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Abstract—Software testing is essential for the reliable and
robust development of complex software systems. This is par-
ticularly critical for cyber-physical systems (CPS), which require
rigorous testing prior to deployment. The complexity of these
systems limits the use of formal verification methods. Further-
more, testing and fault localization can be very costly. To mitigate
this cost, we outline in this work a holistic machine-learning-
guided test case design and fault localization (MaLT) framework,
which leverages recent probabilistic machine learning methods
to accelerate the testing of complex software systems. MaLT
consists of three steps: (i) the construction of a suite of test cases
using a covering array for initial testing, (ii) the investigation of
posterior root cause probabilities via a Bayesian fault localization
procedure, then (iii) the use of such Bayesian analysis to guide se-
lection of subsequent test cases via active learning. The proposed
MaLT framework can thus facilitate efficient identification and
subsequent diagnosis of software faults with limited test runs.
This framework has potential for integration with an assertion-
based test oracle approach, which may prove to be an efficient
and cost-effective way of integrating light-weight formal methods
with testing.

Index Terms—Active learning, Bayesian modeling, Combina-
torial testing, Fault localization, Probabilistic machine learning.

I. INTRODUCTION

Software testing – the process of executing a program with
the intent of finding errors [1] – is an essential step in the
reliable and robust development of complex software systems.
Such testing aims to reveal and fix as many bugs as possible
prior to the release of a software application, thus greatly
reducing the risk of failures for the end-user. This is critical as
nearly all facets of daily life involve human interaction with
software applications. In particular, cyber-physical systems
(CPS) require rigorous testing prior to deployment. However,
the complexity of such systems introduces two critical chal-
lenges: (i) each test run can be costly to perform [2], and

(ii) there may be many inputs and thus exponentially many
input combinations to explore. The comprehensive testing of
complex systems can therefore be highly time- and resource-
intensive. We outline below a holistic machine-learning-guided
test case design and fault localization (MaLT) framework,
which leverages recent machine learning methods for acceler-
ating software testing in practical turnaround times.

Given challenges (i) and (ii), a key bottleneck is that the
testing of all input combinations is typically infeasible for
complex software systems. One solution is to carefully design
a small initial set of test cases, geared towards detecting as
many faults as possible. In our experiments, we find a covering
array [3] provides an appealing design for initial testing. Such
a design ensures coverage of all combinations up to a certain
level of interaction; more on this later in the MaLT pipeline.

Next, after initial tests are performed and failures observed,
such data needs to be used for fault localization [4], i.e.,
to pinpoint potential root causes of the observed failures.
Such a fault localization problem is also highly challenging
given challenges (i) and (ii), as one needs to consider a large
number of potential root cause scenarios given limited test
run data. For example, consider a system with 10 inputs each
with 2 levels, which yields a total of

∑10
i=1

(
10
i

)
2i = 59048

different input combinations. Assuming each input combina-
tion is either a root cause or not, this then results in an
astounding 259048 different scenarios to consider for fault
localization! Furthermore, much of the existing literature on
tackling fault localization are deterministic, and thus shed
little insight on the probability of a combination being a
root cause. Such probabilities are important for reliable fault
localization; they provide a principled statistical approach for
assessing root cause risks, and thus a principled measure of
confidence that an identified suspicious combination is (or
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Fig. 1. Workflow for the proposed MaLT framework.

is not) a root cause. In what follows, we introduce within
MaLT the Bayesian fault localization procedure in [5], which
leverages recent probabilistic machine learning (ML) modeling
and optimization techniques for estimating such probabilities.

Finally, with this Bayesian analysis in hand, we can lever-
age such analysis to select a subsequent case (or a set of
cases) for further testing. In ML, this strategy of “actively”
using learned information for subsequent data collection is
known as active learning; see [6], [7]. For active learning, a
desirable ingredient is a probabilistic quantification of model
uncertainty [8], [9], to help guide the selection of subsequent
data to reduce model uncertainty and maximize learning. We
introduce later within MaLT a novel risk-based active learning
method, which leverages the aforementioned Bayesian fault
localization analysis for sequential test run design.

MaLT can be considered as a “pseudo-exhaustive” testing
approach [10], which leverages carefully designed test cases
to obtain empirical observations of the software system for ef-
ficient and effective location of software faults. As a machine-
learning-guided approach, it has potential to be integrated
with an assertion-based test oracle approach and can thus be
regarded as a “light-weight formal method” [11].

Figure 1 visualizes the workflow of the proposed MaLT
framework; each part will be elaborated on. Section II outlines
the covering array approach for initial test case design. Section
III describes the Bayesian fault localization procedure in [5]
using this data. Section IV outlines an active learning proce-
dure for designing subsequent test runs using such Bayesian
analysis. Section V concludes the paper.

II. MALT: INITIAL TEST CASES VIA COVERING ARRAYS

Consider first the problem of designing initial test cases
for fault localization. As mentioned earlier, the sheer number
of possible input combinations renders the testing of every
input combination to be infeasible in practical systems. Thus,
a carefully-designed initial test set is needed for efficient and
effective fault localization. The goal is to design test sets to
cover as many combinations as possible.

One promising design strategy is the covering array (CA;
[3]). A covering array is a M×I array designed such that every
column combination of order k ≤ I appears at least once in
the M rows. Here, k is known as the strength of the CA. The
columns of the CA can be thought of as factors (or inputs), in
which case the rows can be thought of as runs. Table I shows
a strength-2 CA design, using I = 4 input factors with J = 2
levels. The levels here refer to distinct values of each factor.

Input Factors A B C D
Run 1 1 1 1 1
Run 2 2 2 2 1
Run 3 2 2 1 2
Run 4 2 1 2 2
Run 5 1 2 2 2

TABLE I
A STRENGTH-2 CA FOR INITIAL TESTING OF A SYSTEM WITH FOUR INPUT

FACTORS, EACH WITH TWO LEVELS.

We see that, with only M = 5 runs, every possible two-factor
combination appears in at least one test run. Thus, assuming
all bugs arise from an input combination of at most order
k, a strength-k CA test set would “cover” every bug in the
system resulting in one or more failed test cases. Comparing
to the robust testing approach using orthogonal arrays [12],
which forces each combination to appear “equally often”,
CAs provide a more economical design since the “equal-run”
requirement is relaxed [13]. We thus make use of CAs as
initial designs in MaLT: its reduced run size allows for efficient
testing and effective fault localization with limited (expensive)
test runs, and the additional runs saved can then be used for
sequential test runs via active learning (see Section IV).

There is a rich body of literature and software on efficient
CA construction [13]. [14] provides a comprehensive review
of construction algorithms for CAs, including direct [15],
recursive [16], optimization [17], genetic [18], and backtrack-
ing [19] algorithms. [20] reviews a list of useful tools for
constructing CAs; in particular, the Advanced Combinatorial
Testing System (ACTS, [21]) is widely used in practice [13].

III. MALT: BAYESIAN FAULT LOCALIZATION

With initial test cases performed, consider next the problem
of fault localization, which aims to pinpoint potential root
causes that triggered the observed failures. As mentioned
earlier, such fault localization should preferably shed light
on the probability of each combination being a root cause.
One way to achieve this is via a Bayesian learning approach,
where prior root cause probabilities are assigned on each
input combination, then updated by conditioning on the ob-
served test results. Such a Bayesian framework offers two
key advantages over the current deterministic approaches: it
provides a flexible framework for integrating prior structural
information on expected root cause behavior, and permits the
incorporation of prior domain knowledge from test engineers
[22] for accelerating fault localization. We summarize below
the Bayesian fault localization (BayesFLo) learning model in
[5], which achieves this goal. Figure 2 presents the workflow
of the BayesFLo model, which takes in test cases with
outcomes and computes the posterior root cause probability
of each suspicious input combination.

We first introduce some notation. Consider a software sys-
tem with I categorical factors, with factor i having Ji distinct
levels. Let (i, j)K denote an input combination of K factors
i = (i1, · · · , iK), with corresponding levels j = (j1, · · · , jK).
For example, ((1, 2), (1, 1)) denotes an input combination with
both inputs 1 and 2 at level 1. For single-factor inputs (i.e.,
K = 1), this notation can be simplified to (i, j). In practice,
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Fig. 2. Workflow of MaLT: Bayesian Fault Localization.

we recommend setting the largest K to t + 1 where t is the
strength of the covering array, unless it leads to excessive
computational cost. This is to allow for some flexibility in
root cause exploration.

Next, let Z(i,j)K be a binary indicator for whether the
input combination (i, j)K is indeed a root cause. Following
the Bayesian paradigm, we assign the following independent
Bernoulli priors on Z(i,j)K :

Z(i,j)K

indep.∼ Bern(p(i,j)K ), (1)

where p(i,j)K captures the engineer’s a priori probability
of (i, j)K being a root cause. The elicitation of all prior
probabilities can however be cumbersome; a simpler approach
may be to adopt the following product form:

p(i,j)K =

K∏
k=1

p(ik,jk). (2)

Here, the user only needs to specify prior probabilities p(i,j)
on the single-factor combinations (i, j) based on their prior
domain knowledge. Such a product-form prior further embeds
important prior structural information on expected root cause
behavior, by capturing the combination hierarchy and heredity
principles in [13]. The combination hierarchy principle asserts
that combinations involving fewer inputs are more likely to
be failure-inducing than those involving more inputs; this is
captured in (2) by assigning increasingly smaller prior prob-
abilities on combinations with higher interaction order. The
combination heredity principle asserts that a combination is
more likely to be failure-inducing when some of its component
inputs are more likely to be failure-inducing; this is captured
via the product form in (2), where prior probabilities are
multiplied over each input.

With this prior specified, the desired posterior probabilities
P(Z(i,j)K

= 1|data) can then be computed as follows. We first
categorize all input combinations into three groups:

1) Tested-and-Passed (TP): This group, denoted as CTP,
consists of combinations (i, j)K that are included in at
least one passed test case.

2) Tested-and-Failed (TF): This group, denoted as CTF,
consists of combinations (i, j)K that are included in at
least one failed test case but not included in any passed
test cases.

3) Untested (UT): This group, denoted as CUT, consists of
remaining combinations (i, j)K that are not contained in
the earlier groups.

The reason for this categorization is as follows. For a TP
combination (i, j)K , one can easily show (see [5]) that its

Fig. 3. Visualizing the bipartite graph representation and two minimal covers
for failures involving the combination (i, j)K .

posterior probability of being a root cause is 0, since such a
combination has been observed in a passed test case and thus
cannot be a root cause. For a UT combination (i, j)K , since
such a combination was untested, its posterior probability is
simply its prior probability p(i,j)K as no data was observed on
this combination (see [5] for a rigorous argument).

The remaining computation of posterior probabilities for
TF combinations is a more challenging task. As noted in
[5], the brute-force computation of this probability for a
single TF combination may be doubly-exponential in the
number of inputs I , which is prohibitively expensive. The
following reformulation of this probability can permit tractable
computation. For a TF combination (i, j)K , let M(i,j)K be the
failure cases that include (i, j)K , and M−(i,j)K be the failure
cases that do not contain (i, j)K . One can show (see [5]) that
its desired posterior probability can be rewritten as:

P(Z(i,j)K = 1|data) = P(Z(i,j)K = 1|E(i,j)K ) =
p(i,j)K

P(E(i,j)K )
. (3)

Here, E(i,j)K is the event that all failure cases containing
(i, j)K (namely, M(i,j)K ) can be explained by a collection
of TF combinations being root causes.

To compute the probability P(E(i,j)K ) in Equation (3), [5]
makes use of an interesting link between the event E(i,j)K and
a related problem of minimal set covering on an appropriate
bipartite graph representation. Figure 3 shows an example of
this bipartite graph representation, where left nodes represent
all TF combinations and right nodes represent all failed test
cases in M(i,j)K . Here, an edge between a left node and a
right node suggests that the TF combination on the left is
included in the failed test case on the right. A minimal set
cover of this bipartite graph is then defined as an irreducible
collection of TF combinations (on the left) that covers or
explains all failed test cases (on the right). With this, one
can show (details in [5]) that the computation of P(E(i,j)K )
amounts to finding all minimal set covers of the above bipartite
graph representation, for which polynomial-time algorithms
exist [23], [24]. A promising practical approach is to formulate
this as an integer linear program (ILP; [25]), which can be
solved via state-of-the-art optimization solvers such as Gurobi
[26]; details on this can be found in [5].
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IV. MALT: SEQUENTIAL TEST CASES VIA ACTIVE
LEARNING

Finally, with the above Bayesian fault localization analysis
in hand, consider the problem of leveraging such analysis
for selecting subsequent test cases. Such an active learning
approach is particularly useful when there are many input
factors (or factor levels) or when there are many bugs in the
system; in such cases, the localization of root causes may
be difficult with an initial test set, and “actively-designed”
sequential runs can help accelerate localization after initial
testing. Much of the active learning literature in ML, however,
focuses on active learning for improving model predictive
accuracy, which is not the goal here. We thus present next
a novel risk-based active learning procedure, which leverages
the trained BayesFLo learning model to target subsequent test
runs for localization.

We first require a criterion for selecting a subsequent test run
tM+1 given an initial test set of M runs. A natural approach
is to define a criterion that captures the tester’s risk for false
positive and false negative detection of a fault. To make this
concrete, let δ(i,j)K ∈ {0, 1} denote a binary classifier for
predicting whether a combination (i, j)K is a root cause (i.e.,
δ(i,j)K = 1) or not (i.e., δ(i,j)K = 0). Given the true root cause
indicator Z(i,j)K , a reasonable loss function might be:

L(Z(i,j)K , δ(i,j)K ) =

W, Z(i,j)K = 1, δ(i,j)K = 0,

1, Z(i,j)K = 0, δ(i,j)K = 1,

0, Z(i,j)K = δ(i,j)K ,

(4)

where W > 1 is a user-specified value. The first line in (4)
considers the case where a true root cause combination is
incorrectly classified by the learning model as a non-root-
cause, the second line is the case where a non-root-cause
combination is incorrectly classified as a root cause, and the
last line is the case of correct classification. Here, W > 1
reflects the fact that the risk of missing a root cause is typically
greater than the risk of misclassifying a non-root-cause.

From the previous Bayesian analysis with M test runs, we
have already computed the posterior root cause probabilities
p̂(i,j)K := P(Z(i,j)K = 1|data) for each combination (i, j)K .
Using this, one can show the Bayes-optimal classifier δopt(i,j)K
(see [27]) under the loss function (4) takes the form:

δopt(i,j)K
=

{
1, p̂(i,j)K ≥ 1

1+W ,

0, p̂(i,j)K < 1
1+W .

(5)

Given observed data from the initial M -run test set (denoted
as DM ), the posterior Bayes risk of this classifier for (i, j)K
can then be evaluated as:
r(i,j)K (DM ) = EZ|DM

[
L(Z(i,j)K , δ(i,j)K )

]
= Wp̂(i,j)K · I

(
p̂(i,j)K <

1

1 +W

)
+ (1− p̂(i,j)K ) · I

(
p̂(i,j)K ≥

1

1 +W

)
,

(6)

where I(·) is the indicator function.
We can now define the proposed risk-based utility criterion

for active learning. Intuitively, the next test run tM+1 should

ideally maximize the reduction of Bayes risk as defined in (6).
This risk reduction can be formulated as:
∆r(i,j)K (tM+1) :=

r(i,j)K (Dn)− EyM+1|DM ,tM+1

[
r(i,j)K (DM+1)

]
.

(7)

Here, yM+1 denotes the outcome of the new test case tM+1;
as such an outcome is unknown, we can average its risk
over its posterior distribution given observed test data, i.e.,
yM+1|DM , tM+1. With this, we can then select the next test
case via the following optimization problem:

toptM+1 ← argmaxtM+1

∑
(i,j)K∈CTF

∆r(i,j)K (tM+1). (8)

In other words, the selected toptM+1 should maximize the total
risk reduction over all combinations (i, j) in CTF, the set of TF
combinations for which we wish to localize observed faults.
An analogous active learning formulation can be used for
designing multiple (i.e., batches) of subsequent test runs.

Finally, such an active learning procedure can be iteratively
performed to accelerate fault localization of complex systems.
After selecting a next test case (or batch of cases) from (8),
one then investigates this case and adds its outcome (pass or
failure) to the updated training data DM+1. We then refit the
BayesFLo learning model (Section III), and use its updated
posterior probabilities p̂(i,j)K to actively design further test
cases. These two steps are then iteratively repeated until either
a computational budget is exhausted, or until the analysis
shows only a few combinations have high posterior proba-
bilities (in which case a test engineer can directly investigate
such combinations).

V. CONCLUSION

We presented here a novel machine-learning-guided test
case design and fault localization framework (MaLT), with
potential for improving the efficiency and effectiveness of
testing and fault localization of expensive software systems.
MaLT consists of three main steps: a carefully-designed initial
test set via covering arrays, a scalable Bayesian learning model
for fault localization, and the use of such Bayesian analysis
for active learning. In leveraging such recent developments
in probabilistic machine learning, the proposed MaLT can
potentially greatly accelerate the identification and subsequent
diagnosis of software faults with limited test runs. Numerical
experiments and applications (see [5]) show promising per-
formance for the first two steps of MaLT (covering arrays
and Bayesian fault localization); the last step on sequential
test case design is under development. Finally, the MaLT
framework also has potential for integration with an assertion-
based test oracle approach as proposed in [11], and may prove
to be an efficient and cost-effective way of integrating formal
methods with testing.
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