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Abstract—Dataflow networks play a vital role in modeling and
analyzing stream-processing systems in an analytic way, including
digital signal and image processing systems. In this paper, we
first present a system-level approach to synthesize such dataflow
networks automatically to systems of communicating hardware
actors connected by FIFO buffers. Although such data-triggered
networks of (internally clocked) actors can achieve very high
throughputs, the potential to power actors down in times of
unavailability of data has not been addressed so far in any
research. Here, we show that by refinement of the firing state
machine of each actor in a given network, we enable the design
of self-powering dataflow networks while exploiting either clock
gating or power gating as a means to save power in times of
inactivity of each individual actor in a network. The gains of self-
powering dataflow networks in terms of power and energy savings
when powering down and up actors dynamically is shown for
different data arrival patterns and rates in detailed experiments
for multiple IoT system applications. These systems are often
working in normally-off mode and woken up only upon the
availability of data. For these, drastic energy savings are reported.

Index Terms—dataflow networks, self-powering systems

I. INTRODUCTION

Stream processing is used in many computationally chal-
lenging applications such as digital signal and image process-
ing, cryptography, and many others. Related applications can
be effectively modeled using Dataflow Graphs (DFGs), where
each node represents a computational kernel called an actor
that is evoked to process data on incoming edges to create
data on output edges depending on the satisfaction of certain
firing rules. Dataflow networks naturally enable the parallel
execution of multiple actors, if enabled to fire. As an example,
Fig. 1 shows a Sobel filter application modeled by a DFG.

Whereas formal techniques for model-based performance
analysis of different types of DFGs have existed for a long
time, e.g., [1]–[3], only a few approaches and tools are
available to synthesize such DFGs directly to hardware, e.g.,
[4]–[6]. Such hardware realized DFGs could be particularly
beneficial for lightweight Internet of Things (IoT) applications,
often facing stringent energy constraints, particularly when
operating on batteries and using energy harvesting. Still, many
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Figure 1: Sobel filter image processing dataflow graph. Communication
between actors (vertices) is realized via FIFO channels (directed edges).
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remotely deployed devices may require a parallel hardware
implementation to perform real-time signal analysis, filtering,
and compression in order to save energy for only transmitting
filtered result data rather than raw streams of, e.g., audio,
image, and other sources of sensor data. A need and trend
can thus be observed to provide in situ also highly compu-
tationally intensive tasks like image/video processing (e.g.,
compression), machine learning (e.g., image recognition), etc.

At the same time, highly energy-efficient implementations
are required, which may seem contradictory. As major contri-
butions of this paper, we propose (i) a systematic system-level
approach to synthesize a given dataflow network directly in
hardware. To save energy for such hardware networks when
actors are inactive, we then introduce (ii) the concept of
self-powering dataflow networks. Such networks can conserve
energy by self-powering down each individual actor upon
unavailability of incoming data and powering up again only
upon data arrival. To realize such a self-powering behavior,
each actor’s firing state machine, which implements its firing
rules and, thus, communication behavior, is automatically
transformed into a firing state machine augmented with power
management transitions. Presented is a Finite-State Machine
refinement algorithm to move an actor into a sleep state if,
after a current firing, a next firing is not possible, e.g., due
to the lack of incoming data. (iii) The synthesis flow can
be extended to support multiple power-saving techniques. In
this paper, we emphasize on clock gating (to save dynamic
power), but extensions to also support power gating to reduce
actor idle power are mentioned as well. The latter also requires
extracting and retaining the internal actor state to avoid losing
important state information. Finally, (iv) we provide detailed
experimental results for several applications from signal pro-
cessing to analyze achievable power and energy savings in
dependence of different distributions of input data.

To the best of our knowledge, this is the first work on self-
powering dataflow networks in terms of concept, automatic
model-based synthesis flow, and analysis.

Section II defines fundamentals. Section III outlines our
synthesis flow targeting Application Specific Integrated Cir-
cuits (ASICs). Section IV introduces self-powering dataflow
networks and formal transformations of each actor’s firing
state machine to support different power-saving techniques,
including clock and power gating. Section V presents the
obtained energy savings, and Section VI concludes the paper.
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II. FUNDAMENTALS AND NOTATIONS

Actor networks [1]–[3] can be described by graphs with
nodes corresponding to actors exchanging data over edges. By
annotating such nodes and edges with additional information
such as execution times, number of input data elements
needed to fire, memory requirements, etc., a formal analysis
of a network in terms of performance-relevant information,
e.g., throughput, schedulability, or memory requirements, gets
possible. However, in order to provide a system-level synthesis
flow from actor network to direct hardware implementation,
also the behavior of each actor needs to be modeled properly
using either a normal programming language or a domain-
specific language such as CAL [7].

In this paper, we consider actor networks described in the
SysteMoC [8] language. SyteMoC is based on the formal
dataflow model introduced in [9] and is realized as a C++ class
library on top of SystemC [10]. In the following, we introduce
the terms of a network graph composed of SysteMoC actors
and First In First Out (FIFO) channels, e.g., as shown in Fig. 2.

Actors communicate with each other by means of (data)
tokens that are transmitted over the FIFO channels. Tokens
already present before the first actor firing are called initial
tokens, which are represented by black dots on the edges of
the network graph (cf. channel c3 in Fig. 2). More formally,
a network graph is defined as follows:

Definition 2.1 (Network Graph [8]): A network graph is a
directed bipartite graph g = (V,E) containing a set of vertices
V = C ∪A partitioned into channels C and actors A, a set of
directed edges e = (vsrc, vsnk) ∈ E ⊆ (C×A.I)∪ (A.O×C)
from channels c ∈ C to actor input ports i ∈ A.I as well
as from actor output ports o ∈ A.O to channels. These edges
are further constrained such that exactly one edge is incident
to each actor port and the in-degree and out-degree of each
channel in the graph is exactly one. Finally, there are the delay
function δ : C → N0, capacity function γ : C → N, and size
function φ : C → N that assign each channel a number of
initial tokens, a maximal number of tokens that can be stored,
and the token size in bits, respectively.

A SysteMoC actor (cf. Fig. 3) is defined as follows:
Definition 2.2 (Actor [8]): An actor is a tuple a = (I,O,F ,

R) containing a set of actor input ports I and actor output
ports O, the actor functionality F = Faction ∪ Fguard parti-
tioned into a set of actions and a set of guard functions, as well
as the actor Finite-State Machine (FSM) R. For completeness,
there is a notion of a functionality state qfunc ∈ Qfunc of an
actor, which denotes its internal state, given implicitly by the
set of actor-internal C++ variable declarations.1

Moreover, firing rules controlling token consumption and
production are realized by an actor FSM as given below:

Definition 2.3 (Actor FSM [8]): The FSMR of an actor a is
a tuple (Q, q0, T ) containing a finite set of states Q, an initial
state q0 ∈ Q, and a finite set of transitions T . A transition
t ∈ T itself is a tuple (qsrc, k, faction, qdst) containing the
source state qsrc ∈ Q, from where the transition is originating,

1This state needs to be extracted and retained during power gating in order
not to loose important information when powering down an actor.
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Figure 2: Network graph gsqr modeling Newton’s iterative algorithm for
calculating the square roots of an infinite input sequence of numbers generated
by the Src actor a1. The square root values are generated by the SqrLoop
actor a2, which triggers approximation steps via the actors a3 and a4 until
an error bound is satisfied. Then, the result is transported to the Sink actor
a5. Tokens are represented by the dots on the edges between channels and
actors. The dashed box indicates the subgraph to be synthesized in hardware.
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Figure 3: Shown is the SqrLoop actor a2 from the network graph gsqr.
This actor is composed of input ports I and output ports O, its functionality
Ffunc, and the actor FSMR determining the actor’s communication behavior.
The input guard #ix ≥ n and the output guard #oy ≥ m on a transition,
respectively, test the availability of at least n tokens on the actor input port
ix and at least m free places on the actor output port oy .

and the destination state qdst ∈ Q, which will become the next
current state after the execution of the transition starting from
the current state qsrc. Furthermore, if the transition t is taken,
then an action faction from the set of functions of the actor
functionality a.Faction will be computed. Finally, the execution
of a transition t itself can be guarded by a transition guard k.

An actor firing involves the consumption of tokens from its
input FIFOs, the computation of the actor functionality on this
data, and finally, the production of tokens on its output FIFOs.
Thus, an actor can fire if all its input FIFOs have at least as
many tokens available as the actor firing would consume, and
its output FIFOs have sufficient space to fit the tokens the
firing would produce. In our running example, assume that
one token is present in channel c1 (e.g., the light green dot
shown in Fig. 2) and channel c2 is empty. Then, transition
t1 : #i1 ≥ 1∧#o1 ≥ 1/fcopyStore of actor a2 (cf. Fig. 3) can
fire, as at least one token is present in channel c1 connected
to input port i1 and at least one free place is available in
channel c2 connected to output port o2. After actor a2 has
fired, channel c1 will be empty, and channel c2 will contain
the produced token (e.g., the dark green dot shown in Fig. 2).

III. AUTOMATIC HARDWARE SYNTHESIS

As our first contribution, an approach for the fully automatic
hardware synthesis of previously defined actor networks is
presented. Section III-A introduces how a netlist of communi-
cating hardware actors and channels is generated automatically
from a SysteMoC actor network, while Section III-B elabo-
rates on the hardware realization of a SysteMoC channel.
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A. Synthesis Framework

In order to exploit modern behavioral (high-level) synthesis
to bridge the abstraction layers from system level to logic level,
a SysteMoC description is first converted into a synthesizable
SystemC description. This transformation of SysteMoC actors
to SystemC is performed by a source-to-source compiler based
on clang [11]. The transformed SystemC description can then
be used for simulation and automatic behavioral synthesis
using High-Level Synthesis (HLS) tools. In our approach, a
Verilog description for each SysteMoC FIFO channel is gen-
erated from the template described in Section III-B. Register
Transfer Level (RTL) synthesis tools then translate the actor
and FIFO modules to gate-level netlists. Moreover, a top-
level netlist is generated, which instantiates and connects the
actor and channel netlists, according to the initial SysteMoC
graph description. This netlist can then be directly passed to
ASIC place and route tools. Alg. 1 presents a pseudo code
summarizing the above-mentioned steps.

Algorithm 1: Netlist Generation
Input: A SysteMoC network graph g
Output: A netlist ready for ASIC place and route

1 A′′′ ← ∅; C′′′ ← ∅;
2 foreach SysMoC actor a ∈ g.A do
3 SystemC actor a′ = convert(SysMoC actor a);
4 Verilog actor a′′ = HLS synthesis(SystemC actor a′);
5 Netlist actor a′′′ = RTL synthesis(Verilog actor a′′);
6 A′′′ ← A′′′ ∪ {a′′′};
7 foreach SysMoC channel c ∈ g.C do
8 Verilog channel c′′ =

Fill channel template(SysMoC channel c, channel template);
9 Netlist channels c′′′ = RTL synthesis(Verilog channel c′′);

10 C′′′ ← C′′′ ∪ {c′′′};
11 return generate netlist(g, A′′′, C′′′);

B. SysteMoC Channel Realization

A SysteMoC channel is realized in hardware by a ring
buffer that has an independent read (shaded light red) and
an independent write interface (shaded light blue in Fig. 4).
As complex guard conditions may involve testing any token
on a channel for presence and/or value, each memory element
of a channel must be accessible independently like a random
access memory (even if tokens are consumed only in FIFO
order according to dataflow semantics). Thus, a channel must
provide a read and a write interface for access to so-called ran-
dom access regions that are addressed relative to a read pointer
(rp) and, respectively, write pointer (wp) via rel_rd_addr
and rel_wr_addr signals.

In Fig. 4, an example configuration is shown that could
be the implementation of the channel c2 in Fig. 2, with the
output port o1 of a2 connected to the write interface of the
channel (represented by the signals on the left) and the read
interface connected to the input port i1 of a3 (represented
by the signals on the right). In this example configuration,
the random access regions comprise two tokens (i.e., the
two tokens highlighted in light red), respectively three free

+ +
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+ +

wp rp

wr_data
wr_en

rel_wr_addr

prod

free_pl

rd_data

rel_rd_addr

cons

avail_tk

Figure 4: RTL description of a SysteMoC channel and the provided interface.
Solid lines represent data signals, while dashed lines represent control signals.

places (i.e., the three memory positions highlighted in blue).2

A channel needs to support three basic operations in total.
These include a non-destructive read as well as a destructive
read (consume) and a destructive write (produce). Data is
transmitted via the rd_data and wr_data signals, where
wr_en = 1 distinguishes a write operation from a read
operation. Moreover, destructive reads/writes are selected by
asserting a corresponding binary signal cons, respectively
prod. In that case, the FIFO advances the value of a write
pointer register (wp), respectively read pointer register (rp)
modulo the token capacity of the FIFO.

Finally, the signals avail_tk and free_pl indicate how
many tokens or free places are available in the channel.

To instantiate a channel in hardware, a channel template
has been defined with the following parameters: token size,
denoted by φ(c); channel capacity (size of channel memory
in terms of number of tokens that can be stored), denoted by
γ(c); read random access region size, e.g., two in the given
example, and write random access region size, e.g., three in
the given example. Figure 4 shows a generic schematic of a
SysteMoC channel hardware template.

IV. SELF-POWERING DATAFLOW NETWORKS

Under the term self-powering dataflow networks, we want
to exploit now the opportunity for power savings of actor
networks by only powering each actor once its fireability gets
established, e.g., by arrival on input data or occurence of free
spaces at output channels and powering it down otherwise. We
show that methodologically, this can be achieved by an actor
transformation in two steps. First, the actor FSM R of each
actor is separated from its actor functionality F , as the FSM
controller must always be powered on. Second, the actor FSM
is augmented by additional states and transitions as described
in Section IV-A to power up, respectively down the hardware
implementing the actor functionality F . As technical means of
power management, we show that the transformation presented
next directly enables the application of well-known techniques
for power management, namely clock gating to save dynamic
power (Section IV-B) and power gating to save also static
power (Section IV-C).

2The size of the write access region is solely determined by the maximum
number of tokens that any transition of the actor FSM that fires into this
FIFO channel produces. Moreover, the size of the read access region is solely
determined by the maximum number of tokens that the FSM of the actor that
reads tokens from the channel consumes, see [12] for more details.
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A. Power Controller Generation for each Actor
To generate a power controller for each actor, we propose

a transformation of its firing FSM using Alg. 2 such that
clock gating or power gating techniques are systematically
exploited to save power in times of inactivity. Through this
FSM transformation, we enable the synthesis of self-powering
dataflow networks. As an example, Fig. 5 shows the result of
this transformation when applied to the firing FSM of actor
SqrLoop depicted in Fig. 3.

t8 : t2.k ∨ t3.k ∨ t4.k/fwakeup

/qGgchk ← gchk()

qGgchk = ⊥ ∧#i2 ≥ 1

t8

t7t6 #i1 ≥ 1∧
#o1 ≥ 1/fwakeup#o1 < 1/fsleep

#i1 < 1 ∨ t5

t2

t4

t1

t3

t1 : #i1 ≥ 1 ∧#o1 ≥ 1/fcopyStore; q
G
gchk
← ⊥

t2 : q
G
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̸= ⊥ ∧#i2 ≥ 1 ∧#o1 ≥ 1 ∧ ¬(qGgchk = t)/fcopyInput; q

G
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G
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G
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t7 : ¬(t2.k ∨ t3.k ∨ t4.k)/fsleep

q0
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Figure 5: Transformed firing FSM resulting from applying Alg. 2 to the
firing FSM of the SqrLoop actor depicted in Fig. 3 realizing dynamic
power management for this actor via the fsleep and fwakeup actions entering,
respectively, leaving the sleep states qS0 and qS1 . States q0 and q1 as well as
transitions t1 to t3 are derived from the original actor FSM. Transition t4 is
added to evaluate the guard gchk, while transitions t5 to t8 are included for
power management.

Alg. 2 receives the actor FSM a.R of an actor a as its
input and returns an augmented FSM RS realizing power
management and actor firing control (see Ln. 1). First, in Ln. 2,
the augmented FSM starts with an empty set of transitions
T that the algorithm will later populate. In contrast, the state
space Q and the initial state q0 of the actor FSM are copied as a
starting point for the augmented FSM in Lns. 3 to 4. In Fig. 5,
this copying results in the states q0 and q1. Subsequently,

Algorithm 2: FSM transformation
1 Function transformFSM(R)

Input : Actor FSM R of an actor a
Output: Augmented FSM RS realizing power management

2 T ← ∅ // Start with empty transition set
3 Q ←R.Q // Copy states from FSM R
4 q0 ←R.q0 // Copy initial state of FSM R
5 QG← {⊥, f , t}|Fguard| // Guard state space
6 qG

0 ← ⊥|Fguard| // Initial guard state
/* For all states of R */

7 foreach q ∈ R.Q do
/* For all guards utilized by state q */

8 foreach g ∈ Fguard(q) do
9 k ← (qGg = ⊥) ∧ (

∨
t∈R.T (q)∧g∈Fguard(t.k)

t.kin)

10 T ← T ∪ {(q, k, qGg ← g(), q)}
/* For all transitions leaving state q */

11 foreach t ∈ R.T (q) do
12 k ← (

∧
g∈Fguard(t.k)

qGg ̸= ⊥) ∧ replace(t.k)
13 T ← T ∪ {(t.qsrc, k, t.faction();qG ← qG

0 , t.qdst)}
14 Q← Q ∪ {qS} // Add sleep state qS

15 k ←
∨

t∈T (q)

t.k // Action/guard eval. possible?

16 T ← T ∪ {(q,¬k, fsleep, qS)} // Sleep trans.
17 T ← T ∪ {(qS , k, fwakeup, q)} // Wakeup trans.
18 RS ← (Q, q0,QG,qG

0 , T )
19 return RS

Lns. 5 to 6 define a guard state space QG with an initial guard
state qG

0 = ⊥|Fguard| that denotes that each guard’s initial
guard evaluation state is unevaluated (⊥). The transformation
is performed by the loop in Lns. 7 to 17 that iterates over
each state q ∈ R.Q of the initial actor FSM R, while Ln. 18
assembles the augmented FSM to return it in Ln. 19.

In the loop body, the algorithm iterates (Lns. 8 to 10) over
all guard functions g ∈ Fguard(q) used by a state q, e.g.,
for the actor FSM depicted in Fig. 3, Fguard(q0) = ∅ but
Fguard(q1) = {gchk}.3 For each such guard function g, a
self-loop transition is added to state q (Ln. 10) to evaluate it,
updating its guard evaluation state qGg , e.g., as shown in Fig. 5
by the self-loop transition t4 for the state q1 evaluating the
guard function gchk updating its evaluation state qGgchk from
unknown (⊥) to either true (t) or false (f ). For this purpose,
Ln. 9 defines a transition guard k that checks that the guard g
is currently unevaluated (qGg = ⊥) and that there are sufficient
available input tokens to evaluate the guard, e.g., to evaluate
the guard function gchk at least one input token is required on
input port i2, resulting in the transition t4, as depicted in Fig. 5.

Subsequently, in Lns. 11 to 13, the algorithm iterates over
all transitions t ∈ R.T (q) of the actor FSM R leaving state q.
Next, the transition guard t.k is modified in Ln. 12 such that
guard functions are not used directly, but instead, their guard
evaluation state is checked to allow the augmented FSM to
still operate when the actor functionality F , which contains the
guard functions, is powered down. For example, the transition
guard #i2 ≥ 1 ∧ #o2 ≥ 1 ∧ gchk of the transition t3 from
the actor FSM shown in Fig. 3 is modified by adding a check
that the guard evaluation state of the utilized guard function
gchk is evaluated, i.e., qGgchk ̸= ⊥, and the guard function is
replaced, e.g., replace(#i2 ≥ 1∧#o2 ≥ 1∧gchk) = #i2 ≥ 1∧
#o2 ≥ 1∧qGgchk = t. Moreover, the transition action t.faction is
extended to reset the guard evaluation state of all guards (qG)
to unevaluated (qG

0 ), and the modified transition is added to the
augmented FSM in Ln. 13. The resulting modified transitions
t1 to t3 are shown in Fig. 5.

Finally, a sleep state qS for each actor FSM state q is added
to the state set Q in Ln. 14, and the transition set T is extended
in Lns. 16 and 17 with corresponding sleep and wakeup
transitions triggering the actions fsleep, respectively, fwakeup.
To determine if the sleep transition can be taken, Ln. 15 defines
a condition k that checks if any other transition leaving state q
can be taken, i.e., an actor action can be executed, or a guard
can be evaluated. If not (¬k, cf. Ln. 16), the sleep transition is
enabled to enter the sleep state qS . Conversely, if condition k
becomes true again, e.g., because additional input tokens have
arrived at the actor inputs or, alternatively, free space became
available at the actor outputs, the sleep state qS is left via the
wakeup transition, see Ln. 17. In our example, this results in
the transitions t5 to t8 shown in Fig. 5.

3More formally, we will use the notation Fguard(k) to denote the set of
guard functions that is used by a transition guard k, e.g., Fguard(#i1 ≥ 1∧
(g1∨¬g2)) = {g1, g2}, and Fguard(q) to denote the set of guard functions
where each guard is used by at least one transition outgoing from state q, i.e.,
Fguard(q) = ∪t∈T (q)Fguard(t.k) where the notation T (q) denotes the set
of all transitions leaving state q, i.e., T (q) = {t ∈ T | t.qsrc = q}.
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B. Clock Gating

In order to exploit clock gating, only the two actions sleep
and wakeup (fsleep and fwakeup) as described in Section IV-A
need to be implemented as depicted in Fig. 6, showing the
augmented FSM RS and the clocked actor functionality F . To
take a transition to sleep mode, only the clk_en signal is set
to low. Once data is available again, the wakeup transition is
taken, and the clk_en signal is set to high, restoring regular
actor functionality.

clk_en

RS F
avail_tk
free_pl

cons
prod
clk

fwakeup(){clk_en← t; }
fsleep(){clk_en← f ; }

Figure 6: Schematic of a clock-gated actor. The augmented FSM RS is
clocked as usual. The actions fsleep and fwakeup change an internal clock
enable signal clk_en.

C. Power Gating

Power gating techniques can be exploited on top to reduce
leakage power. To power down an actor without any data
loss, the internal states must be saved as shown in Fig. 7.
Only then can the augmented FSM RS power down the
actor functionality F . To wake up, the actor functionality is
powered up, and data is restored using retention registers that
are usually concatenated to form a scan chain implementation
and restored serially, as shown in Fig. 7.

FF FF FF FF

Retention

Actor Functionality F
. . .

Retention
Memory

ret_addr
ret_rd/wr

ret_data

scan_in scan_out

scan_enp
w
r
_
e
n

fsleep(){save();pwr_en← f ; } fwakeup(){pwr_en← t; restore(); }

RS

Ctrl.

Figure 7: Schematic showing an augmented FSM RS that triggers a retention
controller to save and restore the actor functionality state during a power down
and up phase in a retention memory. Control signals are shown as dotted lines,
and dash lines represent the scan chain accessing all Flip Flops (FFs) of the
synthesized actor functionality. The retention memory may be realized using
emerging Non-Volatile Memory (NVM) technologies.

V. EXPERIMENTAL SETUP AND RESULTS

In this section, we provide detailed experiments for mul-
tiple applications to analyze the potential of self-powering
dataflow networks in terms of power savings and achievable
throughputs. For this purpose, we introduce the notions of
utilization and intermittency, defining different input activation
patterns used for power analysis. We then shortly introduce
three considered applications and their actor networks and
functions. Subsequently, we apply different input stimuli to
these applications to analyze clock gating in terms of energy
savings and potential changes in achievable throughput.

A. Introduction of Utilization and Intermittency

Our following test applications are all stimulated by N
activations over a time period of T clock cycles. Let the
data initiation interval of a given application be denoted by
dii (in clock cycles). In order to be able to analyze power
savings in times of inactivity, we define a parameter U as

utilization. For a given value of U ∈]0, 100]%, T is then given
by T (U) = dii·N

U/100 (clock cycles). Moreover, stimuli can arrive
either in bursts or intermittently. To reflect this, we introduce
a second parameter I ∈ [0, 100]% called intermittency that
controls the number B = ⌊(N − 1) · I/100 + 1⌋ of bursts in
which N

B activations are stimulated as soon as possible.
E.g., let N = 4 and dii = 4 with utilization values U =

100% and U = 20%, resulting in T (100) = 4·4
1.00 = 16 and

T (20) = 4·4
0.20 = 80 clock cycles. For the case of U = 20%

as well as chosen intermittency values of I = 0%, I = 50%,
and I = 100%, respectively, 1, 2, and 4 bursts result. Figure 8
shows the corresponding input activations.

Clock Cycle Clock Cycle
0 T = 16 0 20 40 60 T = 80

� U = 100%,
I = 0%

� U = 20%, I = 0%
� U = 20%, I = 50%
� U = 20%, I = 100%

Figure 8: Input activation patterns for different values of U and I .

B. Considered Applications and Experimental Setup

The test applications considered in the following include:
a) an FIR-Filter FIR, b) a video processing application VID
according to Fig. 1, and c) the SqrRoot actor network
application as introduced as the running example in Section II.

For all three test applications, we first generate the hard-
ware netlist starting with a SysteMoC description using the
synthesis flow described in Section III-A, i.e., Alg. 1. Then,
after applying the transformation of the actor FSM R of each
actor as described in Section IV-A, we synthesize the self-
powering actor network circuit such to implement clock gating
by implementing the corresponding actions for powering down
and up of each actor as described in Section IV-B. Finally, the
resulting netlist is simulated over the time period T (U) using
stimuli generated in a testbench with given values of U and I ,
and the average power and energy is determined using Questa
Advanced Simulator [13] and Synopsys PrimePower [14].

E.g., for the FIR design (dii = 4) employing clock gating
stimulated with U = 20% and I = 100%, Fig. 9 depicts
the resulting power and energy consumption stemming from
the shown sleep and wakeup behavior. I.e., the actor goes to
sleep mode once the processing of an activation is complete.
Thereby, the power consumption is drastically reduced. Only
once the next activation arrives, as indicated by the red arrows,
the actor is powered up, and the processing continues. In our
implementation, a sleep-wakeup cycle has an overhead of just
3 clock cycles.
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Figure 9: Energy and average power consumption for a self-powered FIR
design stimulated with U = 20% utilization and I = 100% intermittency.
The red arrows indicate the arrival of input activations every 20 clock cycles.
The green line illustrates the average power consumption during the sleep and
active stages, while the blue line represents the total energy consumed.
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Figure 10: Power consumption of the test applications FIR, VID, and SqrRoot using stimuli for different values of U and I . The triangles represent the
avg. power of the self-powered actor designs, while the circles represent the avg. power of the corresponding reference design without any power control.

C. Power and Energy Reduction Analysis using Clock Gating

For ASIC implementations of self-powering dataflow net-
works with tight dynamic power requirements and low static
power (leakage), clock gating is an appealing technique. To
evaluate its benefits, the resulting power averaged over the
period T (U) is depicted in Fig. 10 without clock gating
(circles) and with clock gating (triangles) for each application
and given values of U, I ∈]0, 100]% in steps of 10%.

For U = 100%, clock gating induces a power overhead of
20% and 2% for the FIR, respectively, VID application due
to the additional power management circuitry, while a power
reduction of 32% is observed for the SqrRoot application
because some actors can sleep during one activation even.

For the case of zero activations (idle case) corresponding
to the border case of U = 0%, power savings of 94 %, 96 %,
and 80 % are obtained for the applications FIR, VID, and
SqrRoot, respectively. A clear trend is observed, showing
increased power savings with reduced utilization as the actors
can sleep for longer durations. For the applications FIR and
VID, decreasing intermittency also leads to increasing power
savings as actors sleep less frequently but for correspondingly
longer intervals, reducing the overhead due to sleep-wakeup
cycles. For the application SqrRoot, no such influence can
be observed as the actors a2 to a4 always go to sleep in each
approximation step (cf. Fig. 2) as there is only a single token
in the actor cycle a2, a3, a4.

In summary, we can say that for actor networks with a DAG
topology (i.e., no directed cycles), there are no throughput
degradations observable through the introduction of self pow-
ering, only light increases in latency per activation.

VI. CONCLUSION AND OUTLOOK

In this paper, we presented concepts and an automatic
approach to the hardware synthesis of self-powering dataflow
networks. The resulting actors are automatically put into sleep
mode if not fireable and are only powered on when fireable.
For different test applications, self-powering can be supported
by either clock gating to save dynamic power and/or power
gating to also reduce static power.

Due to space limitations, we were only able to present power
and thus energy savings for clock gating. Results on power and
energy savings for power-gated actor implementations will be
presented as part of future work.
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