points times
t0, . . . , tT ∈ T are mapped to s0, . . . , sT , where 0 ≤ ti <
ti+1 ≤ tT , and si+1 ∼ F (s′ | s = si, at ∼ π), for i ∈
0, . . . , T − 1.

The (Markovian) controlled stochastic dynamical system
often underlies real physical systems, e.g., an autonomous
vehicle, robots navigating around humans, and humans in a
shared space cohabited by manufacturing robots. However, a
common feature of many real-world systems is that they lack
full observability. As the state st of the system is not directly
observable, a common design decision is to use a combination
of sensors to estimate the actual state of the system.

Definition 3 (Observation space and Sensor signals). An
observation space for the dynamical system defined in Defi-
nition 1 is a tuple (O, Y), where O is a set of observations,
and Y is a distribution on the space of observations condi-
tioned on the current state. Given a state trajectory signal s,
the corresponding observation signal o is defined such that
o(t) ∼ Y (o | s = s(t)).

Essentially, an observation space gives us the space in
which a sensor “observes” the underlying system state and the
corresponding observation signal defines the time instants at
which a sensor samples the system. Moreover, a given system
can have multiple sensors observing it, and hence, we can have
multiple observation spaces, each with its own sensor signals.

Signal Temporal Logic (STL) is a real-time logic, typically
interpreted over signals that take values in a continuous metric
space (such as Rm) [12, 13]. We define the syntax for an STL

formula φ through the following recursive grammar:

φ :=µ(z(t)) > 0 | ¬φ | φ ∧ φ

| □I φ | ⊟I φ | ♢I φ | -♢I φ

| φ UI φ | φ SI φ,

where µ(z(t)) is a scalar function defined over the signal space,
and I is an interval of the form [a, b] for a, b ∈ N. Here, the
propositional logic operators for negation (¬), conjunction (∧),
and disjunction (∨) as defined as usual. Moreover, STL inherits
the temporal operators from Linear Temporal Logic, whose
Boolean satisfaction semantics can informally be defined as:

• □[a,b] φ says that φ must hold for all future samples in
[t + a, t + b], where t is the current time of evaluation,
while ⊟[a,b] is the past-time equivalent.

• ♢[a,b] φ says that φ must at least once in all future samples
in [t+ a, t+ b], and -♢[a,b] is the past-time equivalent.

• φ1 U[a,b] φ2 says that φ1 must hold in [t+ a, t+ b] until
φ2 holds, and φ1 S[a,b] φ2 is its past-time equivalent.

Conformal prediction was introduced in [5, 6] to obtain valid
prediction regions for complex predictive models such as neural
networks without making assumptions on the distribution of the
underlying data. Let the nonconformity scores be a set of k+1
exchangeable real-valued randorm variables R(0), . . . , R(k). In
supervised learning, it is often defined as R(i) := ∥Z(i) −
µ(X(i))∥ where the predictor µ attempts to predict the output
Z(i) based on the input X(i). Naturally, a large nonconformity
score indicates a poor predictive model. The goal then is to
obtain a prediction region for R(0) based on the calibration
data R(1), . . . , R(k), i.e., the random variable R(0) should be
contained within the prediction region with high probability.

Formally, given a failure probability δ ∈ (0, 1), we want to
construct a valid prediction region C ∈ R so that1

Prob(R(0) ≤ C) ≥ 1− δ. (1)

We pick C := Quantile({R(1), . . . , R(k),∞}, 1− δ) which
is the (1 − δ)th quantile of the empirical distribution of
the values R(1), . . . , R(k) and ∞. Equivalently, by assuming
that R(1), . . . , R(k) are sorted in non-decreasing order and
by adding R(k+1) := ∞, we can obtain C := R(p) where
p := ⌈(k + 1)(1 − δ)⌉ with ⌈·⌉ being the ceiling function,
i.e., C is the pth smallest nonconformity score. By a quantile
argument, see [14, Lemma 1], one can prove that this choice
of C satisfies (1). We remark that k ≥ ⌈(k + 1)(1 − δ)⌉ is
required to hold to obtain meaningful, i.e., bounded, prediction
regions. It is known that the guarantees in (1) are marginal over
the randomness in R(0), R(1), . . . , R(k) as opposed to being
conditional on R(1), . . . , R(k).

Conformal prediction has been recently applied to Signal
Temporal Logic runtime verification [15, 16], which assumes
only partial realizations of the system and sensor trajectories
and involves a time-series predictor. In our application, we

1More formally, we would have to write C(R(1), . . . , R(k)) as the
prediction region C is a function of R(1), . . . , R(k). For this reason, the
probability measure P is defined over the product measure of R(0), . . . , R(k).

107

consider the offline data x := (s,o) ∈ T → S × Y , a concate-
nated signal of system evolution and sensor observations for
the purpose of offline verification. Specifically, we consider the
STL robust semantics ρ(ϕ,x, t0) [17, 18], which denote how
robustly the trajectory x satisfies the STL specification ϕ with
the start time t0 (which is 0 in our application). Thus, we define
the calibration nonconformity score R(i) := −ρ(ϕ,x(i), τ0),
where x(1), . . . ,x(k) are the calibration trajectories, and the
test nonconformity score R(0) := −ρ(ϕ,x, τ0), where we do
not have access to the test trajectory x until test time. Following
Eq. 1, we can see that Prob(ρ(ϕ,x, τ0) ≥ −C) ≥ 1− δ. Now,
if C < 0, we conclude that Prob((x, τ0) |= ϕ) ≥ 1− δ.

III. CASE STUDY: INDUSTRIAL SAFETY

In this case study, we study a synthetic recreation of an
industrial environment in a Unity-based simulator, where
human operators/workers can move around the floor of a
manufacturing factory where fixed manipulator robots are in
operation. Here, an ultra-wideband radio-based localization
system is used to position the human operators wearing unique
tags on their person, along with a camera-based perception
system to redundantly compute similar localization information.

Real-time Locating System (RTLS): An RTLS systems
usually consist of multiple transponders (or tags) and multiple
receivers (or anchors) in a space that are used to localize
wireless tags in a space. Depending on the hardware, several
algorithms can be used for localization, but these algorithms can
result in localization errors in the presence of electromagnetic
or reflective noise, or if a tag doesn’t have direct line-of-sight
with multiple anchors.

In our experiments, we simulate errors in the RTLS system by
outputting a Gaussian noise perturbation of the true location of
each object in the simulator. The parameters of the noise model
are derived from the accuracy and precision specifications of
RTLS systems currently used in similar manufacturing floors.

Perception-based Object Detection System: The perception
system uses a single-stage monocular object detection model
called SMOKE [19] to predict oriented 3D bounding boxes
of objects in view of the camera, and is trained on a dataset
from our simulator. The output of such models may contain
localization and classification errors due to various factors,
including occlusion of an object and insufficient training data.

A. Spatial Consistency Checking

In our system, each message from the RTLS and perception
systems may consist of multiple detected objects. For each
object with unique ID i, let oi,rtls denote the location of i in
RTLS observation signal with observation space (T1, O1, Y1)
for that object. Similarly, let oi,vision denote the perception-
based location in observation space (T2, O2, Y2) for that object.

Now, we define aconsistency that is able to:
• operate on signals in observation spaces generated by

significantly different sensor systems;
• reason about signals with different sampling frequencies;

and

• output consistency information at each time point in the
signal while being robust to outliers and missing data.

A monitoring epoch T∆ ⊂ C(T1) ∩C(T2) ⊂ R≥0 is a time
interval over which we aggregate a consistency metric CC(·, ·):

CC(oi,rtls, oi,vision) = ∥oi,rtls − oi,vision∥, (2)

where oi,rtls, oi,vision are samples from oi,rtls and oi,vision. For a
monitoring epoch T∆, a consistency monitor outputs for time
t in the run of the system using Algorithm 1 such that

CCT∆
(z1, z2, t, δ) = ∀t′ ∈ [τ, t] (CC(z1(t

′), z2(t
′)) ≤ δ) ,

(3)
where τ = max(0, t−T∆). We choose the parameter δ := 0.05,
to be enforced that the signals for each subject in the scene
are within 0.05m of each other; and choose T∆ := 0.5s with
a period of 0.02s.

Algorithm 1 The procedure to compute the consistency output
for two signals z1, z2 at time t for a monitoring epoch T∆.

1: procedure CCT∆
(z1, z2, t, δ)

2: τ = max(0, t− T∆)
3: (i0, . . . , ik)← T (z1) ∩ [τ, t]

▷ i maintains the sample times for z1 in the epoch.
4: (j0, . . . , jl)← T (z2) ∩ [τ, t]

▷ j maintains the sample times for z2 in the epoch.
5: c ▷ Signal maintaining consistency output for each

time point.
6: t′ = max(i0, j0)
7: while i < k and j < l do
8: c(t′)← CC(z1(i), z2(j))
9: if min(k, i+ 1) ≤ min(l, j + 1) then

10: i← min(k, i+ 1); t′ ← i
11: else
12: j ← min(k, j + 1); t′ ← j
13: end if
14: end while
15: if ∀t′ ∈ T (c), c(t′) ≤ δ then
16: return True, c
17: else
18: return False, c
19: end if
20: end procedure

Here, we see that by simply finding a 1-1 correspondence
between objects in each stream that are within δ of each
other, we naturally derive a consistency metric, which can be
consumed by a downstream controller or “hazard interpreter”.

B. Consistency-informed Safety Controller

In this study, we consider a conservative, fail-safe controller
that prevents potential violations of the virtual fences around
each robot (as depicted in Figure 1). The controller observes
when a human operator violates (or is about to violate) the vir-
tual fence of any particular robot, and stops the corresponding
robot to prevent any potential harm to the person, using the
following logic:

108

(a) Top-down Map (b) Pipeline

Figure 1. An industrial case study: A manufacturing factory floor where human operators share spaces with robots with virtual “fences” surround them. The
objects in the scene are tracked via a camera-based object tracker, and the human operators wear tags that can be localized by a ultra-wideband localization
system. The system consists of multiple sensor streams that are monitored by the consistency checker node.

Figure 2. Conservative prediction of state from last known consistent location.
In each scenario, the controller takes a short signal from the consistency
checker (where C corresponds to a consistent reading, and I corresponds to
inconsistent) and determines if it is hazardous or not.

• Consistent: use the nominal policy π.
• Inconsistent: here, we use a worst-case estimate of how

fast a person can move within a single controller period,
vmax . This allows us to extrapolate the worst-case position
of any given inconsistent object from its last known
consistent position, as seen in scenario 2 of Figure 2.

C. Verification

To verify the correctness of our choice in δ, we generate
a representative dataset from our simulator with 5 human
operators and 5 robots (as seen in Figure 1). Each trajectory
in the dataset is generated by planning collision-free, random
paths for each human operator across the factory floor, thereby
covering various positional scenarios. Each trajectory is 60
seconds long, with the cameras sampled at 200 millisecond
periods, and the RTLS data sampled at 20 millisecond periods.

We define the consistency specification for each object i in
the system to be

ϕi := cT∆,i(t) ≤ δ =⇒ ⊟[0,T∆](∥s(t)− oi(t)∥ ≤ 0.8), (4)

Since we need the specification to apply for all objects in the
scene, we define the global consistency specification to be
mini ρ(ϕi, (s,oo), 0).

Figure 3. Nonconformity Scores R(1), . . . , R(K). Here, the dotted line
represents the C = −0.098 conformance, which allows us to conclude that
the Prob((x, τ0) |= ϕ) ≥ 1− δ, for our particular choice of δ := 0.05.

We fix δ := 0.05 and show the resulting nonconformity
scores in Figure 3 with 1000 calibration samples. As we see,
since C < 0, we can conclude that that Prob((x, τ0) |= ϕ) ≥
1− δ.

IV. CONCLUSION

In this paper, we aim to tackle the problem of multi-
sensor data fusion in the presence of unreliable or faulty
sensor systems. Specifically, we present a notion of δ-spatial
consistency, which allows us to extend point-wise distances
between observations from multiple sensors to spatiotemporal
consistency. We present an algorithm to determine consistency
over monitoring windows given a sufficiently representative
metric, along with a threshold below which a set of observations
are considered “inconsistent”. We show how to verify such
a system, and demonstrate the framework in a real-world
industrial use case, where consistency information is used
to ensure safety in a mixed-autonomous environment.

109

REFERENCES

[1] J. Hackett and M. Shah, “Multi-Sensor Fusion: A Per-
spective,” in , IEEE International Conference on Robotics
and Automation Proceedings, May 1990, pp. 1324–1330
vol.2.

[2] R. Gravina, P. Alinia, H. Ghasemzadeh, and G. Fortino,
“Multi-Sensor Fusion in Body Sensor Networks: State-
of-the-art and Research Challenges,” Information Fusion,
vol. 35, pp. 68–80, May 2017.

[3] L. A. Klein, Sensor and Data Fusion: A Tool for
Information Assessment and Decision Making, 2nd ed.,
ser. PM. Bellingham, Wash: SPIE Press, 2007, no. 138.

[4] M. E. Liggins, D. L. Hall, and J. Llinas, Eds., Handbook
of Multisensor Data Fusion: Theory and Practice, 2nd ed.
Boca Raton, FL: CRC Press, 2017.

[5] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic
learning in a random world. Springer Science & Business
Media, 2005.

[6] G. Shafer and V. Vovk, “A Tutorial on Conformal
Prediction.” Journal of Machine Learning Research,
vol. 9, no. 3, 2008.

[7] R. Majumdar and V. S. Prabhu, “Computing the Sko-
rokhod Distance between Polygonal Traces,” in Proceed-
ings of the 18th International Conference on Hybrid
Systems: Computation and Control, ser. HSCC ’15. New
York, NY, USA: Association for Computing Machinery,
Apr. 2015, pp. 199–208.

[8] J. V. Deshmukh, R. Majumdar, and V. S. Prabhu, “Quanti-
fying Conformance Using the Skorokhod Metric,” Formal
Methods in System Design, vol. 50, no. 2-3, pp. 168–206,
Jun. 2017.

[9] H. Abbas, H. Mittelmann, and G. Fainekos, “Formal Prop-
erty Verification in a Conformance Testing Framework,” in
2014 Twelfth ACM/IEEE Conference on Formal Methods
and Models for Codesign (MEMOCODE). Lausanne,
Switzerland: IEEE, Oct. 2014, pp. 155–164.

[10] M. Müller, “Dynamic Time Warping,” in Information
Retrieval for Music and Motion. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 69–84.

[11] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuer-
mann, and E. Keogh, “Experimental Comparison of
Representation Methods and Distance Measures for Time
Series Data,” Data Mining and Knowledge Discovery,
vol. 26, no. 2, pp. 275–309, Mar. 2013.

[12] O. Maler and D. Nickovic, “Monitoring Temporal Proper-
ties of Continuous Signals,” in Formal Techniques, Mod-
elling and Analysis of Timed and Fault-Tolerant Systems,
ser. Lecture Notes in Computer Science, Y. Lakhnech and
S. Yovine, Eds. Berlin, Heidelberg: Springer, 2004, pp.
152–166.

[13] O. Maler, D. Nickovic, and A. Pnueli, “Real Time Tem-
poral Logic: Past, Present, Future,” in Formal Modeling
and Analysis of Timed Systems, ser. Lecture Notes in
Computer Science, P. Pettersson and W. Yi, Eds. Berlin,
Heidelberg: Springer, 2005, pp. 2–16.

[14] R. J. Tibshirani, R. Foygel Barber, E. Candes, and
A. Ramdas, “Conformal prediction under covariate shift,”
Advances in neural information processing systems,
vol. 32, 2019.

[15] L. Lindemann, X. Qin, J. V. Deshmukh, and G. J. Pappas,
“Conformal prediction for STL runtime verification,”
in Proceedings of the ACM/IEEE 14th International
Conference on Cyber-Physical Systems (with CPS-IoT
Week 2023), 2023, pp. 142–153.

[16] Y. Zhao, B. Hoxha, G. Fainekos, J. V. Deshmukh,
and L. Lindemann, “Robust conformal prediction for
stl runtime verification under distribution shift,” arXiv
preprint arXiv:2311.09482, 2023.

[17] A. Donzé and O. Maler, “Robust satisfaction of temporal
logic over real-valued signals,” in International Confer-
ence on Formal Modeling and Analysis of Timed Systems.
Springer, 2010, pp. 92–106.

[18] G. E. Fainekos and G. J. Pappas, “Robustness of temporal
logic specifications for continuous-time signals,” Theoret-
ical Computer Science, vol. 410, no. 42, pp. 4262–4291,
2009.

[19] Z. Liu, Z. Wu, and R. Tóth, “SMOKE: Single-Stage
Monocular 3D Object Detection via Keypoint Estimation,”
Feb. 2020.

[20] A. N. Angelopoulos and S. Bates, “A gentle introduction
to conformal prediction and distribution-free uncertainty
quantification,” arXiv preprint arXiv:2107.07511, 2021.

[21] P. Antonante, D. I. Spivak, and L. Carlone, “Mon-
itoring and Diagnosability of Perception Systems,”
arXiv:2005.11816 [cs], May 2020.

[22] A. J. Barreto-Cubero, A. Gómez-Espinosa, J. A. Es-
cobedo Cabello, E. Cuan-Urquizo, and S. R. Cruz-
Ramı́rez, “Sensor Data Fusion for a Mobile Robot Using
Neural Networks,” Sensors, vol. 22, no. 1, p. 305, Dec.
2021.

[23] P. Besl and N. D. McKay, “A Method for Registration of
3-D Shapes,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 14, no. 2, pp. 239–256, Feb.
1992.

[24] Y. Chen and G. Medioni, “Object Modelling by Reg-
istration of Multiple Range Images,” Image and Vision
Computing, vol. 10, no. 3, pp. 145–155, Apr. 1992.

[25] Z. Chen, “Bayesian Filtering: From Kalman Filters to
Particle Filters, and Beyond,” Statistics, vol. 182, Jan.
2003.

[26] D. A. Dornfeld and M. DeVries, “Neural Network Sensor
Fusion for Tool Condition Monitoring,” CIRP Annals,
vol. 39, no. 1, pp. 101–105, 1990.

[27] V. Fox, J. Hightower, L. Liao, D. Schulz, and G. Bor-
riello, “Bayesian Filtering for Location Estimation,” IEEE
Pervasive Computing, vol. 2, no. 3, pp. 24–33, Jul. 2003.

[28] L. H. Gilpin, C. Zaman, D. Olson, and B. Z. Yuan,
“Reasonable Perception: Connecting Vision and Language
Systems for Validating Scene Descriptions,” in Compan-
ion of the 2018 ACM/IEEE International Conference on
Human-Robot Interaction, ser. HRI ’18. New York, NY,

110

USA: Association for Computing Machinery, Mar. 2018,
pp. 115–116.

[29] L. Gilpin, “Reasonableness Monitors,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1,
Apr. 2018.

[30] K. Kalpakis, D. Gada, and V. Puttagunta, “Distance
Measures for Effective Clustering of ARIMA Time-Series,”
in Proceedings 2001 IEEE International Conference on
Data Mining, Nov. 2001, pp. 273–280.

[31] L. I. Perlovsky and M. M. McManus, “Maximum Likeli-
hood Neural Networks for Sensor Fusion and Adaptive
Classification,” Neural Networks, vol. 4, no. 1, pp. 89–102,
Jan. 1991.

[32] J. Z. Sasiadek, “Sensor Fusion,” Annual Reviews in
Control, vol. 26, no. 2, pp. 203–228, Jan. 2002.

[33] S. Wang, R. Clark, H. Wen, and N. Trigoni, “DeepVO:
Towards End-to-End Visual Odometry with Deep Re-
current Convolutional Neural Networks,” in 2017 IEEE
International Conference on Robotics and Automation
(ICRA), May 2017, pp. 2043–2050.

V. APPENDIX

A. Semantics for STL

Formally, we define the Boolean satisfaction value of an STL
formula, φ, for finite-length, discrete-time trace z at a given
time instance t using the characteristic function β(φ, z, t),
which is recursively defined as:

β(µ(z(t)) > 0, z, t) ⇐⇒ µ(z(t)) > 0
β(¬φ, z, t) ⇐⇒ ¬β(φ, z, t)
β(φ1 ∧ φ2, z, t) ⇐⇒ β(φ1, z, t) ∧ β(φ2, z, t)
β
(
□[a,b] φ, z, t

)
⇐⇒ ∀t′ ∈ [t+ a, t+ b], β(φ, z, t′)

β
(
⊟[a,b] φ, z, t

)
⇐⇒ ∀t′ ∈ [t− b, t− a], β(φ, z, t′)

β
(
φ1 U[a,b] φ2, z, t

)
⇐⇒ ∃t′ ∈ [t+ a, t+ b], β(φ2, z, t

′)
∧(∀t′′ ∈ [t′, t), β(φ1, z, t

′′))
β
(
φ1 S[a,b] φ2, z, t

)
⇐⇒ ∃t′ ∈ [t− b, t− a], β(φ2, z, t

′)
∧(∀t′′ ∈ [t′, t), β(φ1, z, t

′′))

We say that a signal z satisfies a formula φ at time t if β(φ, z, t)
is true, denoted (z, t) |= φ.

In addition to the Boolean satisfaction semantics, STL has
quantitative semantics associated with it [18, 17]. The quan-
titative semantics define a robustness measure that computes
the degree of satisfaction of an STL formula by a real-valued
signal trace. Similar to the above Boolean satisfaction value
definition, the robustness, ρ(φ, z, t), of the formula φ for the
given signal z at time t is defined recursively as:

ρ(µ(z(t) > 0, z, t) = µ(z(t))

ρ(¬φ, z, t) = −ρ(φ, z, t)
ρ(φ1 ∧ φ2, z, t) = min(ρ(φ1, z, t), ρ(φ2, z, t))

ρ
(
□[a,b] φ, z, t

)
= mint′∈[t+a,t+b] ρ(φ, z, t

′)

ρ
(
♢[a,b] φ, z, t

)
= maxt′∈[t+a,t+b] ρ(φ, z, t

′)

ρ
(
⊟[a,b] φ, z, t

)
= mint′∈[t−b,t−a] ρ(φ, z, t

′)

ρ
(

-♢[a,b] φ, z, t
)

= maxt′∈[t−b,t−a] ρ(φ, z, t
′)

ρ
(
φ1 U[a,b] φ2, z, t

)
= max

t1∈
[t+a,t+b]

{
ρ(φ2, z, t1),

mint2∈[t,t1) ρ(φ1, z, t2)

}

ρ
(
φ1 S[a,b] φ2, z, t

)
= max

t1∈
[t−b,t−a]

{
ρ(φ2, z, t1),

mint2∈[t1,t) ρ(φ1, z, t2)

}

111

