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Abstract—A major challenge with the practical deployment of
Internet-of-Things (IoTs) is how to develop the high-quality code
needed in order to produce robust and secure IoT devices. In
other domains, high-level programming languages have shown
to be efficient vehicles towards this. However, the very limited
compute power provided by IoT devices have made it difficult
to apply the same approach to IoT devices. The Cephalopode
processor is an attempt at implementing a low power hardware
device directly aimed at running a high-level functional language.
By integrating many resource-heavy tasks like garbage collection
and arbitrary precision arithmetic into dedicated hardware, the
Cephalopode processor explores the hypothesis that high-level
functional languages can be used even for low-power IoT devices.

This paper presents the implementation and evaluation of
the Cephalopode processor. We discuss the approach taken, the
compiler and the architecture of the processor. We also describe
the design process and design considerations.

After implementation and synthesis we compare the proces-
sor to a conventional RISC-V processor running a functional
language software environment. We also compare Cephalopode
with running handwritten C code on the RISC-V processor.

I. INTRODUCTION

The Internet of Things (IoT) conceives a future where
“things” will be interconnected by means of suitable infor-
mation and communication technologies. This connectivity
provides many opportunities, but also vulnerabilities.

IoT devices, like all embedded systems, tend to be designed
with tight resource constraints. Energy consumption in partic-
ular needs to be kept at a minimum, since these devices usually
are battery-powered and are expected to run for several years.

Almost exclusively, IoT devices are programmed with low-
level languages such as C and C++ due to their minimal
runtime systems and low-level hardware capabilities. This
simplicity comes at the cost of the abstractions that higher-
level languages provide, especially memory safety. In fact,
there are already reports on IoT security being breached, such
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as smart fridges being hacked to reveal Gmail passwords [1],
cars being remotely controlled [2], and home devices being
hijacked to launch massive DDoS attacks [3].

With these examples in mind, it becomes clear that we need
safe, high-level languages for programming IoT. Functional
programming languages such as Haskell provide an appealing
alternative [4]. They have been proven to be quite good at
providing programming environments in which security and
privacy guarantees can be provided, without imposing de-
manding user constraints [5]. Strong typing and type inference
help in catching many errors at compile time. They also
lend themselves well to formal verification, which is not only
invaluable for critical systems where correctness and safety
is crucial, but especially where errors are difficult to correct.
Consider for example an IoT device that executes a program
stored in read-only memory, where said program is later found
to have critical flaws. In the best case, the problem is quickly
found and mitigated, likely at a large cost. In the worst case,
the problem is not found until damage—or worse—occurs
because of the flaw.

Unfortunately, the high level of abstraction comes at a
cost. The Haskell runtime system is quite substantial, and has
proven very difficult to run in resource-constrained environ-
ments. Supporting the entire runtime system in tiny embedded
devices that are expected to run for several years on small
batteries poses significant engineering challenges. In addition,
the runtime system requires garbage collection, making it
difficult to provide the necessary performance guarantees for
systems with real-time system requirements, such as many IoT
systems.

An alternative to an extensive software runtime system
would be to create a dedicated hardware design aimed at
executing the high-level language natively while providing
the various services needed directly. This paper presents the
Cephalopode processor, which is a first realization of this
vision.

The Cephalopode processor is based on combinator graph
reduction, a simple execution mechanism for lazy functional
languages. The fundamental concept is that the high-level978-1-7281-9148-5/20/$31.00 © 2020 IEEE
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language is compiled into a computational graph consisting
of a small set of simple combinators. The program execution
would then entail to perform a step-by-step reduction of this
computational graph. An analogy is how high-level imperative
languages are compiled into a finite set of opcodes that are
then executed one-by-one. We direct the reader to [6] for an
introduction to the subject of graph reduction.

There is one class of bugs in C/C++ based programs that
is particular common in IoT devices: arithmetic overflow.
Since IoT processors often are very simple, and thus in
many cases do not contain hardware support for floating
point numbers, various sized integers—typically 8, 16, or 32
bit ones, signed or unsigned—are often used to represent
values. Unfortunately, this means that a common failure is
arithmetic overflow. If we add to this the common technique
of using scaled integer arithmetic to improve accuracy, it is
very easy to write code that for some particular boundary
conditions will cause a (silent) arithmetic overflow, causing
unpredictable behavior. To drastically reduce this possibility,
the built-in arithmetic in Cephalopode uses a form of arbitrary
precision, in which integers grow and shrink in size as needed.
Doing this in software is virtually impossible without imposing
serious performance degradation (which we show in the results
section). For hardware, this ability comes with a rather modest
cost and appears to be well worth having.

Finally, since an IoT device is often used with hard realtime
constraints, Cephalopode’s graph reduction engine is tightly
integrated with a true concurrent garbage collector, providing
much needed deterministic performance guarantees.

As will be explained further in Section II, there been
several historical attempts, especially from the 1980s and
1990s, at creating hardware intended for functional language
execution [7]–[11]. Unfortunately, these have always been
outperformed by software implementations on conventional
machines, if not immediately then within a few process
generations. This was often due to high memory traffic, which
has become increasingly expensive in high-performance pro-
cessors. The landscape of computer architecture has however
changed since those times. Now, with the end of Moore’s
Law and Dennard Scaling, custom computer architectures
such as Cephalopode can now be competitive with software
implementations on conventional architectures when target-
ing resource-constrained environments. Energy consumption
especially is an area where we believe custom architectures
can be especially potent, which, as previously mentioned, is
central in IoT. Furthermore, in the this domain where processor
frequencies are in the tens of MHz, memory traffic is not
as expensive as in high-performance computers. This makes
architectures with higher memory traffic more feasible than in
the high-performance domain.

A. Our contribution

To summarize, we present the following contributions.

• We evaluate the conjecture of whether designing ded-
icated hardware for functional language execution is a

feasible approach for resource-constrained systems, es-
pecially in terms of energy.

• We provide a detailed description of the design of one
such hardware implementation as well as suggestions to
how it could be improved further.

• In an apples-to-apples comparison, we provide measure-
ments showing that the resulting post-synthesis processor
has 1-2 orders of magnitude lower energy consumption
than a reference RISC-V machine running combinator
graph reduction in software and about twice the energy
consumption running equivalent code written in C on the
RISC-V.

• We also provide measurements summarizing the cost
of using arbitrary precision arithmetic and functional
language execution by comparing our processor against
“bare bones” C code.

B. Paper structure

The paper is structured as follows. In Section II, we present
related work on functional language processors. In Section III,
we present a detailed description of the Cephalopode archi-
tecture. Section V describes the Cephalopode compiler. In
Section VI, we describe the methodology and tool set for
synthesizing and evaluating the processor. We also describe the
reference RISC-V core running code emitted by MicroHs that
Cephalopode is compared against. In Section VII, we present
and evaluate the results. Finally in Section VIII we describe
our plans for further development of Cephalopode.

II. RELATED WORK

The use of combinators to evaluate functional programs was
pioneered by the late David Turner in his 1979 paper [12],
which presented a software implementation but hinted at the
possibility of a hardware one. Several hardware and abstract
machines designed to perform or accelerate combinator graph
reduction emerged thereafter.

SKIM [13] and NORMA [14] implement combinator-based
graph reduction in hardware, albeit microcoded.

Hughes [15] presents a method of compilation that uses
“super-combinators” derived from the source program rather
than a fixed set, improving program size and speed. They were
later hardware-accelerated in TIM [16].

Augustsson and Johnsson described the G-machine [17], an
abstract machine suitable for running functional programs but
amenable to efficient implementation on a standard computer
processor.

The abstract machine TIGRE [18] provides a faster ap-
proach to combinator graph reduction, with the potential to
be extended to super-combinators.

The Spineless Tagless G-machine [19], a descendant of
the G-machine, serves as the basis of Haskell compilation in
the Glasgow Haskell Compiler (GHC [20]) to this day. GHC
remains the state-of-the-art Haskell compiler to this day.

Several recent works also explore the evaluation of func-
tional programs. The Reduceron [21] aims to exploit paral-
lelism to rapidly evaluate functional programs on FPGAs, with
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an explicit goal of trying to perform as many reduction steps
per clock cycle as possible.

Accetti et al. introduce Lambda-One [22], an architecture
for evaluating functional programs on FPGAs using combina-
tors. Although compelling in several respects, it is unclear how
the stop-the-world garbage collection system fares with data
that is promoted into the external memory; it seems likely that
such an algorithm would introduce substantial latency given
the clock frequency of the processor (100MHz) and size of
the DRAM (512MB). Energy consumption and performance
relative to traditional architectures are also not clear.

III. DESIGN

Fig. 1. Cephalopode architecture. I/O primitives are not yet implemented.

Cephalopode is comprised of several units (shown in Fig. 1)
that work together to run functional programs. The graph
reduction engine is the core of the processor, responsible for
traversing the graph and performing computation by carry-
ing out reduction steps. Inside the reduction engine are the
primitive unit, which performs arithmetic using the ALU, and
the combinator unit, which performs combinator reductions.
The memory controller manages access to main memory, with
additional behavior to be described in later subsections. The
allocator provides new nodes to the reduction unit as needed,
and conversely the garbage collector recycles nodes that are
no longer in use. The initiator loads the program from ROM
into RAM at boot, and the scheduler manages the high-level
operation of the processor. This section will first describe the
representation used for programs, and then discuss the details
of how they are run in relation to the units listed above.

A. Graph model

Programs—in essence lambda expressions—are stored as
graphs in Cephalopode’s main memory. Graph nodes are a
fixed size, allowing memory to be designed so that one graph
node corresponds to one word. Each node stores a tag that
indicates what type of node they are. Node types include
APP, representing function application, COMB for combinators,
PRIM for primitive functions (e.g. arithmetic), INT and AINT for
multiple-precision integer data, CONS and NIL for lists, INDIR
for “indirections” to other nodes, and FREE for nodes in the
free list.

The remaining fields vary based on the node type. APP and
CONS nodes have two address fields left and right; for the
former these are the function and argument, and for latter the
“head” and “tail” pointers. APP nodes also contain an address
field up, used in lieu of a stack in order to backtrack toward
the root of the graph during reduction. COMB and PRIM nodes
contain a field that indicates which combinator or primitive
function they refer to. INT nodes contain only integer data,
for integers that are small enough to fit in one node, while
AINT nodes store some integer data but also the address of a
subsequent AINT node in order to allow the representation of
longer integers. NIL nodes store no additional data. INDIR and
FREE nodes each contain a pointer, for INDIR to the referenced
node, and for FREE to the next node in the free list.

B. Reduction algorithm

Reduction on a graph is carried out by beginning at the
graph’s root node, and traversing the left pointer down the
spine of the graph so long as application (APP) or indirection
(INDIR) nodes are found. The up pointer of each APP node is
modified to point to the previous APP node in the spine. (This
is similar to pointer reversal in some functional programming
architectures, which re-uses the left pointer for this task. By
using a dedicated pointer the size of each node is increased
but there is no need to rectify pointers while backtracking,
avoiding a substantial number of memory writes.) When
an indirection node is encountered, its pointer is followed
immediately and the node is otherwise ignored; in particular
up-pointers always skip over them to an APP node instead.

When a non-application/indirection node is encountered, a
reduction step may take place. For combinators and primitive
functions, the following takes place:

1) The arity N of the combinator/primitive is determined
from a look-up table.

2) N arguments are gathered by backtracking up the spine
via the up pointers, and recording the right pointers
seen along the way.

3) The address of the redex, the root of the sub-expression
being reduced, is recorded. (It is the final application
node encountered during the backtracking.)

4) The computation indicated by the combinator/primitive
is performed.

5) The redex node is overwritten with the computation
result.

6) The pointer used for traversal is updated.
Traversal may then continue, and the process repeats. A

naı̈ve approach would continue traversal from the redex, but
this is not optimal: combinators such as S add application
nodes as left children of the redex, which will certainly need
to be traversed. So rather than always resuming from the redex,
traversal resumes from the furthest node that is known to be
in the spine based on the combinator that was applied.

C. Multiple-precision arithmetic

The arithmetic used in Cephalopode is multiple-precision:
integers may grow beyond a single node (INT) to a linked
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list of nodes (AINT). To reduce memory traffic, the arithmetic
unit uses a 128-word internal register file to buffer operands
and intermediate results. Currently this limits the size of
valid arithmetic operations, making the arithmetic not fully
arbitrary-precision. This is not fundamental to the architecture,
however: the arithmetic unit could equally well spill into main
memory when operands are too large to use only the internal
register file. Care is taken to ensure that arithmetic on small
integers—the most common case—remains fast.

D. Indirection nodes

For projections such as the K combinator, which produce
an already-existing graph node as a result, simply overwriting
the redex with the result can lead to duplicated work later
on. For example, reducing (K (f x) y) results in (f x),
but overwriting the redex with this application would result
in two application nodes for (f x): the original one in the
argument (which may still be referenced elsewhere due to
sharing), and the new one written to the redex. Being separate
application nodes despite referencing the same function and
same argument, evaluating one of these would not bear fruit for
the other, leading to redundant effort if f were computationally
expensive.

To avoid this, the redex is instead overwritten with an
indirection (INDIR) node with a pointer to the already-existing
result. Since indirections are followed automatically during
graph reduction, this effectively unifies the redex with the
result, and no duplication of work occurs.

E. Strictness

Primitive functions, such as addition, are strict: they require
that their operands are already fully evaluated. In order to
avoid having to recursively evaluate the arguments (which
incurs additional complexity and requires either explicitly or
implicitly maintaining a second stack), a clever trick from the
Reduceron [21] is used, which we refer to here as the swap
rule: Whenever an application (v f) is found, and v is a non-
function value (e.g. integer), it is reduced to (f v). This can
be used as follows: in order to evaluate a strict unary function
f applied to an expression e, rather than beginning with (f

e), we begin with (e f). Reduction will make its way down
the left side of the application, eventually reducing e to some
value v, leaving us with (v f), and then the above rule will
swap the application to (f v), and evaluation can continue
as originally intended. This transformation (beginning with (e

f) instead of (f e)) can be generalized to higher arities to the
same effect, while only using the single swap rule described
above. Provided that functions are never strict about arguments
of function type (such as combinators or primitives), this
allows strict functions to be implemented without a significant
increase in hardware complexity.

F. Garbage collection

As graph reduction requires frequent allocation of new
nodes, and it is difficult to predict when nodes will no longer
be in use, the nodes that are not currently in use are organized

in a linked list called the free list, from which allocation draws.
In order to return nodes that are no longer in use to this list,
tracing garbage collection is used; it is noted that reference
counting is insufficient since cycles may be present due to
(mutually) recursive computations.

However, the use of a tracing garbage collector in an IoT
context presents some difficulty: stopping the process long
enough to perform the collection could introduce significant
delays, interfering with operation. To avoid this, Cephalopode
carries out garbage collection largely in parallel with the
running process. Furthermore, the garbage collection can be
carried out in periods when the process is not actively us-
ing main memory (e.g. during arbitrary-precision arithmetic,
which uses a local cache), minimizing contention for memory
access.

Simply running a tracing garbage collection algorithm in
parallel to a computation will not work by itself, since changes
to the program graph while the garbage collector is in the
process of exploring it may cause the latter to miss pointers to
live memory objects. However, Yuasa [23] observes that since
garbage always remains garbage until it is freed, it is safe for a
tracing garbage collection algorithm to operate on a snapshot
of a graph, even while the graph continues to evolve after
the snapshot is taken. Any garbage identified in the snapshot
must still be garbage once the marking phase of the collector is
finished, and is thus safe to reclaim regardless of how the graph
has changed. The only consequence of the discrepancy is that
new garbage will be missed and thus not reclaimed, leaving
the garbage collector one garbage collection cycle behind.

The approach used by Yuasa does not use a literal snapshot,
instead it uses write-barriers to evacuate pointers that would be
overwritten, placing them into the garbage collector’s stack to
ensure that they will be explored. This makes write operations
very slow, however, as each write requires a read to be
carried out first. Cephalopode instead opts to make writes
comparatively efficient by redirecting writes to alternative
memory locations, leaving the original data intact for the
garbage collector to explore. This requires twice as much
memory as may be in active use, similar to a copying garbage
collector [24], albeit also with a stack. By doing this, an exact
snapshot of the graph at the beginning of garbage collection
is maintained, and basic correctness of the garbage collection
process follows as a result. Furthermore, as will be described
in detail later, the snapshot can be taken nearly instantaneously,
avoiding causing delays to the graph reduction when garbage
collection begins.

Cephalopode uses a simple mark-and-sweep algorithm for
the garbage collection itself, with additional operations to
pause graph reduction, manage the snapshot, and atomically
modify the free list. The set of roots for garbage collection
consists of the root pointer of the program graph, and the head
of the free list: provided that the snapshot is taken between
reduction steps, all data we do not wish to reclaim (live data
and the free list) can be reached from these. As a consequence
there is no need to gather roots from a call stack, as would be
needed with a traditional system, minimizing delays.
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Pseudocode for the garbage collector is given in Listing 1,
with some minor simplifications. Graph reduction is only
stopped while the snapshot is taken and the two roots are
marked and pushed onto the garbage collection stack—in other
words for a brief and constant-bounded time.
function main():

loop:
wait(allocated_nodes > threshold)
wait(take_snapshot_ready)
// Preparation and root-finding
pause_graph_reduction()
take_snapshot()
mark_and_push(freelist_head)
mark_and_push(graph_root)
resume_graph_reduction()
// Hard work
mark_phase()
finished_snapshot()
sweep_phase()

function mark_phase():
while stack not empty:

ptr = pop()
n = read_snapshot(ptr)
if n.type in [CONS, APP]:

mark_and_push(n.right)
mark_and_push(n.left)

else if n.type in [FREE, INDIR, AINT]:
mark_and_push(n.left)

function sweep_phase():
// Construct linked list of reclaimed nodes
reclaimed_head = null
reclaimed_tail = null
for sweeper in HEAP_MIN...HEAP_MAX:

if get_mark(sweeper) == 1:
set_mark(sweeper, 0)
compress_indirections(sweeper)

else:
m = node()
m.type = FREE
m.left = reclaimed_head
write_mem(sweeper, m)
reclaimed_head = sweeper
if reclaimed_tail == NULL:

reclaimed_tail = sweeper
// Atomically prepend to free list
if reclaimed_tail != null:

n = read_mem(reclaimed_tail)
f = checkout_freelist_head()
n.left = f
write_mem(reclaimed_tail, n)
checkin_freelist_head(reclaimed_head)

function mark_and_push(p):
if p != NULL and get_mark(p) == 0:

set_mark(p, 1)
push(p)

Listing 1. Cephalopode’s garbage collection algorithm.

The mark bits are packed into 32-bit words and stored in
a small, high-speed memory located in the garbage collector.
A one word cache is used to avoid performing a read-modify-
write when setting a single mark bit; the access patterns of
the garbage collector (checking a mark bit before modifying
it) ensure that when a mark bit is changed the mark word it
belongs to is already in the cache, and can be used without
an extra read operation.

The stack is also stored in a separate memory. During

marking, the garbage collector always pops from the stack
after no more than two mark-and-push sequences. Thus if the
graph memory can contain a maximum of N nodes, the depth
of the stack will be at maximum bN/2c+1. The stack is sized
based on this worst-case scenario.

G. Indirection chain compression

Unfortunately, in graph reduction systems that use indirec-
tion nodes, ordinary garbage collection is not quite sufficient:
space can be consumed by growing chains of indirection
nodes. In a stop-the-world garbage collector these can be
removed fairly easily, but in Cephalopode’s case the graph
reduction continues even during garbage collection, the usual
approach will result in race conditions.

However, it is observed that once a node is an indirection
node, it will never change until it is freed: indirection nodes
are not treated as part of the spine—just traversed silently—so
they are never overwritten during reduction. So if a indirection
node X points through a chain of further indirection nodes to a
non-indirection node Y , it is safe to modify X to point directly
to Y—the only change seen by the reduction engine is that
while traversing the graph it may reach Y more quickly than
if X had not been modified. Furthermore, this can be carried
out on every node in an indirection chain: they can all be
modified to point to the node that follows the chain, analogous
to path compression in set-merging algorithms [25]. Applying
this reduces the indirection chain to separate indirection nodes
all pointing at the same destination, thereby reducing all
chains to length one. Subsequent garbage collection cycles can
then remove any of the indirection nodes that are no longer
referenced.

The proliferation of single indirection nodes is not solved by
this, and Cephalopode does not as yet make an effort to remove
them. However, it is noted that since nodes have at most two
child pointers, after chains are compressed indirection nodes
may constitute at most two thirds of all live nodes, as opposed
to an unlimited proportion of the population.

A convenient place to perform this compression is in the
sweep phase of the garbage collector, since it will look at all
live nodes, and has a stack available to remember previous
nodes in a chain. Using the garbage collector stack for the
latter limits the length of compression to the size of the stack
(half the maximum number of nodes), but it appears unlikely
that a chain would exceed this length during normal operation,
and if one were to it would only require a second garbage
collection cycle to be fully compressed. The advantage of
using the stack is that that fewer reads from main memory are
needed, reducing contention. Pseudocode for the procedure is
given in Listing 2.
function compress_indirections(sweeper):

n = read_mem(sweeper)
if n.type == INDIR:

p = sweeper
while n.type == INDIR and stack not full:

push(p)
p = n.left
n = read_mem(p)

end = p
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while stack not empty:
p = pop()
mem_write(p, make_indirection_to(end))

Listing 2. Cephalopode’s indirection chain compression algorithm.

A subtle consequence arises in relation to graph traversal:
the reduction engine could be in the process of traversing
the chain when it is compressed. In particular, it could be
traversing a node in the chain that happens to become an
orphan, and will be reclaimed on the next garbage collection
cycle. If that happened before the reduction engine continued
traversal (unlikely in a single-process system, but conceivable
in a multi-process one) then the latter would end up accessing
invalid memory. To prevent this, the reduction engine will
never pause for garbage collection to begin when it is travers-
ing an indirection chain, instead it will only pause briefly once
it reaches a non-indirection node.

H. Snapshot memory

The snapshot functionality is implemented inside of the
memory manager, which exposes both normal read and write
operations as well as snapshot management: preparing to
take, taking, and reading from one. Aside from preparing to
take a snapshot—which is carried out incrementally in the
background—none of the operations have significant latency.
In order to accomplish this, each virtual address m used by the
graph reduction engine corresponds to two physical addresses
2m and 2m + 1 in main memory; it is noted that these are
m followed by a least significant bit (LSB) of our choosing.
This redundancy allows the storage of both a snapshot version
and an up-to-date version of the data associated with virtual
address m. A small, high-speed memory housed inside the
memory manager keeps track of which is which: for each
virtual address m, it stores the LSB for the up-to-date value
(denoted newm), and the LSB for the snapshot value (denoted
oldm). These, combined with a global bit mode, are then used
to implement the desired snapshot functionality:

• When mode = MODE NORMAL:
– A read or write to virtual address m uses newm as

the LSB.
– Sometime before taking a new snapshot, set oldm ←

newm for each m.
– To take a snapshot, set mode← MODE SNAPSHOT.

• When mode = MODE SNAPSHOT:
– A read on m uses newm as the LSB.
– The snapshot of m may be read by instead using

oldm as the LSB.
– A write to m sets newm ← oldm, and uses that as

the LSB.
– To finish with the snapshot, set mode ←

MODE NORMAL.
Taking a snapshot consists only of toggling a mode bit, but

the preparation beforehand—setting oldm equal to newm for
each m—requires a number of operations that is linear with
respect to the size of memory. However, these operations only
concern the high-speed memory inside the memory manager,

not the main memory, and can thus be carried out concurrently
without introducing contention. Provided some time between
garbage collection cycles is intended, no latency is introduced:
the preparation can begin as soon as the previous garbage
collection cycle is done with marking, and be finished before
the next one should begin, allowing the latter to take a snapshot
without delay.

By banking physical memory, reads can be accelerated by
reading both physical addresses at once, as well as the new and
old bits, and selecting which data to output based on the latter.
This is not possible with writes, which require first reading
the new and old bits in order to know which physical address
should be written to. However, with a high-speed memory this
is still faster than a read from main memory, and if sufficiently
quick this can be carried out in the same clock cycle as the
main memory write is signalled, as is the case in Cephalopode.
It also avoids the need to mark and push the pointers contained
in the old value as a Yuasa-style system would need to; instead
the garbage collector can access the old value at its leisure.

In summary, the reduction engine sees a potentially slower
memory during snapshot mode and when garbage collection
is taking place, but never experiences significant delays. The
garbage collector only experiences long delays while waiting
for the current reduction step to finish, or if it were to begin a
new garbage collection cycle very soon after the previous one
(i.e., before the memory controller has time to prepare for a
new snapshot).

I. Context switching

As described previously, it is necessary to walk back up
the spine of a graph during reduction, typically implemented
using a stack. By embedding this stack in application nodes
through the up pointer, rather than maintaining a separate
stack, the state of graph reduction can be encapsulated in just
two pointers: a pointer to the node where traversal/reduction
will continue, and a pointer to the previous application node
in the spine.

Context switches then become trivial, provided the graphs
are disjoint: once any pending reduction step completes (or is
aborted), the two pointers for the current process are stored so
that it can be resumed later, and two new pointers are given to
the reduction engine to work on. Aside from waiting for a large
arithmetic operation to complete, this can be accomplished in
only a handful of clock cycles.

Although the current Cephalopode implementation only
maintains one process, the context switching mechanism is
in fact already in use: it is how the graph reduction is briefly
paused at the beginning of garbage collection.

IV. IMPLEMENTATION ENVIRONMENT

Cephalopode was designed using the VossII [26] platform,
a design and verification system based on the functional
programming language fl. Its symbolic simulation capabilities
were used to test error-prone parts of the design, for example
within the arithmetic unit. Verilog output from VossII was used
for the evaluation described in sections VI and VII.
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Many parts of Cephalopode—particularly those with com-
plex behavior such as the reduction engine, garbage collector,
and snapshot memory controller—were written primarily in
Bifröst, a high-level language that can be compiled to hard-
ware descriptions in fl. As well as simplifying the design
process, it allowed the automatic generation of clock-gating
circuitry, the latter reducing energy consumption by approxi-
mately half for the core itself (i.e., excluding memories).

V. COMPILER

The compiler for the Cephalopode processor relies heavily
on fl, the language of the VossII [26] system, both to provide
the front end of the compiler as well as serve as the implemen-
tation language for the compiler. The stages of the compiler
are shown in Fig. 2.

Fig. 2. The stages of the Cephalopode compiler.

First, we rely on fl’s internal language interpreter to parse
the program, type-check it, and resolve any overloaded func-
tions. The resulting lambda expressions are then obtained
through the reflection mechanism of fl.

In the next stage, strict primitives are identified and the
graph is transformed to enable call-stack free evaluation. This
is largely a traversal over the graphs. However, if a strict
function is unsaturated, e.g., because it is partially applied,
additional lambda abstractions and variables are added so that
all strict functions are fully applied.

Originally, Cephalopode was designed to use a fixed set of
combinators similar to the ones described in [6]. However,
after inspecting the graphs obtained after the strictness rear-
rangements required for Cephalopode, we discovered a very
common pattern. As a result, we decided that an additional
combinator would be useful. However, the number of argu-
ments to this needed combinator varies and thus we needed a
family of combinators. We named this family of combinators
Ln, where n is a numerical value that denotes the depth of the
chain. Since we had plenty of space for such a counter in the
node structure, we effectively added an unbounded number
of combinators. We also added a similar Cn combinator,
although it is of more dubious value in the examples we have
considered. The reduction rule for all the combinators we use
are given in Table I and in Table II we provide some statistics
on how effective these new combinators are in reducing the
size of the graph to reduce. We show three statistics: 1)
how many combinators the program used, 2) the size of the

program graph, and 3) the total number of reductions needed to
evaluate the program. For our set of benchmarks, the additional
combinators have a major impact, reducing the program size
by 30% and the number of reductions, and thus directly the
run-time of the program, by 31%.

TABLE I
COMBINATORS USED IN CEPHALOPODE COMPILER AND THEIR

REDUCTION RULES.

I x → x
K x y → x
S f g x → (f x)(g x)
C f g x → (f x) g
B f g x → f (g x)
S’ f g h x → f (g x) (h x)
C’ f g x y → f (g y) x
B’ f x g y → (f x) (g y)
B* f g h x → f (g (h x))
S’’ f g x y → (f x y) (g x y))
Ln e1 e2 ... en x → x e1 e2 ... en
Cn f e1 e2 ... en x → (f x) e1 e2 ... en

Since Cephalopode is aimed to be an IoT processor, the
code, i.e., the resulting combinator graph from the compiler,
is finally written out as a ROM image. The translation from
the graph to the ROM image is entirely straightforward.

TABLE II
COMPARISON FIXED SET VS. EXTENDED SET OF COMBINATORS.

Program Nbr. combinators Graph size Reductions
Old New Old New Old New

Factorial 13 5(3) 44 28 243 159
Dot product 34 13(7) 97 55 5928 3817
Matrix mult. 45 24(8) 134 88 7266 5174
Neural ntwk 92 53(16) 267 185 17276 12217
Min 3-D dist. 166 90(19) 405 240 4963 3639

VI. EVALUATION METHODS

This section describes how the Cephalopode processor is
evaluated in terms of speed, area, energy, and memory traffic.
Since the processor is intended to be a low-energy IoT device
we compare it to a RISC-V processor that one could imagine
could fill that purpose [27] [28]. Preferably, since Cephalopode
is a combinator graph reduction processor, we would like to
also do combinator graph reduction on the reference machine.
We use Augustsson’s MicroHs [29] for this purpose. MicroHs
is a simple Haskell compiler that compiles a Haskell program
to a combinator graph, which can then be evaluated with the
minimalistic MicroHs runtime system. We introduce MicroHs
further in Section VI-A. In summary, we compare our proces-
sor that performs combinator graph reduction in hardware to
a processor performing the same thing in software.

A. MicroHs

MicroHs is a simple Haskell compiler that compiles Haskell
programs into combinator graphs, which can in turn be eval-
uated with the simple MicroHs runtime [29]. The language is
an extended subset of Haskell-2010.

We are primarily interested in the MicroHs runtime system,
which is written in C. Variables are handled internally with
combinators, and primitive operations are built into the runtime
system. One key thing that is not built into the runtime system
is arbitrary precision arithmetic, which is implemented in
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Haskell as a library rather than as runtime system primitives.
As a result, the performance is significantly worse than a lower
level implementation such as the one used in GHC. This will
become apparent in subsequent sections.

The process of compiling MicroHs programs and executing
them on the RISC-V machine is as follows. The MicroHs
compiler mhs is first compiled normally for the host archi-
tecture (in our case x86-64) using GNU GCC. Next, we use
this to compile our MicroHs program into a combinator graph
file. This combinator graph file is bundled with the (slightly
modified) MicroHs runtime system and compiled using the
GNU GCC RISC-V tool chain. Next, we use the linker to
produce ROM and RAM files that can be loaded into the
instruction and data memories our simulated RISC-V machine.

GCC optimization level -O1 is used to produce the RISC-
V binary due to issues with stack overflow encountered when
using higher optimization levels on MicroHs programs running
on the RISC-V machine.

When performing measurements, we make sure to only
measure during the execution time of execio. This avoids
measuring initialization and tear down of the runtime system.

The corresponding process for Cephalopode was described
in Section V. The program is implemented in fl, the meta-
language of VossII and that is only syntactically different
from the Haskell program used for the MicroHs version,
and compiled into a ROM file as described in that section.
That ROM file can then be loaded the simulated Cephalopode
processor, which will then run the program to completion and
terminate. As with the other example, only the graph reduction
phase is measured.

Finally, to determine how much performance (energy and
execution time) it costs to write our programs in Haskell, we
also created handcrafted C code for all our benchmarks and
compiled them and simulated the results on the same RISC-V
processor.

B. Benchmark Programs

To create a representative benchmark suite for IoT appli-
cations, we selected one representative from each class in
IoTBench [30], but restricted our choices to integer formats,
since Cephalopode lacks a floating point unit at this stage. We
then added a few more functional programming like programs
to see if they behave substantially different. In all, we use 12
distinct programs. They are:

• Factorial: Computes n! for n = 10.
• Triple: Computes 3n for n = 13 using only additions.
• MatrixAddConst: Add a constant to all entries in a 10x10

matrix.
• MatrixMulConst: Multiply a constant to all entries in a

10x10 matrix.
• Dot: Compute the dot product of two 100 element lists.
• Search: Compute the sum of all elements in a list of 100

elements that satisfies an equality condition.
• MinDistance: Compute the square of the minimum dis-

tance in 3-D between a given location and 40 points.

• Derivative: Computes the difference between each two
consecutive numbers in a list of 100 elements.

• Conv: Compute a 1-D convolution with a kernel of size
4, stride 1, and bias -10 over a vector with 50 elements.

• NeuralNetwork: Evaluate a neural network with (large)
integer coefficients and with 3 hidden layers and ReLU
activation functions.

• Sort: Sort a list of 40 integers.
• MatrixMult: Multiply two 10x10 matrices.

To illustrate the implementation of the programs in Haskell,
see Listing 3 where we show the implementation of the fixed-
size arithmetic Factorial program. All benchmarks use the
same structure, where we compare the computation of our
target expression to a precomputed answer. The reason for this
comparison is to force a complete evaluation of the expression,
and to aid in debugging.

module FixedFactorial(main) where
import Prelude

n :: Int
n = 10
answer :: Int
answer = 3628800

factorial :: Int -> Int
factorial n = if n <= 1 then 1 else n * factorial (n - 1)

main :: IO ()
main = (factorial n == answer) ‘seq‘ return ()

Listing 3. Implementation of the fixed-precision Factorial program.

Another example can be seen in Listing 4, where we show
the arbitrary-precision version of the MinDistance program,
that computes the square of the minimum distance in 3-D
between a point and a collection of 40 obstacles.

module ArbMinDistance(main) where
import Prelude
import InputArbMinDistance

square :: Integer -> Integer
square x = x*x

sqdistance :: [Integer] -> [Integer] -> Integer
sqdistance (x1:y1:z1:r1) (x2:y2:z2:r2) =

square (x1-x2) + square (y1-y2) + square (z1-z2)
sqdistance _ _ = 0

min_distance :: [[Integer]] -> [Integer] -> Integer
min_distance (x1:rem_locs) my_loc =

let cur = sqdistance x1 my_loc in
let rem = min_distance rem_locs my_loc in
if( rem >= cur) then cur else rem

min_distance [] my_loc = 100

main :: IO ()
main = ((min_distance locs my_loc) == answer)

‘seq‘ return ()

Listing 4. Implementation of the arbitrary-precision MinDistance program.
The input has been omitted for conciseness.

As mentioned before in Section III, Cephalopode integers
are arbitrary-precision. Comparing only with fixed-size Mi-
croHs would be therefore misleading in favor of MicroHs.
On the other hand, only comparing with arbitrary-precision
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MicroHs would also be misleading since its arbitrary precision
code is quite poor in terms of performance1. Because of
this, we evaluate each MicroHs program with both fixed and
arbitrary precision.

Similarly, for the C-code versions of the benchmark pro-
grams, we evaluate it both using fixed integers and using
an arbitrary precision arithmetic package from a production
system [26].

C. Synthesis

Both processors are synthesized using the ASAP7 7-nm
finFET predictive PDK and standard cell ASIC library [31]
with Cadence Genus version 18.14. The library transistors are
characterized at the TT corner at a 0.7-V supply voltage and
a temperature of 25◦C. With the processors intended as low-
power IOT devices, we use an operating frequency of 100
MHz. We base our analysis on post-synthesis rather that post-
place and route due to the complexity of the latter. For an
apples-to-apples comparison, we consider post-synthesis to be
sufficient.

Memories are modeled in behavioral Verilog and are not
synthesized. They are modeled such that a read or write
operation always take one phase. Since we also model their
energy consumption as that of SRAM (described later in
Section VI-D) the memories act essentially like L1-caches in
a high-performance system.

It is possible to synthesize the RISC-V processor with and
without features like super scalar mode, multiple issue, and
with or without multiplication and division units. Since we
prioritize low energy consumption, we turn off super scalar
mode and use single issue. The multiplication and division
units are however kept since Cephalopode has a multiplier,
and we assume that the impact of the (inactive) division unit
is negligible.

Once the post-synthesis netlists are generated, we execute
the test programs described in Subsection VI-B in order to
obtain cycle count, memory traffic and power consumption.
We make sure to only measure for the combinator graph
reduction (including allocation and garbage collection, should
the latter run), taking no setup or tear down into account.

D. Memory energy model

As a final step, we need to take the power consumption
of the memory into account. We use the following simple
power model in order to approximate this. Previous work [32]
found that a 8kB SRAM memory synthesized with the same
standard cell library consumes roughly 0.25 pJ per bit per write
operation and 0.23 pJ per bit per read operation. In our power
model we scale these numbers with the width of each memory.
Take for example the RISC-V RAM which is 32 bits wide.
Therefore, we say that the energy consumption is 32·0.25·2 =
16pJ for 2 write operations and 32 · 0.23 · 3 = 22.08pJ for 3
read operations. Static power consumption for the memories
is not considered since it is negligible for SRAM [33].

1Private communication, Augustsson, 2024.

VII. EVALUATION

A. Results

Both processors are synthesized according to the method-
ology described in Section VI-C. The resulting netlists have
gate counts of 48900 and 13500 for Cephalopode and the
RISC-V machine respectively. Timing reports indicate that
Cephalopode has a maximum clock frequency of about 420
MHz compared to about 300 MHz for the RISC-V machine. It
is worth noting that no design effort has been put into limiting
the size of Cephalopode at this time.

An important aspects of the Bifröst language is the ease
in which protocols can be added between modules. We used
this mechanism extensively to create separate (gated) clock
domains. In practice, this meant we simply added power =

"clockgating" to many of the protocol declarations used in
Cephalopode. When we added clock gating originally, we saw
a 40% decrease in energy consumption compared to before
clock gating. Today, the current Cephalopode processor has
18 distinct clock domains and as a result, at run time most
of the processor consists of “dark silicon” [34], drastically
reducing the energy consumption.

Fig. 3. Energy consumption relative to Cephalopode (lower is better).

In Fig. 3 we show the relative energy consumption com-
pared with Cephalopode2. If we compute the geometric aver-
age we see that the C code using arbitrary precision arithmetic
uses about half the energy of Cephalopode and the fixed
integer C code uses about 48 times less energy. On the
other hand, if we use MicroHs, we will use between 17 and
174 times more energy, depending on whether we use fixed
integers or MicroHs’s arbitrary precision package.

Although raw performance was not a primary objective
in the design of Cephalopode, it is of course of interest. In
Fig. 4 we show the total compute time for evaluating the
benchmarks for our different configurations. Again, using the
geometric average, we see that the C code using arbitrary
precision arithmetic takes roughly the same amount of time
as Cephalopode and the fixed integer C code runs about 22
times faster. On the other hand, if we use MicroHs, it will take

2Note that we use logarithmic plots. This makes data points within roughly
1% of Cephalopode indistinguishable.
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Fig. 4. Performance relative to Cephalopode (lower is better).

between 36 and 366 times longer, depending on whether we
use fixed integers or MicroHs’s arbitrary precision package.

In terms of power, the Cephalopode core is more efficient
than the RISC-V machine, consuming 350 µW versus 450 µW
on average. This is despite Cephalopode being 3.6 times larger
in terms of cells.

B. Discussion

The results make it clear that Cephalopode is significantly
outperforms MicroHs regardless of if arbitrary precision is
used or not, and it performs about as well as the arbitrary
precision C code. The fixed-precision C code is significantly
better, which is hardly surprising.

Before drawing conclusions, we would like to raise a cau-
tionary note. When comparing such different configurations
and assumptions, it is very easy to make unfair comparisons.
Looking at performance alone one could argue that fixed-
precision C code is superior, but this misses out on the
safety and productivity benefits of using a high-level functional
language. As an analogy: a race car outperforms a normal
car in terms of both speed and weight, but for numerous
reasons is not an ideal choice for day-to-day use. One might
also argue that MicroHs is a too primitive implementation
to compare against, and that GHC would be the only good
comparison. This is not yet possible, unfortunately, since GHC
cannot emit RISC-V binaries. While GHC is indeed likely
to do better on RISC-V than MicroHs—at least judging by
their relative performance on desktop computers—the exact
degree is uncertain, and comparison of Cephalopode to GHC
on RISC-V is left until the latter becomes a reality.

Thus, the conclusions we draw from our benchmarking
will need to be qualified rather carefully, and the associated
assumptions stated explicitly.

With this proviso, we would like to draw the following
conclusion: if the safety and convenience of using a high-
level functional language is important, and we furthermore
want to reduce, or even eliminate, most arithmetic overflow
problems in our IoT developments, then something along the
lines of Cephalopode appears quite attractive. It allows us to
reach an energy consumption within a factor of two from a
corresponding C program that also uses arbitrary precision
arithmetic.

VIII. FUTURE WORK

Avenues for further work fall into the categories of addi-
tional evaluation, enhancements to Cephalopode, and archi-
tectural exploration.

For evaluation, a more comprehensive suite of test programs
would be ideal, particularly those that make extensive use of
laziness and that are certain to trigger garbage collection in
all architectures in question.

A direct comparison to a state-of-the-art functional language
environment, e.g., one based on GHC, would be most illumi-
nating, but must wait until such a system has been created
whose runtime can fit on a tiny IoT processor.

Enhancements to Cephalopode include the addition of I/O
and multitasking primitives, improvements to the compiler,
the possibility for the multi-precision arithmetic unit to spill
intermediate data into main memory in the case of very large
integers, and an interface to allocate multiple nodes in a single
clock cycle.

Today, the energy consumption of Cephalopode is dom-
inated by the energy consumption of the memory (by a
factor ranging from 5-10). Thus, it is clear that reducing
the memory traffic in Cephalopode could have a dramatic
impact on reducing its total energy consumption. Some of
the design choices we made in Cephalopode, e.g., the use
of back pointers rather than a stack or not using a simple
1-bit reference counting scheme to reduce the load on the
garbage collector, should be revisited. It is our belief that there
is significant reduction in energy for Cephalopode waiting to
be implemented.

Some additional architectural possibilities to explore include
the use of structured combinators [35], and support for un-
boxed integers.

IX. CONCLUSION

In this paper we have discussed the design, implemen-
tation, and evaluation of Cephalopode, a custom processor
for combinator graph reduction for low-energy domains like
IoT. We have provided a detailed description of the archi-
tecture and key design decisions, especially those relating to
garbage collection, and a detailed description of the compiler.
Cephalopode has been compared to a reference system with
MicroHs running on a RISC-V core. We also compared the
performance of C versions of the benchmarks running on
the same RISC-V. With this in mind, we finally conclude
that dedicated hardware for functional language execution in
resource-constrained environments is both viable and efficient
compared to imaginable alternatives.
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