
Logical Synchrony Plus Functional Processes Entail
Observable Determinacy

Sanjiva Prasad
IIT Delhi, India

sanjiva@cse.iitd.ac.in

Abstract—Determinacy is a desirable but difficult-to-achieve
behavioural property in scalable distributed systems. Determin-
istic Models of Computation range from the asynchronous Kahn
Process Networks to synchronous reactive languages such as Lus-
tre, where logical clocks enforce the synchrony hypothesis. These
models have well-founded data-flow semantics where computa-
tions are viewed as the least fixed point solutions of simultaneous
equations defined by continuous functions on streams of discrete
values. However, scalable and efficient implementations of the
Kahn model are challenging to construct, while the synchrony
hypothesis in Lustre makes distributed implementations difficult.
Moreover, determinacy is a consequence of specific assumptions
built into the computational model.

The notion of Logical Synchrony, proposed by Lall et al., and
explored further by Kenwright et al., suggests that synchroni-
sation issues may be decoupled from computation, leading to a
distributed model where computations at independent nodes are
related by invariant logical delays. We provide a semantic notion
of behaviour for functional processes running on such Logical
Synchrony Networks (extension graphs), and an appropriate and
robust notion of logical observational equivalence (wavefront
equivalence) retaining semantic aspects of KPNs, specifically
determinacy.

Further, we propose extending the versatile notion of the syn-
chronous observer, exploited in the Lustre toolset, to a network
of located synchronous observers with the same invariant logical
delays as the distributed system. Thus we will be able to use the
same logically synchronous model of computation for checking or
monitoring a class of (safety) properties of programs, specifying
axioms and assumptions on behaviour, constraining models and
specifying test cases, etc.
Index Terms—: Data Flow, Determinacy, Kahn Process Networks,
Logical Synchrony, Lustre, Synchronous Observer, Synchronous
Product

I. INTRODUCTION

Models of computation, which specify how compositions
of concurrent (possibly distributed) computational processes
communicate with one another, vary greatly in their approach
to synchrony. These “MoCs” range from lock-step systolic
computation and synchronous communication to completely
asynchronous processes that communication with indetermi-
nate delays. (See e.g., [1] for a discussion on MoCs.) Deter-
minacy is an important property about system behaviour since
it implies predictability and repeatability. However, achieving
scalable and determinate behaviour of complex distributed
systems is challenging.

Asynchronous models are commonly associated with inde-
terminacy in behaviour, due to the vagaries of scheduling and

network delays. A notable exception is the eponymous Kahn
Process Networks model (KPNs) [2], [3], where a network of
asynchronously executing nodes performing functional com-
putations over values that are sent (written) and received
(read) between the processes over unidirectional FIFO chan-
nels exhibit determinate observable behaviour. Determinacy is
obtained due to specific constraints on the data streams and
continuity of the functional operations. Importantly, compu-
tation at a node blocks when performing a receive operation
until a value appears on that input channel, whereas processes
are not constrained about sending on channels. “Blocking
receives” achieve a degree of synchronisation between the
asynchronously executing nodes (and consequently determi-
nacy) in KPNs, but at a significant performance cost, adversely
impacting the efficiency of implementations. (KPNs are briefly
reviewed in section II.)

In contrast, the paradigm of synchronous reactive systems
[4], exemplified by Esterel [5], [6], [7], Lustre [8], [9], and
Signal [10], [11], achieves determinacy by subjecting the exe-
cution of the system to a (set of) logical clocks, and enforcing
the synchrony hypothesis. However, distributing a common
clock is not scalable. A major benefit of the synchronous
paradigm is that it supports a rich suite of formal methods
and tools for checking or monitoring a class of (safety) prop-
erties of systems, specifying axioms and assumptions on their
behaviour, constraining model behaviour, and specifying test
cases, etc. These leverage the versatile notion of Synchronous
Observer, discussed in section III, that is expressible within
the same programming framework [12], [13].

Wouldn’t it be wonderful if magically inputs would always
be present in buffers (so there would be no blocking on
receives) and yet there were no need for explicit global
temporal synchronisation? Lall et al. posit that the bittide
system with its distributed “reframing protocol” achieves such
“syntony” between sender and receiver processes by using a
dynamic control system where each node makes only local
observations and maintains only small buffer offsets with little
state information [14]. Underlying bittide is the interesting
notion of Logical Synchrony Networks proposed by Lall et
al. [15], and explored further by Kenwright et al. [16], which
suggests that synchronisation issues may be decoupled from
computation, leading to a distributed model where computa-
tions at independent nodes are related by invariant logical
delays (discussed in section IV).

In this paper, we explore a model of computation wherexxx-x-xxxx-xxxx-x/24/$31.00 © 2024 IEEE

63

2024 22nd ACM-IEEE International Symposium on Formal Methods and Models for System Design (MEMOCODE)

2832-6520/24/$31.00 ©2024 IEEE
DOI 10.1109/MEMOCODE63347.2024.00012

a distributed functional data-flow system executes on such a
logical synchrony network (LSN). We present the behaviour
extensionally as a labelled graph that is observably determinis-
tic, and where causal dependencies are explicitly captured (see
section V). We sketch how such “Kahn Logically Synchronous
Networks” (KLSNs) may be simulated in the synchronous
framework of Lustre (cf. [17]). Next, we show that our
semantics is consistent with the notion of equivalence of LSNs
defined in [15] by proposing a precise relationship, which we
call “wavefront equivalence”, between the extension graphs of
two equivalent LSNs, preserving observable behaviour upto
the relative adjustment of clock indices at the different nodes,
and also addressing the attendant issue of initialisation of data-
flow streams.

These ideas suggest that the notion of logical synchrony
may provide the appropriate abstraction that spans these two
deterministic data-flow MoCs – the asynchronous KPNs [2],
[3] and the synchronous Lustre model [8], [9] – where
functional computations are expressed declaratively as a set
of (possibly recursive) data flow equations. The significance
of both these MoCs is that they exhibit the important property,
dubbed the “Kahn Principle”, that the compositional semantics
of a network of communicating processes can be characterised
as the least fixed point of continuous functionals over channel
histories [18]. The ability to simulate a KLSN in a syn-
chronous reactive framework (Lustre) implies determinacy, as
well as a method for developing and reasoning about KLSNs
using the Lustre tool suite. Further, it suggests that we may
be able to develop a theory of a distributed logically syn-
chronous observation of behaviour by adapting the notion of
synchronous observers: one could place synchronous observers
at each node of a KLSN and build a composite logically
synchronous observer for certain classes of properties.

II. KAHN PROCESS NETWORKS

In his seminal 1974 paper, Gilles Kahn studied the se-
mantics of a simple computational model consisting of a
network of asynchronously executing processes performing
functional computations over values that are sent (written) and
received (read) between the processes over unidirectional FIFO
channels. Such eponymous Kahn Process Networks (KPNs)
can thus be abstractly represented as directed graphs, the
nodes of which correspond to processes, and where the edges
correspond to directional FIFO channels between the pro-
cesses. Kahn observed: “Arbitrary interconnection of systems,
as well as processes, is legitimate. Hence, top-down design
finds here a mathematical justification since we can postpone
the decision to implement a given function by a single process
or a set of interconnected processes: this decision will not
introduce perturbations in the remainder of the system.”

The main assumptions on the model are that (i) the com-
munication channels between processes are the only way for
the processes to synchronise; (ii) that the communication may
involve a finite but indeterminate delay; (iii) at any instant, a
process is either computing or waiting for input on exactly one

of its incident input channels; (iv) the processes are sequential,
i.e., deterministic.

Kahn posited that such networks have very clean mathemat-
ical semantics over domains that are complete partial orders
on finite or denumerably infinite sequences of values: The
network behaviour is the least fixed point solution to a system
of simultaneous equations

X ′
i = fi(X1, . . . , Xn)

which relate output channel histories with input channel his-
tories via a set of Scott-continuous functions

fi : [D
ω
1 × . . .×Dω

n → D′
i
ω
],

thus allowing the use of Scott’s Induction Principle for rea-
soning. A subsequent paper [3] showed that these data-flow
semantics are consistent with operational semantics of co-
routine execution of the processes, as well as demand-driven
lazy execution of a functional program. Continuity of the
functions precludes a process requiring an infinite input history
in order to begin producing its output, while monotonicity
implies that more input cannot result in less output. Reasoning
about KPNs relies on these facts: (i) input buffers of processes
are not bounded and outputs do not block, (ii) any output
produced by a process depends only on previously received
inputs, not on any input received later than or simultaneously
with that output, and (iii) consistent input histories produce
consistent outputs.

The remarkable character of KPNs is that despite asyn-
chrony between the processes and arbitrary delays in commu-
nication, their behaviour is deterministic. Apart from obvious
constraints from the assumptions — namely that at each
individual node the computation is a function that operates
instantaneously on the values from all its incident input
(channels) and that every channel has exactly one producer
node, that the channels obey a FIFO discipline, etc. —
determinacy is achieved by insisting that computation at a
node blocks when performing a receive (read operation) on
an input channel until a value appears on it (a process cannot
be simultaneously waiting at one or another input channel).
Relaxing these constraints leads to complications such as
the Brock-Ackerman anomaly [19], where the mathematical
semantics is inconsistent with intuitive operational behaviour.

III. SYNCHRONOUS REACTIVE DATA-FLOW

In the synchronous reactive systems paradigm [4], a system
is in continual interaction with its environment, reacting in-
stantly and deterministically to environment events; moreover,
its output is often intended to influence the environment.
Lustre [8], [9] is a synchronous data-flow language used
for modelling, simulating, and verifying a variety of systems
including embedded controllers, safety-critical systems, com-
munication protocols, railway signal networks, avionics, etc.

A Lustre program consists of a set of module (“node”)
definitions, whose inputs and outputs are clocked data streams,
where a flow takes its nth value on the nth clock tick. A node
definition consists of a set of equations, of the form x⃗ = e⃗

64

Fig. 1. Synchronous Observation of a System

which define flows associated with output and local variables,
and are intended to express temporal invariants between input
and output flows. Expressions e specify flows, and include
constants, variables, expressions using pointwise unary and
binary operators, conditionals, and node calls (module instan-
tiations). In addition, there are temporal operators; here we
focus only on two (both deprecated) operators: pre and ->,
and do not consider clock-dependent and sampling operations.
While streams may be recursively defined (provided they can
be “well-clocked”), module definitions are not recursive. As in
the case of KPNs, the semantics of Lustre programs is formally
defined (co-inductively) in terms of data-flow streams domains
[20], with the various constraints – particularly those related
to clocking – enforcing determinacy.

Not only does Lustre’s model exhibit the Kahn Principle,
it supports the notion of a synchronous observer, namely a
module adjoined to a system model that continuously monitors
system (and environment) state variables and produces a
boolean stream which indicates whether a specified condition
is satisfied or violated. Synchronous observers, especially for
safety properties, can be written within the same framework
as the system. Model-checking for synchronous languages is
efficient since synchronous product is exactly parallel compo-
sition. Apart from monitoring a system for safety properties
(as stated above), synchronous observers can be used to check
assumptions about or enforce constraints on the environment
in which a system operates. The synchronous observer helps
focus the model-checking effort to only those cases which are
interesting. Since observers are executable, they are can be
used to specify and generate test cases.

Figure 1 shows a system Sys coupled with a property
observer PO that observes the input streams from the envi-
ronment Env as well as the output streams from the system,
pronouncing whether the system behaves correctly or not. In
addition, we have a synchronous observer AO that checks
assumptions on the inputs from the environment as well as
system outputs (which may influence further environment
inputs), judging whether these are relevant or realistic. The
combination of Sys, PO and AO support a methodology for
checking a variety of safety properties.

Fig. 2. A Logical Synchrony Network and its Extended Graph

IV. LOGICAL SYNCHRONY

Lall et al. recently proposed an event model called logical
synchrony [15], which is sufficient to capture notions of
causality in a network of processes, but without the need for a
global clock or a universal notion of time. Each node executes
events at its own pace without explicitly synchronising with
other processes, maintaining its own local clock (not neces-
sarily equitempered in its ticks, and in fact decoupled from
physical time) to sequentially index events at that location.
Operationally, at each local logical tick, node i inserts a
communication frame at the end of each of its outgoing FIFO
edges, while also consuming a frame from the front of each
of its incoming FIFO edges.

Clock progressions at different locations are not compa-
rable. However, events at different nodes are related by the
causal order imposed by communication. This notion of logical
synchrony differs slightly from Lamport’s notion of logical
time and clocks [21], in that while the same causal ordering
relation of events is captured, there is no need for time-
stamping and adjustment of logical clocks, since the objective
isn’t to create a global notion of logical time consistent with
the causal order. The authors also claim that this notion
adequately characterises the causal relationships underlying
the synchronisation patterns in other paradigms, including
those in the polyglot Lingua Franca [22].

A Logical Synchrony Network (LSN) can be abstractly
characterised as a directed multigraph G = (N,E, λ), the
nodes N representing computing machines and the directed
edges E between nodes representing FIFO communication
channels between them. Associated with each edge e ∈ E is an
integer λ(e), representing an invariant logical delay between
its source and target nodes (λ : E → Z, so this delay may
even be negative). The idea is that if e is an edge from node
i to j, then an event logged at node i’s mth tick of its logical
clock results in sending data to node j (via the communication
channel represented by directed edge e) which will be received
at node j in its nth logical clock tick, where n = m + λ(e).

65

Fig. 3. Equivalent LSNs with offsets c1 = 0, c2 = −2, c3 = −2

And further, the (m+ 1)th event at i will causally affect the
(n+ 1)th event at j, and so on.

Logical delays are additive along a directed path:

λ(P) = Σe∈Pλ(e)

This sum is path dependent, and so two paths with the same
endpoints may have different logical delays.

We have relaxed some of the constraints in [15, Defs 1,2]:
(i) we allow multiple edges between two nodes, reflecting
the possibility of multiple channels between two nodes, with
possibly different logical delays; (ii) we allow self-loops on
nodes but only with positive labels, reflecting the forward
implicit “communication” of the state of local variables from
one instant to a future instant.

Based on this directed graph, one can construct an infinite
“extended (multi)graph” Ge = (Ne, Ee, λ) capturing causality
of events: its set of nodes Ne = {(i,m) | i ∈ N,m ∈ Z}.
The edges Ee are of two kinds: (1) Communication edges:
{(i,m) → (j,m + λ(e)) | e = i

λ(e)→ j ∈ E}, i.e., for each
e ∈ E from i to j, there is a directed edge from each node
(i,m) to (j, n), where n = m+λ(e); (2) Computation edges:
{(i,m) → (i,m+1) | i ∈ N}.1 Figure 2 shows a simple LSN
and its extended graph with colour-coded edges; the lack of
alignment and the variation in edge lengths is deliberate.

If the (cumulative) “round-trip delays” around each directed
cycle C in a LSN G are positive i.e, λ(C) > 0, then the
extended graph Ge is acyclic. A negative round-trip delay
would imply a violation of causal ordering of events. The
causal ordering of events is the transitive closure of the edges
in such an acyclic Ge.

An intriguing concept in [15] is the notion of equivalent
LSNs, based on relabelling of edges: two LSNs L1, L2 on
the same directed multigraph G = (N,E) but with different
edge labellings λ and λ′ are called (LSN-)equivalent, written
L1 ∼ L2, if there exist constants c1, . . . , c|N | ∈ Z such that
for each e ∈ E from node i to j, λ′(e) = λ(e) + cj − ci.2

Figure 3 shows two equivalent LSNs.
In the extended graphs, the (communication) edges

(i,m) → (j, n) in the first LSN are mapped to (i,m+ ci) →
(j, n + cj) in the second LSN. While this idea seems at first
blush to scramble timelines, it preserves causal relations be-
tween events, because it is only a translational shift in the index
numbering of events wrt the local logical clocks at the nodes.
Note that this translation of edge labels depends only on the
clock translations at the end-points, and therefore, for any path

1If we place self loops on each node in i ∈ N , labelled with delay 1,
computation edges are special cases of communication edges.

2Yes, Virginia, ∼ is an equivalence!

P from any node n1 to any n2, λ′(P) = λ(P) + cn2 − cn1 .
Thus (i) for any directed cycle C, the round-trip delay is
unchanged, i.e., λ′(C) = λ(C), so this notion of equivalence
preserves acyclicity of the extended (multi)graph Ge, despite
the relabelling of clock ticks. From a practical viewpoint,
we can use relabelling to entirely avoid negative edge labels.
Further, for two different paths P1 and P2 from any node n1

to any n2, λ′(P1)−λ′(P2) = λ(P1)−λ(P2), i.e., the relative
differences in path delays are preserved3.

V. KAHN LOGICAL SYNCHRONY NETWORKS

We now explore a MoC consisting of running functional
data-flow computations given by a system of equations {xi =
fi(x⃗)} on LSNs, an idea suggested but not explored further
in [15], since the focus there was on developing the idea
of logical synchrony and LSNs. We also address the issue
of initialisation mentioned there, in kick-starting a data-flow
functional computation on a LSN. We call such a model
Kahn Logical Synchrony Networks (KLSNs), characterised by
a multigraph K = (N,E, λ, F), where F is a system of
data-flow equations. We discuss here only the simple case,
where associated with each node i is a single defining equation
xi = fi(x⃗), and as in LSNs, the logical clocks at nodes
progress in logical syntony, with edge labels being non-
negative.4

Consider for instance a system involving the stream func-
tions specified by the equations x1 = f1(x1, x2, x3) = x1+x3,
x2 = f2(x1, x2, x3) = 2 ∗ x1, and x3 = f3(x1, x2, x3) =
x1 ∗ x2, where, since the stream for variable x1 is recursively
defined, the x1 in the rhs needs to be a prior value of x1,
and x1 therefore needs an initialisation, set here arbitrarily
to the value 1. A synchronous rendering of this data-flow
computation in Lustre is:

x1 = 1 -> (pre(x1)+ pre(x3))
x2 = 2 * x1
x3 = x1 * x2

Mapping this system onto a LSN, we get a labelled multigraph
with (for simplicity in this treatment) each fi mapped to a node
i, and for each output stream xi defined by fi, an edge exi:i→j

from the node i producing xi to each node j consuming xi.
Now since the LSN associates via λ each such edge exi:i→j

to a logical delay, we will observe on the output streams
quite different behaviour from the preliminary Lustre encoding
above. Displayed in Figure 4 is this data-flow program mapped
onto the LSN in Figure 2, as well as its Lustre encoding.
Note that in the encoding, we have altered the number of pre
operators as well as indicated (in bold brown) initial values
on the streams.5 These initial values may be chosen arbitrarily
(discussed later). Also presented at the right of Figure 4
is the observed behaviour of such a KLSN with the given

3This is only hinted at via an example in [15].
4As observed in the previous section, this is not a limitation.
5Here the initialisations of x1 to [1], x2 to [13, 17], and x3 to

[2,3,4] were arbitrarily chosen; with a different initialisation, the observed
streams would be different.

66

Fig. 4. Example KLSN with Extension Graph and Lustre encoding

initial values. We call this an extension graph, to highlight
that it represents the observable (extensional) behaviour of the
system, and also to allude to its basis on the “extended graph”
of a LSN. Let X[m] denote the value at index m of the stream
history X for variable x. The nodes of the extension graph
EGKL are (i,m,Xi[m]) | i ∈ N,m ∈ N} where Xi is the
channel histories for xi.6 The edges, from (i,m,Xi[m]) to
(j, n,Xj [n]), correspond exactly to the underlying LSN delay
as specified by λ for the edge exi:i→j between nodes i, j , and
the functional dependencies between values Xi[m] and Xj [n]
in the channel histories, as specified by the function fj in the
system of equations F .

We can simulate the KLSN in a Lustre-like language by
performing the following transformation: (i) If in the KLSN,
λ(exi:i→j) = d, (where d ≥ 0), then in the equation xj =
fj(x⃗), each occurrence of xi is preceded by d pre operators.
(ii) Moreover, if in xj = fj(x⃗), k is the maximum nesting
depth of pre operators, then the expression for fj(x⃗) will be
preceded by an initialisation sequence v1 -> . . . -> vk-> of
k initial values of the appropriate type.

Mapping a well-formed set of data-flow equations onto a
LSN with positive cycles (i.e, an acyclic extended graph) gives
us the following result:

Proposition 1: The observable behaviour of the synchronous
encoding of a KLSN corresponds exactly to its extension graph
(modulo the initialisations). □
Consequences of this proposition are that since Lustre pro-
grams have deterministic semantics, KLSNs are determinate
in their behaviour; moreover, the Lustre tool suite becomes
available for reasoning about KLSN systems.

Now what happens if we were to map the same functional
data-flow equations to an equivalent LSN, related by the
clock offsets c1, . . . , cj? Naïvely observed, the outputs of the
corresponding KLSNs would be different at the local logical
clock ticks. However, there is a rather pleasant relationship
between the observed behaviours:

6Note that the indices m,n are natural numbers, and so not negative.

Fig. 5. Wavefront Equivalent KLSNs with offsets c1 = 0, c2 = −2, c3 = −2

Proposition 2: If LSNs L1 ∼ L2 on the same multi-
graph G = (N,E), related via logical clock translations
(c1, . . . cn), are both identically decorated with functional
data-flow equations from F = {xi = fi(x⃗)}, then there
exist some initialisations v⃗i (for each i ∈ N) such that in
the corresponding extension graphs EGKL1 and EGKL2,
(i,m,Xi[m]) ∈ EGKL1 = (i,m+ci, Xi[m+ci]) ∈ EGKL2

(provided m,m+ ci ∈ N; else the equation is irrelevant). □
We call this induced notion of correspondence between exten-
sion graphs wrt distributed observations a “wavefront equiva-
lence”. Figure 5 illustrates the wavefront equivalence between
the same example functional data-flow program on the two
equivalent LSNs of Figure 3 with offsets 0,−2,−2. The
induced Lustre encodings are shown in the column headings
for comparison. The “wavefronts” have been colour-coded, so
the reader can see correspondence between the relevant cells.
Certain values, such as x2[0] = 13, x2[1] = 17 and x3[0] =
2, x3[1] = 3 in the first KLSN have no corresponding entries in
the second KLSN, whereas x2[9], x2[10], x3[9], x3[10] in the
second KLSN correspond to values that will appear later in
the first. The bold-face entries are chosen initialisation values
– either arbitrarily, or in the case of x1[1] = 3, x1[2] = 6 in
the second KLSN picked to match the corresponding entries
in the first.

VI. DISCUSSION

Logical Synchrony Networks present an insightful notion
that allows us to abstract from the notion of physical time,
as well as clockwork synchronisation between different com-
putational nodes. We have sketched a model we call KLSN
for performing Kahn-like functional data-flow computations
on a LSN, with extension graph semantics and a notion of
“wavefront equivalence” that is consistent with the notion
of LSN equivalence. Our ideas provides some credence, at
least for two well-studied models of deterministic data-flow
computation, to the claim in [15] that logical synchrony
allows distributed computing to be coordinated as tightly as in
synchronous systems but without the distribution of a global
clock or reference to universal time.

We have indicated how KLSNs may be encoded in a Lustre-
like framework. The immediate consequence of this encoding
is determinacy and also that we may readily adapt a variety of

67

formal methods and tools from the synchronous programming
world. Kenwright et al. have been developing tools for KLSNs,
inspired by the Lustre suite of tools.

In particular, the notion of synchronous observer discussed
in section III may find a natural extension from clocked
synchrony to logical synchrony. We conjecture that since
synchronous observers can be rendered as data-flow programs
on streams, they too can be mapped onto a given LSN: This
allows us to build a distributed logical observer network, with
local logical synchronous observers at each node indicating
whether a local property has been preserved/violated and
constraining the local environment at that node. The local
observers may then be logically synchronously coordinated
quite efficiently to check global behavioural properties of
the system. Interesting questions include whether the logical
delays between observers should be in sync with those of the
system being observed, and what class of safety properties
may be monitored in this manner.

Weaker notions of observational equivalence can be devel-
oped for notions of LSN and KLSN equivalence – for in-
stance on non-identically shaped LSNs, such as homeomorphic
variations, and where observations on some of the nodes are
hidden or ignored. We hope that our preliminary ideas for
the semantics and the coordinated yoking of local logically
synchronous observers to a KLSN will give us constructive
methods for composition of KLSNs. Specifically we would
like to explore sufficient but general conditions under which
compositions of KLSNs behave in an orderly fashion, e.g.,
preserving determinacy, and whether a principled “Assume-
Guarantee” methodology can be articulated.

The deeper semantic roots of our proposal rely (of course)
on the Kahn Principle, and requires further study.

ACKNOWLEDGMENTS

The ideas presented here originated during the author’s
visit in March 2024 to Auckland University, supported by
a fellowship from the IIT Delhi - New Zealand Universities
Centre, during which he had fruitful discussions with Logan
Kenwright, Partha Roop and Nathan Allen. He is grateful to
them for their generosity, for introducing him to the work of
Lall et al., and their own work in developing LSNs, and for
including him in their conversations with Sanjay Lall, Cǎlin
Casçaval and Tammo Spalink.

REFERENCES

[1] S. A. Edwards, L. Lavagno, E. A. Lee, and A. L. Sangiovanni-
Vincentelli, “Design of embedded systems: formal models, validation,
and synthesis,” Proc. IEEE, vol. 85, no. 3, pp. 366–390, 1997.

[2] G. Kahn, “The Semantics of a Simple Language for Parallel Program-
ming,” in Information Processing, Proceedings of the 6th IFIP Congress
1974, Stockholm, Sweden, August 5-10, 1974 (J. L. Rosenfeld, ed.),
pp. 471–475, North-Holland, 1974.

[3] G. Kahn and D. B. MacQueen, “Coroutines and Networks of Parallel
Processes,” in Information Processing, Proceedings of the 7th IFIP
Congress 1977, Toronto, Canada, August 8-12, 1977 (B. Gilchrist, ed.),
pp. 993–998, North-Holland, 1977.

[4] A. Benveniste and G. Berry, “The synchronous approach to reactive and
real-time systems,” Proc. IEEE, vol. 79, no. 9, pp. 1270–1282, 1991.

[5] G. Berry, “The foundations of Esterel,” in Proof, Language, and Inter-
action, Essays in Honour of Robin Milner (G. D. Plotkin, C. Stirling,
and M. Tofte, eds.), pp. 425–454, The MIT Press, 2000.

[6] G. Berry and L. Cosserat, “The ESTEREL Synchronous Programming
Language and its Mathematical Semantics,” in Seminar on Concurrency,
Carnegie-Mellon University, Pittsburg, PA, USA, July 9-11, 1984 (S. D.
Brookes, A. W. Roscoe, and G. Winskel, eds.), vol. 197 of Lecture Notes
in Computer Science, pp. 389–448, Springer, 1984.

[7] G. Berry and G. Gonthier, “The Esterel Synchronous Programming
Language: Design, Semantics, Implementation,” Sci. Comput. Program.,
vol. 19, no. 2, pp. 87–152, 1992.

[8] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice, “Lustre: A Declara-
tive Language for Programming Synchronous Systems,” in Conference
Record of the Fourteenth Annual ACM Symposium on Principles of
Programming Languages, Munich, Germany, January 21-23, 1987,
pp. 178–188, ACM Press, 1987.

[9] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The Synchronous
Data Flow Programming Language LUSTRE,” Proceedings of the IEEE,
vol. 79, pp. 1305–1320, Sep. 1991.

[10] A. Benveniste, P. Le Guernic, and C. Jacquemot, “Synchronous Pro-
gramming with Events and Relations: the SIGNAL Language and Its
Semantics,” Sci. Comput. Program., vol. 16, no. 2, pp. 103–149, 1991.

[11] T. Gautier and P. Le Guernic, “SIGNAL: A declarative language for
synchronous programming of real-time systems,” in Functional Pro-
gramming Languages and Computer Architecture, Portland, Oregon,
USA, September 14-16, 1987, Proceedings (G. Kahn, ed.), vol. 274 of
Lecture Notes in Computer Science, pp. 257–277, Springer, 1987.

[12] N. Halbwachs, F. Lagnier, and P. Raymond, “Synchronous Observers
and the Verification of Reactive Systems,” in Algebraic Methodology and
Software Technology (AMAST ’93), Proceedings of the Third Interna-
tional Conference on Methodology and Software Technology, University
of Twente, Enschede, The Netherlands, 21-25 June, 1993 (M. Nivat,
C. Rattray, T. Rus, and G. Scollo, eds.), Workshops in Computing,
pp. 83–96, Springer, 1993.

[13] J. M. Rushby, “The Versatile Synchronous Observer,” in Formal Meth-
ods: Foundations and Applications - 15th Brazilian Symposium, SBMF
2012, Natal, Brazil, September 23-28, 2012. Proceedings, vol. 7498 of
Lecture Notes in Computer Science, p. 1, Springer, 2012.

[14] S. Lall, C. Cascaval, M. Izzard, and T. Spalink, “Modeling and Control
of bittide Synchronization,” in American Control Conference, ACC 2022,
Atlanta, GA, USA, June 8-10, 2022, pp. 5185–5192, IEEE, 2022.

[15] S. Lall, C. Cascaval, M. Izzard, and T. Spalink, “Logical Synchrony and
the bittide Mechanism,” CoRR, vol. abs/2308.00144, 2023.

[16] L. Kenwright, P. S. Roop, N. Allen, S. Lall, C. Cascaval, T. Spalink,
and M. Izzard, “Logical Synchrony Networks: A Formal Model for
Deterministic Distribution,” IEEE Access, vol. 12, pp. 80872–80883,
2024.

[17] N. Halbwachs and L. Mandel, “Simulation and Verification of Asyn-
chronous Systems by means of a Synchronous Model,” in Sixth Inter-
national Conference on Application of Concurrency to System Design
(ACSD’06), pp. 3–14, 2006.

[18] E. W. Stark, “Concurrent Transition System Semantics of Process Net-
works,” in Conference Record of the Fourteenth Annual ACM Symposium
on Principles of Programming Languages, Munich, Germany, January
21-23, 1987, pp. 199–210, ACM Press, 1987.

[19] J. D. Brock and W. B. Ackerman, “Scenarios: A Model of Non-
Determinate Computation,” in Formalization of Programming Concepts,
International Colloquium, Peniscola, Spain, April 19-25, 1981, Proceed-
ings (J. Díaz and I. Ramos, eds.), vol. 107 of Lecture Notes in Computer
Science, pp. 252–259, Springer, 1981.

[20] T. Bourke, L. Brun, and M. Pouzet, “Mechanized Semantics and Verified
Compilation for a Dataflow Synchronous Language with Reset,” Proc.
ACM Program. Lang., vol. 4, Dec. 2019.

[21] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[22] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a Lingua
Franca for Deterministic Concurrent Systems,” ACM Trans. Embed.
Comput. Syst., vol. 20, no. 4, pp. 36:1–36:27, 2021.

68

