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Abstract—As digital systems keep miniaturizing and
becoming more complex, new methods are required
to ensure their fault tolerance. Research and industry
are working together to automatize such task, and,
recently, great progress has been made to overcome
this challenge. Starting from an exhaustive reference
simulation, we have a general procedure to determine,
by Model Checking, the fault tolerance of flip-flops
that are perturbed by bit-flip events. Assuming that
the design is correctly implemented, the temporal
properties are used as fault detectors, automatically
generated through a re-adapted version of the open
source software Goldmine. By this, we can also address
circuits without explicit specification (blind blocks),
using automatic assertions induced from the reference
golden waveform. Properties are mainly mined inside
the design, allowing to calculate by Model Checking the
fault masking capacity of the addressed modules.

We consider two medium sized blocks, showing re-
sults with much-improved performance and accuracy
over classical simulated fault injection.

Index Terms—Formal Fault Injection, Goldmine,
Functional Verification, Fault Masking.

I. Introduction
The design automation of hardware systems is increas-

ing its importance over time, as their in-silicon down scal-
ing constantly augments the circuits complexity. The need
to ensure the correct information flow in many critical
sectors (automotive, banking, avionics, radiation detec-
tors) also imposes strict conditions on the specification,
whose flaws may lead to severe jeopardy and compromising
consequences.

After decades of commitment, the development of al-
gorithms for automatic specification [1] leads to new
paradigms. Combining such tools with the study of fault
tolerance, we implemented a complete automatic flow for
fault injection and detection by Model Checking [2], [3],
to characterize the hardware fault tolerance. In particular,
we focus on Single Event Upset (SEU [4]) faults - single
bit flips that may occur in any non-protected flip-flop.
The module’s fault tolerance is characterized by injecting
SEUs by Model Checking, instead of classical simulation.
This optimizes the computational effort and improves the
fault detection accuracy, being test-bench independent
and exhaustively traversing all functional states.

Automatic functionality checkers are normally used to
detect design bugs, with temporal properties representing
the specification [3]. In this work, the design is priorly
assumed to be correct, and assertions (proven in absence
of external errors) have the role of fault detectors. The
automatic generation of assertions for designs that are
not ensured to be bug-free, can be risky and questionable
approach. Nevertheless, this eventuality does not concern
our scenarios, as the functionality of the addressed blocks
is well known and exhaustively tested.

Human-built properties usually concern only the output
pins of a digital block, as its complexity makes hand-
construction hard for non-documented circuit structures.
In presence of partial specifications, Intellectual Proper-
ties, intricate multi-modules systems, the manual con-
struction of assertions through reverse engineering turns
out to be a very tough task, even for teams of expert engi-
neers. Thus, the choice of automatic assertion generation
may be justified, to address the problem for “black boxed”
circuits (free of design bugs).

We adapted the open software Goldmine [1], that auto-
matically generates properties, leveraging on the waveform
of a reference simulation. In this work, such mining process
focuses on creating assertions mainly inside and at the
output pins of two medium-sized test cases. This choice
permits to estimate the fault masking capacity of the
circuit: the number of fragile flip-flops (injecting faults by
Model Checking) detected by internally mined properties,
over the ones causing protocol failure with output bound-
ary assertions.

Mining inside the module provides a much deeper in-
sight of how the system behaves, catching the faults on
their early stage of propagation. Such innovative analysis
allows to directly prevent the faults propagation with a
much lower effort and at a cheaper price. This characteri-
zation is essential in the automotive industry, as the early
detection and absorption of failures plays a central role in
modern vehicles safety [5].

We describe the automation of the assertion generation
along with the formal fault injection flow, mining inside
and at the module outputs, then comparing the enhanced
performances over simulated statistical fault injection.
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Finally, the formal fault injection results with distinct
properties (internal and boundary) are used to compute
the fault masking capacity of the test cases, a result which
would be practically very hard to reproduce in simulation,
as this is test-bench dependent, and with randomly sam-
pled faults over time.

II. State of the Art

A. Functional Verification

A necessary step across the whole design flow is the
matching between the hardware specification and its effec-
tive execution. Functional verification addresses this task,
and nowadays is a major topic for a wide range of industry
and research applications [6], augmenting its importance
as long as integrated circuits continue to miniaturize.

1) Simulation: Simulating the design is the most de-
ployed methodology to face the verification problem, by
generating several input stimuli patterns, then observing
the behaviour at the primary outputs [7].

Assertion-based verification [8] may be a better solution
to detect design bugs. Such approach aims to model the
functioning protocol of the concerned system by a set of
well defined properties, then considering as errors only the
flaws causing their breakdown. In all cases, the outcome
of the simulated approach depends on the inputs stimuli
quality and their coverage capability, when traversing the
state space.

2) Model Checking: From automata theory [9], hard-
ware and software environments may be represented as
transition systems, while the set of temporal properties
are time dependent sequences expressed in a language
accepted by the first [10]. In particular the Model Checking
algorithm, given a design and a property (assertion) that
doesn’t hold on it, is designed to report a counterexample
trace of such failure.

In this work, such search algorithm is used to quantita-
tively define the response of complex hardware modules
when faults, e.g. errors generated in the state words,
propagate through the digital network.

B. Protocol Characterization

The verification task aims to verify the system’s proto-
col, which is represented by temporal properties. Their
quality strictly depends on the human capacity to en-
code the specification, that can be unclear, nor existing
(making the problem even more complex), often occupying
whole verification teams of experts for long periods. This
is a common situation in industry environments, where
Intellectual Properties (IPs) are treated as black boxes
among institutions, or without a standard description for
a given block. To address these challenges, Goldmine [1]
is designed to automatically generate properties for the
digital device, relying only on the target module structure
and the exercised golden stimuli.

In general, there are no standard techniques to use, also
because the selection of the most suitable method varies
as a function of the particular problem to solve.

C. Fault Tolerance

Fault tolerance is the system’s capability to endure and
recover from external anomalies, that may cause diversions
from the foreseen execution of the program.

1) Simulated Fault Injection: The most common tech-
nique to address the tolerance task relies on Monte Carlo
sampling [11], even if this method shows several limita-
tions as the design size begins to enlarge. Here, firstly a
reference (golden) dynamic is computed and stored, then
the strobes (error detectors) are defined, finally several
distinct additional “faulty” simulations are performed [7].

Several distinct types of errors can be injected in the
hardware network, such as locking a flip-flop to a specific
state (Stuck at One - SA1, Stuck at Zero - SA0) or flipping
its value until a new event overwrites the register state
(SEU).

Such statistical approach turns out to be extremely
expensive in terms of resources, even to extract approxi-
mated information. Moreover, via simulation the system
only traverses an exiguous fraction (depending on the
input stimuli) of all the accessible paths in the state
space, with the possibility to rewind on already explored
configurations.

(a) Simulation (b) Model Checking

Fig. 1: Visual state space exploration

Even by estimating the required number of realizations
to get a sufficiently small marginal error on the sample [11],
the number of all dysfunctional combination sequences
grows exponentially in the dimension of the considered
circuit (N flip-flops implies at priori 2N possible com-
binations), making practically impossible to extensively
enumerate all the configurations.

2) Formal Fault Injection: Evaluating the hardware
fault tolerance via formal methods has been a central topic
in research during last decades [12], [13], due to the great
advancement of both literature and testing of academia
and industry. As computers and informatics tools [3] are
nowadays advanced enough to attain satisfactory results,
this strategy provides several advantages.
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The Model Checking algorithm is designed to explore
the whole set of states without missing any dysfunctional
corner case, traversing exactly once each attainable con-
figuration (see Fig. 1). This approach lends itself better
than statistical simulation for fault injection, potentially
providing a super-set of results in shorter times. We use
here the formal engine Jaspergold [3] to determine the list
of fragile flip-flops, with the support of the open software
Goldmine [1] that automatically generates properties as
fault detectors inside the module.

III. Formal Flow
In this section we present our methodology. We combine

the reference simulation and Model Checking to perform
fault injection on a digital block. Faults are detected
whenever they violate the temporal properties, which are
manually (at the output pins) or automatically generated
(mined internally, using Goldmine).

Firstly, we run the golden simulation with maximized
functional coverage, by stimulating the hardware with an
exhaustive set of reference test-benches.

Secondly, such trace and the module’s netlist are passed
through Goldmine, that automatically generates a list of
true assertions basing on the design and the simulation
waveform (see III-B). A preliminary sanity formal proof
is then exercised without faults, to select the properties
that do not only hold in simulation, but also by Model
Checking. From the reference simulation we also extract
the corresponding module’s state machine (see III-A).

Thirdly, from each state of the golden graph and for
every flip-flop, the model checker automatically generates
a bit-flip at the most convenient clock cycle, trying to
violate the assertions. If the properties still hold (even in
presence of the fault), then the flip-flop is proven to be
SEU-resilient, and no further action is taken on it. Other-
wise, at least one property is violated, meaning that the
injected fault successfully propagated until contradicting
the functional hardware protocol.

Finally, the fault injection results are collected and the
masking capacity is calculated (see Eq. 1, as number of
faults that propagate until the outputs, over the total
causing a failure).

A. Reference Finite State Machine

The golden simulation is exercised encompassing the
active control states of the design, for a given active
functional mode. Being S the set of golden states and R
the set of its N internal registers, the element s ∈ S is
defined as the vector of their values at a given time:

s = {r0, . . . , rN }, r ∈ R.
By sampling at each clock cycle s and its transition

during the golden simulation, we obtain the reference state
machine (see Fig. 2).

Partitioning the protocol into its modes and phases (a
phase can be the writing phase, the reading phase, etc.)
selects specific sub-graphs of the reference state machine.
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Fig. 2: Finite state machine encoded from the golden
simulation

Some properties that are proven on the entire automaton,
may be unreachable when constraining on specific sub-
regions.

When a bit-flip (SEU) occurs during a chosen phase,
assertions may be violated if initializing the model checker
in some states (the fault propagates and a counterexample
is found), and may hold when beginning from others (the
SEU is absorbed and the design is fault tolerant). For a
given phase, such peculiarity permits to know by Model
Checking until when a flip-flop is dangerous.

B. Assertion generation with Goldmine

Goldmine is a tool to enhance verification efficiency,
and for us, to automatically generate assertions on a
design [14], [1]. Our version is nearly the one proposed
by its creators, integrating some ad hoc modifications,
described later on. The software accepts the design as
a Verilog netlist (Goldmine is not configured to parse
SystemVerilog without a licensed tool): for us, this is also
the most appropriate framework for the subsequent fault
injection process.

Firstly, the signals considered relevant to be part of
the atomic formulas are selected (at the output boundary
or internally). The netlist is then parsed, elaborated and
analysed; the first difference between the open source
version of Goldmine and our updated one consists in the
option to store the linking phase result (the preliminary
process of the static analysis [15]), reusable for further
mining runs of the same module (which can be costly for
large designs). There are two more considerations: the first
is that buses may present cycles in their Cone of Influence
(COI) (as they are not bit-blasted at this stage), likely
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Fig. 3: Global flow overview

to cause infinite loops in the computation. This is solved
by imposing Goldmine to skip already encountered edges
while constructing the COIs. Secondly, the “complexity”
and “importance” values (defined in [15] to rank the signal
participating in the assertions as atomic formulas), are
evaluated after concluding the full COI construction (thus
according to the complete topological structure), using the
average formula defined in [15].

To launch the mining process, we provide to Goldmine
the golden simulation waveform (in .vcd format), the
design netlist and target signals to generate the assertions.
It is possible to significantly speed up and improve the
quality of the mining outcome, by focusing on the control
flow of the block, rather than its data path (e.g. by
excluding data or reset signals, generating much more
control-adherent assertions).

The golden reference simulation is necessary to reduce
the combinatorial explosion of possibilities when building
an assertions on the targets [16], optimizing the resources
and the effort of the mining engine PRISM [17]. It
identifies and couples the most strongly correlated signals
with the targets, to build a set of always true assertions
(with respect to the given input stimuli). We synthetically
resume the mining algorithm steps as follows:

• The user selects the target signals to mine on.
• The user provides the golden simulation waveform to

Goldmine.
• The algorithm selects the top contributor antecedents

signals of the chosen targets, by evaluating the cor-
relation coefficients for each couple antecedent-target
(basing on their values during the simulation).

• By this, for each selected couple antecedent-target, a
temporal property is built (of the form “if antecedent
- then target”), assigning values to the variables as a
function of their frequencies of occurrence.

• The process is repeated for each target signal.
Through progressive traversal of the configurations, the

mining process successfully completes. The generated as-
sertions are then verified with Jaspergold, keeping only the
ones that turns out to be formally proven.
C. SEU Injection and Tolerance by Model Checking

SEU faults are modelled by a sabotaging signal named
fault, connected to the target register, able to flip its out-

put value when activated. Its waveform is a pulse, enabled
only once during the injection process. Its behaviour is
described by the temporal assumption hf

hf : assume fault Z⇒ always (! fault)

In simulated fault injection, we obtain statistical results
on the tolerance level of each register (number of prop-
agated errors over the total injected). Some works [11]
have even measured the quality of the statistical results
according to the number of injected faults. In the case of
formal injection, we just know whether or not a register
is tolerant. The outcome is much more reliable by Model
Checking, as the flip-flop is proven to be totally fault
invulnerable, which is not the case by simulation (it may
exist an undiscovered combination of input stimuli that
has been not exercised).

Intellectual Properties (IPs) of industrial designs are
very versatile, able to support multiple behavioural modes,
to be easily reused in different contexts. Given a chosen
mode, several test benches are developed according to
it, with the possibility to describe distinct phases as a
function of the required operation to perform (e.g., as the
writing phase, the reading phase, etc). Similarly, distinct
sets of assertions and assumptions describe different modes
and phases of the protocol.

As it is not possible to fully determine the whole set
of initial states for which a register is tolerant, the study
is restricted to the ones given by the golden stimuli of
the functional verification, whose quality is characterized
by different coverage (code coverage, transition coverage,
assertions coverage, . . . ). Focusing on such states provides
an accurate overview of the fault-tolerant targets.

Let C be a circuit composed by N registers in R: its
protocol specification is described by the sets H, A of
assumptions and assertions properties. Our method is
described by the algorithm in Figure 4. Let Hm and Am be
respectively the restrictions of H and A to a given phase
and a given mode of the circuit C (e.g., Hm ⊂ H and
Am ⊂ A) and let J be a set of golden stimuli.

1: procedure Tolerance(C, Am, Hm, J )
2: R =COI(Am)
3: G = Extract_Graph(J , R)
4: G = Remove_Unreachable_States(G, Hm)
5: for all r ∈ R do
6: for all s ∈ S do
7: M(r, s) =

(
C, s |=hf

Hm → Am

)
Fig. 4: Formal Fault Injection

The first (line 2) step restricts the study to the registers
in the COI of the assertions.

The second step (line 3) evaluates the list of golden
states according to the golden stimuli in a given mode
(and therefore of different phases). The stimuli correspond
to the test-bench of the golden simulation: we record over
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time the corresponding values of each register in RAm
. We

obtain the set of states S (see III-A) that composes the
reference state machine (from where each formal proof is
initialized). If there is a transition between states si and
sj , it means that in the sequence evaluated by simulation,
the state sj was computed one cycle after si.

The third step (line 4) removes all unreachable states.
The final step (line 7) is the formal proof for each golden
state in S and each concerned flip-flop, by injection of the
SEU through hf . All fault injection results are stored into
the Boolean matrix M(r, s).

D. Fault Masking Capacity

Let be R′, R′′ ⊆ R respectively the sets of fragile
flip-flops with respect to output (boundary) and internal
properties. The masking capacity index η ∈ [0, 1] of the
block is evaluated as:

η = 1 − |R′|
|R′ ∪ R′′|

(1)

Such metric, extracted by Model Checking and encoded
by matrix M , provides the fault masking capacity of the
block, evaluating how much the circuit is able to absorb
and delete single faults, during their propagation through
the circuit.

IV. System Architecture

The flow is applied to the Serial Peripheral Interface
(SPI [18]) and the Direct Memory Access (DMA) of
a radiation test vehicle RISC-V System-on-Chip (SoC),
shown in Figure 5. The system comprehends a CPU [19]
and a RAM memory, communicating through an AHB
bus [20]. Either the SPI de-serializes data and provides
it to the CPU or the DMA, or the CPU or the DMA
send data to the SPI, which serializes and forwards it to
the external world. The SPI communicates with the AHB
using an APB to AHB converter module, and interacts
with the DMA through a four phase handshake protocol,
allowing standalone data transfer (see Fig. 5).

SS
I
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B2
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B

Handshake

SPI

CPU

DMA

RAM

External
World

A
H
B

RISCV-SoC

Fig. 5: RISCV SoC - System architecture

In this research, the whole analysis is performed at
netlist level (after the Register Transfer Level synthesis).
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Fig. 6: SPI interfaces

V. Application Test Cases

The flow shown in Figure 3 is applied to the Serial
Peripheral Interface (SPI), and to the Direct Memory
Access Controller (DMA).

A. SPI block

The SPI module (see Fig. 6) is connected to a RISC-V
processor using the Advanced Peripheral Bus (APB) [21],
and to the external world through the Synchronous Serial
Interface (SSI) [18]. Thus, the SPI has two interfaces:

The APB interface: This is controlled by the reset
preset and clock pclk. Whenever a master (CPU or DMA)
needs to communicate, it selects the SSI (psel is high)
and asserts the signal penable. According to the value of
pwrite, the SPI either reads or writes data on the registers.

The SSI interface: This is controlled by the reset
ssi_rst, and a clock ssi_clk. Whenever the SPI needs to
communicate with the external world, it asserts the signal
ssi_oe_n, and selects the slave (ss_0_n) as the clock
sclk_out is enabled.

1) SPI verification environment: We consider the func-
tional mode of simultaneous data reception and transmis-
sion (RX_TX mode), assuming the information stored
in the SPI and that the communication with the DMA
is inactive. The two protocols (APB, SSI) can be man-
ually modeled using System Verilog Assertions (SVA)
language [8] with 4 assumptions and 10 assertions (see
Table. I).

As an example, assumption h1 indicates that psel is
always asserted for two cycles. Assumption h2 indicates
that when the SPI is selected, the communication with
the bus is enabled. Assertion a1 states that if the clock
sclk_out is enabled, then the external slave ss_0_n is
not asserted. Assertion a2 states that if ss_0_n is enabled,
then the signal ssi_oe_n is not asserted.

2) Mining and fault injection on the SPI: We first gen-
erate assertions with Goldmine on the design boundaries
only (i.e. the inputs and outputs of the SPI), to reproduce
and compare the manual implementation of the protocol.
This required some Goldmine manipulations, to make it
able to create properties involving various outputs (not
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h1 : assume $rose psel |→ psel[∗2]

h2 : assume $rose psel |→ penable

a1 : assert $rose sclk_out |→ !ss_0_n

a2 : assert !ss_0_n |→ !ssi_oe_n

TABLE I: SPI manual properties

assert sclk_out ##2 sclk_out |→ !ss_0_n

assert penable ##2 sclk_out |→ !ss_0_n

assert !ss_0_n ##1 ss_0_n |→ !sclk_out

assert !ss_0_n ##2 ss_0_n |→ !sclk_out

assert ssi_oe_n |→ ss_0_n

assert !ss_0_n |→ !ssi_oe_n

TABLE II: SPI boundary mined asser-
tions

dma_req

dma_single

dma_last

dma_ack

dma_finish

DMA SPI

Fig. 7: DMA handshake interface

in the same COI), thus assertions that translate correla-
tion, and not causality. After verifying the validity of the
generated properties with Jaspergold, their relevance to
the protocol is ensured manually. Obviously, reading and
filtering out already proven properties is a much easier
and faster task than generating the assertions by hand,
interpreting the protocol and writing them from scratch.

The second and major study consists in providing to
Goldmine internal signals as input for the property gener-
ation (using the tool more in its intended way). As before,
properties are pruned by the model checker Jaspergold,
then manually eliminating all the proven properties that
are meaningless for the supposed protocol description.

B. DMA block

This module, extracted from the same SoC (see Fig. 5),
is a core controller that transfers data from a source to a
destination peripheral over one or more Advanced High-
performance Buses (AHB) [22] (see Fig. 7).

The study concentrates on the handshaking interface in
burst-transaction mode (see Fig. 7), to qualify the transfer
test for multiple handshakes with the module for channel
2. When the SPI starts the handshake with the DMA, it
first asserts signal dma_req in the desired channel, then
dma_ack in the corresponding one. Finally, dma_single is
asserted when the peripheral can transmit one more data
items. As dma_finish and dma_last are not relevant for
our scopes, the only output signal to focus on is dma_ack.

h1 : assume !dma_req[i] && !dma_single[i] && !dma_last[i]

for i in (3, . . . , 15)

h2 : assume dma_req[i] && dma_single[i] && !dma_last[i]

for i in (0, 1)

h3 : assume dma_req[2] && dma_ack[2] |=⇒ !dma_req[2]

h4 : assume $fell dma_req[2] |=⇒ always(!dma_ack[2])

a1 : assert !dma_req[i]

a2 : assert $fell dma_req[2] && dma_ack[2] |=⇒ !dma_ack[2]

TABLE III: DMA manual properties

assert hc_dma_ack_dst[2] |→ dma_ack[2]

assert !hc_dma_ack_dst[2] |→ !dma_ack[2]

assert tr_c_dst_md[1] |=⇒ dma_ack[2]

TABLE IV: DMA internal mined assertions

1) DMA verification environment: The inputs be-
haviour in the verification environment are driven by as-
sumptions in SVA. To exhaustively describe the protocol,
6 properties are used (see Table III).

First, all DMA handshake channels from 3 to 15 are
deactivated (h1), then numbers 0, 1 are locked accordingly
to the chosen test (h2). Channel 2 is characterized by h3
following the protocol in [22]. Finally, h4 reduces the state
space for the formal engine to traverse. Assertions a1 and
a2 represent the expected block behaviour without error
injection (such properties are proven via Model Checking
in absence of faults).

2) Mining and fault injection on the DMA: To fully
exploit the Goldmine potential for the treatment of cor-
related signals, and to broaden the variety of collected
results, we directly focused on the internal block mining.
Through the same procedure to select valid assertion used
with the SPI, we obtained an exhaustive set of properties,
some of which are shown in Table IV.

VI. Results
This section presents the formal and simulated SEU

fault injection results for the SPI and DMA blocks, com-
paring the detection capacity for internal and boundary
assertions.

The results put in evidence the increased rate of de-
tection for faults in their early state of propagation, and
by using Equation 1, we estimate (by Model checking)
the masking capacity of the block. This provides a first
metric to measure how long a fault can “survive” inside
the circuit, before being absorbed by the logic. Moreover,
by internal mining it is possible to detect the faults in
their early stage of propagation, potentially canceling
them by reinforcing the design with selective hardening
techniques (Error Correcting Code, Triple Modular Re-
dundancy, etc.).

Finally, the time performances of the formal and sim-
ulated approaches are confronted, highlighting the great
efficiency of the first method over the second (all results
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are re-scaled in 1 CPU Equivalent). All the analysis have
been performed at netlist level, concerning the control flow
of the blocks.

A. SPI results

1) Mining on SPI: By mining on the boundary, 6
nontrivial assertions were found (see Table II), 5 of which
detecting at least one fault in formal injection. By going
inside the module a total of 27 properties were formed, 19
of which composed by signals whose reproduction would
be too complex for humans. The mining process took
around 1 hour, including 45 minutes of reusable pre-
processing, 10 minutes for simulation data parsing, and
5 minutes for the mining itself. As an example, Table II
shows a list of mined assertions for the concerned output
signals.

2) Fault injection on SPI: We consider as valid fault
targets only the registers lying in the COI of at least
one assertion. The data path is free to adopt all possible
configurations, as in this work, we concern the control
flow (this also avoids the well known state space explosion
problem). We select the functional RX_TX mode during
the reading phase on the registers, focusing on the SSI
communication (nontrivial assertions concern this protocol
part).

Focusing on control flip-flops, the COI computation
lasts 5 minutes, getting 176 flip-flops out of the total 1000
(the remainder is in the the data part). Then, from the
reference simulation (whose duration is about 30 seconds
with Xcelium by Cadence) 27 distinct initial states were
extracted in about 5 seconds.

In terms of Model Checking, not all of them are reach-
able for all properties, as the graph is extracted from a
simulation (for instance, if there is a writing action from
the APB to the SPI). Performing a first proof without
faults, we skim all the non reachable states, remaining with
a set of 25 elements.

We then deploy the methodology given in Figure 4, to
obtain the fault tolerance metric of each flip-flop over time.
The input signal fault representing the SEU is added to
the register to target, modifying its truth table in the
netlist modules’ library.

The results concerning the usage of boundary mined
assertions are very close to the manual ones (Fig. 8), only
missing a group of 4 registers ({44, 45, 46, 47}). Neverthe-
less, the real versatility of Goldmine arises when mining
inside the module, obtaining a super-set of critical flip-
flops (Fig. 8). In this case, the set of assertions focuses with
enhanced accuracy on the internal block functionality,
and by injecting faults and detecting them at an early
stage of propagation, a much larger family of dangerous
flip-flops is found. There are some groups of registers in
Figure 8 that do not manifest failures for all the initial
states (e.g. {44, 45, 46, 47} or {150, . . . , 160}): they are
formally proven to be robust after a finite amount of time.
This nontrivial feature provides a crucial information, as it

0 50 100 150
0

10

20

St
at

e

Manual assertions

0 50 100 150
0

10

20

St
at

e

Boundary mined assertions

0 50 100 150
0

10

20

Register
St

at
e

Internally mined assertions

Fig. 8: SPI formal metrics
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Fig. 9: SPI simulated injection histograms - 400 realiza-
tions per register

allows to exactly quantify (by Model Checking) until when
a given flip-flop is dangerous. This is practically impossible
to reproduce via statistical simulation, as it is test-bench
dependent and because faults are randomly sampled over
time.

To compare results, we run a standard Monte Carlo
campaign injecting 400 SEUs per target, assuming a 95%
confidence level and a margin of error of ∼ 1%.

Looking at Figure 8, over a total of 176 SEU targets,
the 22 faulty registers found with boundary assertions are
a subset of the 26 determined via manual implementation
of the properties, which in turn are contained in the 55
calculated by internal mining. This is also evident by
looking at the simulated counterparts in Fig. 9.
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Assertions Fault injection - 169 FFs

Formal Simulated

Manual 26 FFs: ∼ 15 min 19 FFs : ∼ 58 h

Boundary 22 FFs : ∼ 15 min 22 FFs : ∼ 58 h
mining - 1 h i

Internal 55 FFs : ∼ 155 min 55 FFs : ∼ 58 h
mining - 1 h i

Masking capacity η ∼ 53% η ∼ 34%
i This represents the length of one complete mining run.

Reusing previous processing, this can be reduced to 15 min-
utes.

TABLE V: Time performances and detection accuracy on
SPI

We remark that the metrics displayed in Figures 8 and
9 are not directly comparable on the y-axis, as the first
shows the formal matrix M(r, s) described in Algorithm 4,
while the second contains the cumulative histograms of the
Monte Carlo faults campaigns. Even if matrix M is not an
histogram as its simulated counterpart, the two images can
be compared over the same x-axis (the set of dangerous
flip-flops).

On the other hand, the families of 22 and 55 flip-
flops found by formal (by mining on the boundaries and
internally, respectively) coincide with the ones obtained
by simulation, with the huge performance gain displayed
in Table V (around 15 and 155 minutes vs 58 hours).

The time discrepancy between simulation and formal is
mainly due to the distinct nature of the two approaches:
the first consists in brute force realizations, depending on
the input data and the chosen SEU injection time. On the
other hand, Model Checking optimizes the computational
effort (Depth First Search states traversal), looking for the
shortest path counterexample.

Finally, we estimate the device masking capacity by
applying Equation 1, getting η ∼ 53% by formal. For
completeness, we also report its approximated version via
simulation η ∼ 34%.

B. DMA results

1) Mining on DMA: By internally mining on the DMA,
a total of 3 assertions were found in 20 hours, more
15 trivial properties (dma_ack isn’t asserted on other
channels than 2, see Table IV).

2) Fault injection on DMA: By COI analysis 2857 flip-
flops were found as valid fault targets (the processing
lasted 2 hours), and from the reference simulation (25
seconds with Xcelium by Cadence) 12 distinct states
(composing the reference state machine) were sampled.
Again, the formal results obtained for the mined assertions
provide a larger and more punctual set than the manual
ones (see Figs. 11 and 10). Again, even if matrix M is not
an histogram as its simulated counterpart, the two images
can be compared over the same x-axis (the set of dangerous
flip-flops).

Assertions Fault injection - 2857 FFs

Formal Simulated

Manual 51 FFs : ∼ 101 h 38 FFs : ∼ 150 h

Internal 72 FFs : ∼ 68 h 35 FFs : ∼ 150 h
mining - 20 hi

Masking capacity η ∼ 30% −
i This represents the length of one complete mining run.

Reusing previous processing, this can be reduced to 40 min-
utes.

TABLE VI: Time performances and detection accuracy
on DMA

Indeed, looking at Figures 11 and 10, over a total
of 2857 SEU targets, the 51 faulty registers found with
boundary assertions are a subset of the 72 determined
by internal mining (this is evident looking also at the
approximated simulated counterparts in 11 and 10).

Once again, formal injection found the same results,
in a much shorter time than simulation - performing 40
fault injections per target (see Table VI). It should be
noted that the confidence interval is 47.26%, so some faulty
registers may have been missed by simulation. Even if
the simulation accuracy in this sense is not maximized
(transcending from the scope of this work), the already
evident time discrepancy with formal would have been
enormously increased by some magnitude order, rendering
the computation of simulation meaninglessly larger.

While for the SPI the same set of faulty registers was de-
termined by Model Checking and Monte Carlo simulation,
for the DMA the simulated campaign only found 35 faulty
flip-flops, a subset of the 72 determined by formal injection
(see Table VI). This confirms that the novel approach can
be faster and also more accurate, also when using mined
properties. Moreover, the simulation limits start to emerge
for this larger block, while we see that formal keeps scaling
well (on control flow), if suitably managed. The simulation
inaccuracy also appears when calculating the masking
capacity with Equation 1: by formal, we get a meaningful
η ∼ 30%. Via simulation, such index is not defined
(38 > 35): the test-bench choice, and the “blindness”
of faults temporal sampling, limit the detection capacity
of internally mined properties (35 dangerous flip-flops),
which are unable to recover the statistic at the output
boundary (38 dangerous flip-flops).

In this paper we applied the flow on specific operational
modes of the SPI and the DMA. Such procedure can be
easily extended to every device functionality, as assertion
generation and fault injection are automated, scaling for
larger blocks when separately applying the methodology
on internal sub-modules.

VII. Conclusions
In this work, we automated the assertions generation by

adapting Goldmine, to perform formal SEU fault injection
into two medium-sized digital blocks of a RISCV-SoC for
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Fig. 10: DMA metrics for boundary manual assertions

Fig. 11: DMA metrics for internally mined assertions

radiation automotive safety tests. This extends the proce-
dure to evaluate the hardware fault tolerance to modules
without an explicit or clear specification. In particular,
Goldmine is here mainly employed to construct assertions
inside the SPI and the DMA, to measure the fault masking
capacity of the device. All the results are compared with
the standard simulated counterpart, showing the huge gain
in time and accuracy of our formal injection flow with
mined properties.

This new method is indeed much more efficient than
simulation for both SPI (internal mining: 55 flip-flops
detected by formal in ∼ 155 minutes, compared to the
same set found by simulation in ∼ 58 hours) and DMA
(internal mining: 72 flip-flops detected by formal in ∼ 68
hours, compared to the subset of 38 found by simulation
in 150 hours). This exhibits enhanced detection accuracy,
and scalability (at most ∼ 155 minutes with 176 registers
and 25 initial states for the SPI, and ∼ 101 hours with

2857 registers and 12 initial states for the DMA, with all
results re-scaled in 1 CPU Equivalent).

Finally, the possibility to detect faults at their early
stage inside the module allows to evaluate by Model
Checking the module masking capacity η (∼ 53% for the
SPI, ∼ 30% for the DMA).

Further steps of this research will be the refinement of
the fault masking capacity metric, and the flow extension
to include the combination of several modules (to study
fault propagation through interlaced systems). Moreover,
the internal properties will be implemented in hardware
as functional checkers, to halt the faults on their early
stage of propagation, focusing on critical automotive safety
applications.
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