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Abstract—In this paper, we address the problem of safety
verification for Spiking Neural Networks (SNNs) with Spiking
Rectified Linear Activation (SRLA). The SNNs are obtained
by first training Artificial Neural Networks (ANNs) and then
translating to SNN with subsequent hyperparameter tuning. We
propose a solution which tunes the temporal window hyperpa-
rameter of the translated SNN to ensure both accuracy and
compliance with the safe range specification that requires the
SNN outputs to remain within a safe range. We demonstrate our
approach with experiments on 5 benchmark neural controllers.

Index Terms—Spiking Neural Networks, Verification, Safe
Range Computation, Spiking Rectified Linear Activation

I. INTRODUCTION

In recent times, ANNs and their variants have been increas-
ingly used as controllers for controlling the physical system
(plant) in complex Cyber-physical systems (CPSs) [1]–[3]. In
particular, the usage of SNNs for CPS control has garnered
considerable attention due to their energy advantage over
ANNs while providing comparable accuracies [4]–[7]. SNNs
with Spiking Rectified Linear Activation (SRLA) [8] have
been gaining attention recently [9] because of their seamless
conversion from ANNs with ReLU activation [8], thereby,
making them efficacious for both classification and regression
tasks. ANN-based controllers mostly use ReLU activations
because of their robust performance in noisy environments
and with complex nonlinear plant dynamics.

A popular trend in the SNN community today is to first
train an ANN model and then transform it into an SNN
ensuring a high level of accuracy relative to the original ANN
in terms of metrics like Mean Squared Error (MSE). This
is done to avoid resource-hungry SNN training algorithms
while taking advantage of the already verified ANN models.
During this conversion, a crucial hyperparameter to be fixed
is the SNN temporal window or the input sequence length
(called NUMSTEPS). Larger temporal windows can improve
accuracy but increase computational demands and latency.

State-of-the-art ANN-SNN conversion algorithms attempt
to strike a balance between accuracy and latency during the
selection of NUMSTEPS, taking into consideration constraints
on SNN latency. While there has been a handful of research
efforts in establishing the equivalence between ANN and
SNN [7], [10], [11] (though not in the CPS context), and
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a plethora of work in the verification of ANN-controlled
CPSs [3], [12]–[15], the problem of safety assurance of the
translated SNN controllers remains completely unexplored in
literature. We address this problem here illustrating the solu-
tion for the safe range requirement which ensures that the SNN
output always remains within a safe range. In particular, we
derive an upper bound for NUMSTEPS from the control period
of the CPS and the execution time for one step of the SNN
and provide an iterative procedure to compute the least value
of NUMSTEPS ensuring required accuracy and safe range
compliance. Further, given an SNN and value of NUMSTEPS,
and a specified safe range, we provide a formal verification
procedure to check for compliance. Additionally, we present
an iterative bound-tightening method to produce tight bounds
for the output ranges of the SNN. We validate our framework
with experiments on 5 benchmark neural controllers [16], [17].

II. SYSTEM MODEL AND PROBLEM DEFINITION

An SNN consists of neurons that process a sequence of
spike inputs over the temporal window (i.e., NUMSTEPS)
and produce spike outputs of the same length. The spikes
can have binary or non-binary amplitudes. The final output
is an aggregation of the output spikes (e.g., the average of
the spike values over NUMSTEPS). We denote by NT an
SNN N where NUMSTEPS has been set to T . When the
plant observables I are sent to the SNN NT , the input I
is repeated for all the T steps as input. The upper bound
Tup on T is computed from the control period p and the
execution time e as: Tup = ⌊p/e⌋. Generally, SRLA neurons
accumulate potential (P ) by calculating the product of the
incoming weights with the output spike amplitudes of the
neurons in the previous layer until they reach their threshold
(θ). Upon reaching θ, the neurons spike with an amplitude
⌊P/θ⌋, and their membrane potential is reset to P − ⌊P/θ⌋.

Given an ANNA, we denote by |Nop| the number of outputs
and by Ri(A) the range (a closed interval [l, u]) for the i-
th output. Let the SNN N be obtained by an ANN-SNN
conversion procedure Trans(.). N has the same number and
order of outputs as the ANN A. We denote by Si(N ) the
ranges of the i-the output of N . MSEi(D,A,N ) denotes the
MSE value for the i-th output computed using an input dataset
D and obtaining the output value by simulating A and N .

Problem and Motivation: Given an ANN A, the SNN
N = Trans(A), an input dataset D, an MSE bound ϵ, and an
integer upper bound Tup, our objective is to find the smallest
timestep T ≤ Tup such that for each i ∈ {1, . . . , |Nop|},
MSEi(D,A,NT ) ≤ ϵ and for each i, Si(NT ) ≤ Ri(A).
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According to the problem definition, the desired SNN con-
troller should have good accuracy (in terms of MSE) relative
to the original ANN, and also ensure that the outputs never
exceed the bounds of the ANN for any input. Since the ANN
is assumed to be safe, this ensures that the SNN also remains
safe. The accuracy alone is not sufficient for the safe range
satisfaction as illustrated next. We consider an SNN controller
for a double pendulum [16] system having two output neurons
and an MSE objective of 0.4. Table I shows the MSE values
recorded for the SNN controller for these two output neurons
along with the verification results of its safe range requirement.
The safe ranges of these two output neurons are R1(A) =
[−5.86571,−3.69253] and R2(A) = [−6.35836,−3.41698].

# of MSE MSE Verification
Timesteps Output 1 Output 2 Result

1 4.27391 1.71482 Unsafe
2 0.54261 0.13999 Unsafe
3 0.36017 0.07155 Unsafe
4 0.20660 0.04399 Safe

TABLE I: Safety Verification Exmaple

It can be expected
that a lower MSE
corresponds to a bet-
ter convergence of
the SNN output to-
wards the ANN out-
put. However, the
satisfaction of the
MSE bound does not ensure the safe range requirement, as
shown in Table I. This mandates a formal safety verification.

III. PROPOSED METHODOLOGY

Algorithm 1 is an outline of our framework for finding the
least value of NUMSTEPS for a given SNN to satisfy safety.

Algorithm 1: Find NUMSTEPS for Safe Range
Input : ANN A, SNN N , Minimum MSE ϵ, Samples
D from the input space, Timestep upper bound Tup,
Safe Ranges {[li, ui]}

|Nop|
i=1 , for output neurons in Nop

Output: NUMSTEPS
range← {[li, ui]}

|Nop|
i=1

for T ← 1 to Tup do
if MSE(D, A, N T) < ϵ then

if VERIFY( N T , D, range) holds then
return T

else
res← counterexample returned by VERIFY()
snn range← SNN_BOUNDS( N T , res)
if snn range is acceptable then

return T

display “ No such T is found ”

The algorithm first sets the safe range of the output neurons.
It then iteratively searches for a NUMSTEPS value starting
from 1, where the MSE values calculated for all the outputs
using the dataset D are less than the accuracy objective ϵ.
Only then the safe range verification procedure is called.
If the verification succeeds (i.e., no violation), we return
the iteration step as the value for NUMSTEPS. When the
verification fails for the safe range requirements from A, we
return a counterexample res, and compute the actual range
supported by N T using res. In our work, the safe range

specifications are calculated from the original ANN using the
most efficient reachability analyzer tool, POLAR-Express [3].
MSE computation is done from the outputs resulting from
simulating the ANN A and SNN N on D.

Algorithm 2 explains the working of the VERIFY() func-
tion. VERIFY() consists of two separate steps:

Algorithm 2: VERIFY
Input : SNN NT , I/p Samples D, Safe Range range
Output: False with a counterexample input in res
that violates the safe range spec., True otherwise
procedure VERIFY(NT , D, range)

if SIMULATE(N T , D, range) returns no
violation then

if FV( N T , range) is True then
return True

return False, res

• Simulation: The SNN is simulated using the input sam-
ples D to check if there is a safe range violation by some
input (returned in res as a counterexample). This is an
inexpensive step. When the simulation finds no violation,
only then the more rigorous verification is invoked.

• Formal Verification: This involves encoding the SNN in
MILP and using an MILP solver to verify if the given safe
range for the SNN is always satisfied. When FV() returns
True, the safe range for the SNN holds for all possible
inputs or False otherwise with a counterexample res.

The MILP encoding FNT
of a given SNN is a conjunction of

constraints expressing its operation across all neurons over
NUMSTEPS T . The description of FV() is given in the
detailed version [18] and is mostly based on the formulation
in [5]. We now discuss the safe range specification encoding.

Safe Range Specification: We encode the negation of the
safe range requirement so that we can verify its satisfaction.
We are given the safe ranges for all the output neurons in the
SNN, i.e, {[li, ui]}

|Nop|
i=1 , where |Nop| is the total number of

output neurons. We check for satisfaction against these two
bounds with two separate queries as below.

ψub ≜ FN T
∧ (opi ≥ ui), ψlb ≜ FN T

∧ (opi ≤ li)
(1)

Note that opi is the output value of the i-th output neuron.
With both queries, we search for an input that violates the
given safe range specification. It holds only if both the above
queries are proven infeasible by the solver, indicating that no
input can trigger an output that is outside the safe range. We
can extend this for checking the upper (lower) bounds of all
the output neurons in Nop by taking the disjunction of the
upper bounds (lower bounds) on opi for each i ∈ Nop.

Formal Verification: FV() outlined in Algorithm 3 first
encodes the SNN N T . Next, it calculates the lower bound L
and the upper bound U from the safe range, range, given as
input to it. It then invokes the FV_LB() and FV_UB() for
verifying the safe output bounds. When any of these returns
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Algorithm 3: FV
Input : SNN runs for T timesteps, N T , Safe range
for SNN outputs, i.e., range = {[li, ui]}

|Nop|
i=1

Output: False with a counterexample input in res
that violates the safe range, True otherwise
procedure FV(N T , range)
FN T

← ENCODE(N T)

L← {li}
|Nop|
i=1 , U ← {ui}

|Nop|
i=1

if FV_LB(FN T
, L) returns False then

return False, res
if FV_UB(FN T

, U) returns False then
return False, res

return True

False (violation of safe range), FV() terminates and returns
False with the counterexample, otherwise, it returns True.

Algorithm 4: FV UB
Input : SNN encodings which runs for T timesteps
i.e., FN T

, Safe upper bounds, U = {ui}
|Nop|
i=1

Output: False when an input that violates the safe
upper bound exists, True otherwise
procedure FV_UB(FN T

, U)
ψT
ub ← Qub(FN T

, U)
if ψT

ub is feasible then
return False

else
return True

FV_UB() in Algorithm 4 uses the Qub() function internally to
encode the upper output bound for the safety check. Similarly
FV_LB() is used for the lower bound check.

Binary Search for Iterative Bound Tightening: When
the given safe range specification of the SNN is violated, we
compute the actual range supported by the SNN outputs em-
ploying the function SNN_BOUNDS(). However, we observe
that computing the SNN output range through an objective
function often leads to timeouts. Hence, we use a binary search
algorithm that uses FV_UB() and FV_LB() as subroutines
to estimate tight ranges within a factor δ of the actual ranges
obtained during the safe range verification in Algorithm 2.
SNN_BOUNDS() is implemented using two functions

FIND_UB() and FIND_LB() to tighten the upper and lower
bounds of the outputs of a given SNN N T respectively. Algo-
rithm 5 outlines FIND_UB(). The algorithm for FIND_LB()
is similar in nature. Recall that in Algorithm 1, we store
the counterexample in res, returned by the VERIFY() in
Algorithm 2. The value stored in res is the input for which
the safe range gets violated. FIND_UB() starts by setting the
variable U ce

i of the i-th output neuron, to the actual upper
bound it gets by executing the counterexample in res. The
value of U ce

i is then incremented iteratively by a value of β and
then verified using the procedure FV_UB() for K iterations

till it returns True (here, we run FV_UB() with Eq. (1)
only). This ensures an upper bound supported by the SNN
N T . At this point, the least upper bound lies in the interval
(Uvio

i (left), U ce
i (right)]. The interval is tightened using a

variant of binary search [19] between these two values.

Algorithm 5: FIND UB
Input : Encoding FN T

of SNN N T , Value of T for
which MSE < ϵ, Safe upper bound of i-th output
neuron ui, Iteration bound K, parameters β and δ
Output: The tightened upper bound U tgt

i

procedure FIND_UB(FN T
, L, Ui)

// Increase bound until FV_UB() returns True

U ce
i ← ui

for k ← 1 to K do
Uvio
i ← U ce

i , U ce
i ← U ce

i + β
ans← FV_UB(FN T

, U ce
i )

if ans is True then
break

// Binary Search to find a tightened bound

left← Uvio
i , right← U ce

i

while (right− left) > δ do
mid← RAND(left+ δ, right)
if SIMULATE(N T ,mid) finds violation then
left← mid

else if FV_UB(FN T
,mid) = False or TO then

left← mid

else
right← mid

U tgt
i ← right

return U tgt
i

The function RAND(.) generates a random real value mid
within the range (left+δ, right). We check if the value of mid
is not an appropriate upper bound of the i-th output neuron of
N T through a random simulation (using input samples D) or a
formal FV_UB(FN T

,mid), in which case the left bound of
the interval is updated to mid. When FV_UB(FN T

,mid) has
a Timeout (TO), we conservatively increment left to mid. If
FV_UB(FN T

,mid) is True, it implies we have a better upper
bound than the current right, hence it is updated to mid. The
while loop stops when we get an upper bound (right) within
δ of the lower bound (left) and returns right as the δ-tight
upper bound U tgt

i . The value of δ is user-specified, taken as
0.001 for our experiments.

IV. IMPLEMENTATION AND RESULTS

Benchmarks: We consider 5 benchmark ANN controllers from
ARCH workshop competition years 2019 [16] and 2022 [17].
These include controllers for a linear inverted pendulum (LIP),
a double pendulum (DP), a single pendulum (SP), and adaptive
cruise controllers with 3 (ACC3) and 5 hidden layers (ACC5).
Details are given in Column 1 of Table II.

Experimental Setup: All experiments were done on an Intel
Core i7 CPU with a 1.30 GHz clock speed and 16 GB RAM.
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Benchmarks # of
Timesteps MSE Verification

Result
Range Obtained

from Bound Tightening
Total Time

Taken

Linear Inverted Pendulum
Arch.: 4 × 10 × 1

Tup = 25
Safe Range: [−15.50883, 15.34465]

1 13.03031 − − −
2 3.32945 − − −...

...
...

...
...

9 0.16450 − − −
10 0.13235 Safe − 0.071s

Double Pendulum
Arch.: 4 × 25 × 25 × 2

Tup = 25
Safe Range: [−5.86571,−3.69253],

[−6.35836,−3.41698]

1 4.27391, 1.71482 − − −
2 0.54261, 0.13999 − − −...

...
...

...
...

5 0.12962, 0.02461 − − −
6 0.08968, 0.02089 Safe − 3.736s

Single Pendulum
Arch.: 2 × 25 × 25 × 1

Tup = 20
Safe Range: [−0.78130,−0.54282]

1 0.43389 − − −
4 0.04138 Unsafe [−0.78130,−0.29494] 0.187s...

...
...

...
...

19 0.00099 Unsafe [−0.78130,−0.52872] 5673.547s
20 0.00103 Unsafe [−0.78130,−0.51042] 9962.996s

ACC3
Arch.: 5 × 20 × 20 × 20 × 1

Tup = 5
Safe Range: [−1.46030,−0.73179]

1 0.01412 − − −
2 0.00356 − − −
3 0.00164 Unsafe [−1.47700,−0.61709] 424.906s
4 0.00090 Unsafe [−1.46733,−0.64829] 2817.854s
5 0.00058 Unsafe [−1.46616,−0.66411] 7902.435s

ACC5
Arch.: 5 × 20 × 20 × 20 × 20 × 20 × 1

Tup = 5
Safe Range: [−8.81953,−6.85014]

1 0.00590 − − −
2 0.00145 − − −
3 0.00070 Unsafe [−8.82560,−6.81908] 1019.328s
4 0.00038 Unsafe [−8.91954,−6.81121] 23918.844s
5 0.00024 Unsafe [−8.90126,−6.78736] 15508.534s

TABLE II: Safe Range Verification Results on SNN-Controllers

We used POLAR-Express (commit 13d42b0 downloaded from
GitHub on Aug. 18, 2023), to calculate the safe range of
the above-mentioned ANN controllers and the Gurobi MILP
solver (version 10.0.3) for constraint solving and verification.
We used the Nengo [8] framework for ANN-SNN translation.
Nengo accomplishes the transformation by replacing the ReLU
activation with SRLA, while preserving the same network
architecture, including weights and biases. For any neuron,
the default value of the threshold in Nengo is 1.

Computing Safe Range and Upper bounds on NUMSTEPS:
We calculate the safe range specifications (Table II Column 1)
for all ANN controllers running POLAR-Express [3] based on
the initial conditions of the input variables as reported in [16],
[17]. In particular, we extract the safe bounds of the controllers
after a single plant-control iteration. Though it can be doable
considering all the plant-control iterations, however, this is
currently out of the scope of this paper. Now, the queries to
be verified by the solver are the negation of these safe ranges.
The upper bound, Tup, on NUMSTEPS for SNN controller
(Table II Column 1) is calculated from the control period
given in [16], [17] and by assuming the execution time of
the respective SNN for a single timestep as 0.002 s for LIP,
0.008 s for DP, 0.0025 s for SP, and 0.02 s for the ACCs.

Results and Analysis: We run our framework as described
in Algorithm 1 for each of the five benchmark controllers. We
consider the minimum MSE bound ϵ for LIP, DP, SP, ACC3,
and ACC5 as 0.15, 0.10, 0.05, 0.002 and 0.001 respectively.
These bounds are selected within 1% envelope of the safe
range specifications. Table II summarizes the overall results.
Column 3 shows the MSE recorded for each of the SNN
controllers based on 5000 random samples while running
our framework. As per Algorithm 1, we proceed with the
verification only when the MSE values obtained by the SNN

controllers are below the given minimum bound ϵ. Note that
we do not verify (respective cells are marked by –) the
safe ranges for timesteps up to 9, 5, 3, 2 and 2 for LIP,
DP, SP, ACC3, and ACC5 respectively. For LIP and DP,
the respective SNN controllers satisfy the given safe range
requirements, hence, we obtain the NUMSTEPS values as 10
and 6 respectively and stop running Algorithm 1 further. These
NUMSTEPS values (i.e., 10 and 6) are quite small, and hence,
suitable for SNN implementation in practice.

However, for the other 3 systems, though the respective
SNN controllers satisfy the MSE criteria, they fail the safe
range verification with all timesteps up to Tup. This is obtained
through only 500 random input simulations as described in
Algorithm 2, before the call to formal verification in line 3.
Thus, we avoid the costly verification calls for SP, ACC3 and
ACC5. Thereafter, for these SNN controllers, tightening ranges
over their actual ranges is done from the counterexample re-
turned by the solver on running Algorithm 2. For all the unsafe
instances, the tight ranges obtained after running Algorithm 5,
are shown in Column 5. These can help the designer for
further improvement of SNN attributes (e.g., stepsize). Column
6 reports the total time to run Algorithm 1 for each case.

V. CONCLUSION AND FUTURE WORK

In this paper, we address the problem of determining the
appropriate temporal window of an SNN controller such that
the SNN is both accurate w.r.t. its respective ANN controller
and ensures the safe range specification as well through formal
verification. We have experimented on five benchmark neural
controllers. For some of the SNN controllers that violate their
safe range, we provide an iterative bound tightening method to
approximate the safe range of the SNN controllers. Developing
a closed-loop implementation integrating both the plant and
the SNN controller is the immediate future step of this work.
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