
Exploring Compositional Neural Networks for Real-Time Systems

Sobhan Chatterjee∗ †, Nathan Allen∗, Nitish Patel∗ and Partha Roop∗
∗Department of Electrical, Computer and Software Engineering, Faculty of Engineering

University of Auckland, Auckland, New Zealand
†Email: schb534@aucklanduni.ac.nz

Abstract—Real-time CPSs using Artificial Neural Networks
(ANNs) are traditionally developed as monolithic black-boxes.
This results in designs that are often difficult to formally verify
against safety specifications and implement on hardware for
formal timing analysis. Consequently, their implementation as
a composition of smaller ANNs has received recent interest.
These are easier to implement, parallelise and validate. Despite
this, the question of how to produce hardware-implementable
compositional designs from existing monolithic ones remains
largely unanswered.

This work develops a novel procedure to replace large
ANN monolithic designs with smaller compositional designs
and implement them on a Field Programmable Gate Array
(FPGA) for timing analysis using synchronous compositional
semantics. To illustrate our approach, we develop regression
and classification ANN designs for multiple real-life datasets.
Using various design and model architecture variations, we
show that using a compositional design instead of a monolithic
design can achieve an 85% reduction in WCET, around a 53%
reduction in hardware resources and around a 40% reduction
in computations and neuron connections for a minor reduction
in performance.

1. Introduction

Cyber-Physical Systems (CPSs) are inherently composi-
tional. Generally composed of controllers distributed across
physical space and hardware resources, CPSs are used to
design real-time systems with strict timing and functional
requirements [1]. Traditionally, CPS design employs model-
driven techniques, where one designs a complex system as a
combination of several interacting components (controllers
and controlled systems). Such an approach facilitates the
design of simpler components, which are easier to validate
and integrate with the overall system [2].

However, as systems become more complex with time,
model-driven design based on physical process modelling is
becoming increasingly difficult. Consequently, data-driven
techniques for system design, typically Artificial Neural
Networks (ANNs), have been gaining prominence as the
alternative form of CPS design due to their ability to model
complex input-output relationships without extensive infor-
mation about the system dynamics [3]. Nevertheless, ANNs
are often prone to errors [4] and their use in real-time

systems with strict safety (safety-critical) and response-time
(time-critical) specifications often mandate formal guaran-
tees on their functional [5] and timing correctness [6].

While several techniques have been proposed to handle
formal verification [7] of ANNs, which is an NP-Complete
problem [8], the use of such methods is usually limited to
either small networks or require complex model abstraction
techniques for larger networks. This limitation primarily
results from ANNs being designed and implemented as
monolithic black boxes [9]. Monolithic designs tend to be
big, slow to execute, resource-intensive, and seldom lend
themselves to parallel or incremental designs [1]. Moreover,
the size of monolithic designs also restricts their imple-
mentation on hardware to smaller networks with just tens
of neurons, as evident from [10] and [11]. Consequently,
Worst Case Execution Time (WCET) analysis, defined as
the maximum time a program takes to execute on a specific
hardware platform and is one of the ways of ensuring the
timing correctness of real-time systems, is challenging for
monolithic ANNs.

A compositional approach, which advocates using
smaller but functionally equivalent systems to the ANN-
based CPS design, is ideal for addressing the problems
with large designs. Indeed [1] presents the first compelling
case for compositionality in systems in general. Although
recent work on data-driven CPS design has tried to tackle
the notion of compositionality in many ways, studies that
comprehensively examine compositional ANNs for their
functional verification and timing correctness are lacking.

While some studies like [12], [13], [14] use composi-
tional designs to facilitate verification, they focus on systems
in which an ANN is a component of the compositional
design and not the focus of the compositional design itself.
Moreover, a few works, such as [15] and [9], have tried
to address the WCET analysis of ANNs using composi-
tional designs on hardware. However, their methods do
not focus on using compositional models to reduce the
WCET of monolithic models. On the other hand, orthog-
onal studies, such as [16], [17], that use model reduction
techniques instead of compositionality cannot guarantee a
reduced network, making their hardware implementation
unreliable. Overall, there is a noted lack of research that
systematically, quantitatively, and objectively presents how
a large monolithic ANN model can be replaced with several
smaller networks (a compositional design) to ease their

46

2024 22nd ACM-IEEE International Symposium on Formal Methods and Models for System Design (MEMOCODE)

2832-6520/24/$31.00 ©2024 IEEE
DOI 10.1109/MEMOCODE63347.2024.00010

implementation on hardware for timing verification using
WCET.

Hence, in this work, we design multiple examples to
comprehensively quantify the benefits of a novel composi-
tional design for hardware implementation over a monolithic
design. We use several real-life datasets for the examples,
including a depression dataset and a sizeable transportation
dataset - NGSIM (Next Generation SIMulation) - to develop
the models that can help cars perform Discretionary Lane
Changing (DLC).

Through these examples, we make the following con-
tributions. 1) We present a detailed methodology of how
a Multilayer-Perceptron (MLP) based feed-forward mono-
lithic design can be replaced with smaller models that
combine to form a compositional design that reduces the
hardware footprint of the model at minimal to no perfor-
mance loss. The method presented is not specific to the
datasets and type of ANNs considered in this work and can
be used with most feed-forward ANNs with minor to no
changes. 2) We describe how the compositional design can
be implemented on hardware for proper timing analysis. 3)
We quantitatively examine the monolithic and compositional
designs using software models to test their performance,
the hardware models to compare the WCET, hardware logic
requirements and their verification captured by comparing
neuron connections and computations required for infer-
ence. We demonstrate that, for the DLC dataset, using a
compositional rather than a monolithic design can achieve
significant, up to 85% reduction in WCET, around a 53%
reduction in hardware resources and around a 40% reduc-
tion in computations and neuron connections for a minor
reduction in performance.

The paper is structured as follows. Firstly, in Section 2,
we introduce a brief background on the example datasets
considered. Later, in Section 3, the compositional premise
used in this work is introduced. Subsequently, in Section 4,
we provide the details on the development of the designs.
Section 5 describes the hardware implementation and the
semantics used. Next, we present the comparison reports
and discussions in Section 6 to show how the compositional
models compare to the monolithic models. Finally, Section
7 contains concluding remarks and the study’s future direc-
tions.

2. Background

2.1. Artifical Neural Networks

Artificial Neural Networks (ANNs) are, as the name
suggests, networks of artificial neurons that attempt to model
the behaviour of biological neurons using linear and non-
linear mathematical functions. The nonlinear functions are
called activations. The ANN training is data-driven, and
once trained, it can make inferences on new but statistically
similar input data [3]. They are often designed in a layered
structure, with an input layer, a few hidden layers, and an
output layer.

2.2. Depression Studies

Depression is a disorder involving loss of pleasure or
interest in activities for long periods and is associated with
sustained mood deterioration [18]. The World Health Or-
ganisation (WHO) 2023 estimates that 5% of adults (ap-
proximately 300 million) worldwide experience depression.
Recent depression research has focused on using wearable
technology to assess patient mood as it is unobtrusive, real-
time and often passive and allows assessments to occur
in the person’s usual environment [19]. Research has now
grown in the direction of personalised, predictive models
for depression to account for the substantial inter-individual
variability in depressive symptoms, and the results are
promising [20].

2.3. Discretionary Lane Changing

A discretionary lane change (DLC) occurs when a driver
follows another vehicle at speeds slower than their desired
speed and wants to increase their speed by moving to an
adjacent lane [21]. The study by Gipss [22] is one of the first
to systematically describe the structure of the driver’s overall
lane change (LC) decision-making process. More recently,
there has been a noticeable shift towards developing data-
driven, predominantly ANN-based models for LC. The goal
is to make models learn the complex mathematical functions
that describe a safe lane-changing process by observing data
on parameters that serve as inputs to the model.

Generally, the input parameters that govern the learning
process include the speed of the subject and surrounding
vehicles and the gaps or spacing between the subject vehicle
and surrounding vehicles. Figure 1 shows a typical arrange-
ment of cars before a lane change and the parameters on
which the lane change may depend. Similar to studies such
as [23] and [24], in this work, we consider the vital decision-
making module for DLC as our example to demonstrate the
development and use of the compositional design.

Figure 1: Defining the features in DLC. B,F,L, and R stand
for Back, Front, Left and Right. These terms specify the
position of the car. We take the values of these features
relative to the ego/subject vehicle.

2.4. Datasets

We test our compositional framework on various real-
life datasets, as presented next.

47

Figure 2: Extracting samples from NGSIM dataset.

2.4.1. Small Datasets. We use three real-life datasets to
build example ANNs demonstrating the compositional ap-
proach. We choose the famous Iris flower classification
dataset [25], a Diabetes dataset [26], and a Wine classifica-
tion dataset [27] for this task and build ANN classification
designs for them. The Iris dataset has 150 samples (and
four features/inputs), the Diabetes dataset has 442 samples
(and ten features), and the Wine dataset has 178 (and
13 features) samples. Although the Diabetes dataset is a
regression problem, we transform it into a classification
problem by clustering it into three groups to form a new
target/output feature. Overall, all three examples have three
output classes/values.

2.4.2. Depression Dataset. We use a dataset previously
published in [20] to build regression-based personalised
(one model per subject) mood score prediction models. This
dataset was collected during a one-month study of 14 mild-
moderately depressed adult human subjects (with a mean
age of 21.6 ± 2.8 years and ten females) before the onset
of the COVID-19 pandemic. Although the dataset contains
data for 14 individuals, we use only seven to keep the results
concise.

The dataset includes data collected from smartwatches,
smartphones and clinical EEG-based neuro-cognitive evalu-
ations. The collected mood score values - lie between 1 and
7, with 1 for feeling not depressed and 7 for feeling severely
depressed. We preprocess the raw dataset containing 48 fea-
tures (or predictors) using an imputation method described
in [28] and obtain 43 input features (i.e. inputs to a model),
one output feature (mood scores) and one feature to preserve
timing information. The amount of data per human subject
lies between 34 and 120. More information on the features
can be found in [28].

2.4.3. Next Generation SIMulation (NGSIM). We use
the well-known NGSIM database [29] for the DLC exam-
ple. The database contains, among other datasets, vehicle
trajectory data gathered at a segment of I-80 Freeway in
Emeryville, California and a segment of US Highway 101
in Los Angeles, California. The dataset is substantive, with
over six million data points collected for over 10000 vehi-
cles, but is rather noisy. Hence, we filter the dataset using
the method proposed in [30]. Samples are then extracted
from the filtered dataset - a process justified in [31].

For this extraction, we first find the six vehicles (cars
or not) surrounding a lane changing (ego) car and extract
1-second regions (10 data points) from around the time
an ego begins to lane change and also 1-second regions
from before and after the lane change to include samples
that correspond to feasible or infeasible conditions for a
lane change respectively (Figure 2). The extracted dataset
contains 16,676 sample points from 559 lane changing cars,
each sample containing 22 input features and three output
classes. There are 11,006 No LC (lane keep) samples, 4380
Left LC samples and 1290 Right LC samples.

3. The Compositional Premise

The compositional premise used in this research relies
on the divisibility of existing monolithic feedforward ANN-
based models to reduce hardware implementation costs at
minimal to no performance loss. We focus on feedforward
ANNs as they are the most widely used ANN architecture.

Although our approach allows for arbitrary combinations
of smaller feedforward compositional models (especially
Multilayer Perceptron (MLP)) to replace a large monolithic
model, which is too big to implement on hardware or verify,
the work we present in this paper limits itself to a two-
stage architecture of compositional design with MLP models
for brevity. Arbitrary combinations of models are possible
as long as the input-output compatibility of the stages is
maintained.

Moreover, the approach differs in design between classi-
fication and regression problems. Nevertheless, the underly-
ing two-stage architecture remains the same. The following
sections describe the compositional premise for classifica-
tion and regression problems separately.

3.1. Compositional Design for Classification

We rely on the divisibility of an existing monolithic
feedforward ANN-based MLP classification model on the
output class or label that the model predicts. Specifically,
we decompose or divide a monolithic design with C output
classes into C−1 compositional models, where each model
corresponds to a particular class. These models are trained
such that a model corresponding to class C will output a
High (valued 1) when the input to the model has the same
class label; otherwise, the model will output a Low (valued
0). We use C − 1 as opposed to C models as we believe
(and later show) that this would lead to a better trade-off
between a model’s predictive performance and hardware
implementation cost.

The compositional models exist in a single stage and
execute in parallel. The outputs from these models are then
passed onto a merge block that interprets these outputs and
generates a single output value corresponding to any of the
C class labels. Although we can use any mathematical func-
tion (including an ANN model) to combine the outputs from
the compositional models, we propose a simple conditional
merge block to simplify hardware implementation. As per
this conditional merge block, when only one of the C − 1

48

compositional models produces a High output (valued 1),
the merge module passes on the label for that model’s class.
However, when more than one model passes a High output,
or none of them passes a High output, the label of the
remaining Cth class is passed as the output. This method
enables the compositional classification of datasets with C
classes with just C − 1 models, as shown in Figure 3.

Figure 3: Single-stage monolithic design and a 2-stage com-
positional design. We assume that we build models for the
classes labelled 1, 2, · · · , C−1, and the Cth class is deduced
as shown.

We build the compositional models separately from the
monolithic models and then combine the trained models
using the merge block. The division of the monolithic model
into C − 1 classes can be based either on domain (data)
knowledge or using qualitative and quantitative methods.
For a more quantitative approach, we recommend using the
confusion−matrix we obtain from the monolithic design
evaluation and use the diagonal of the confusion−matrix
computed. Then, the diagonal of the matrix can be sorted
to find the top C − 1 easily classifiable classes and build
models for them. A higher diagonal value implies higher
ease in classifying the corresponding class. Building models
for the C − 1 easily classifiable classes should ensure that
the remaining Cth class is properly deduced by reducing
the number of false positives from the trained models.

Similarly, the division of neurons among the C − 1
models can be based on intuition/domain knowledge or a
quantitative approach. We propose beginning with dividing
the neurons equally between the chosen models and then
deciding whether to optimise the neuron division among
the models based on the performance of the compositional
design vis-à-vis the monolithic design. A designer may
choose a threshold for performance loss observed (if any)
when migrating to a compositional design before opting for
the optimisation route. This ensures that the compositional
design is not over-engineered and that the performance loss
is minimal.

We use the optimisation approach if the equally divided
compositional design has a Precision loss of more than one
percent. We optimise the compositional design Precision

using Bayesian optimisation with Gaussian processes [32]
while ensuring that the total neurons in the compositional
models remain the same. The optimisation can be stopped
after a fixed number of trials or after the loss has attained a
specific value. Also, any other suitable optimisation method,
such as evolutionary algorithms, can be used in place of
the one proposed, but the goal of optimising the model
performance remains the same.

In the general case, all the compositional models will
share the same set of input features, i.e., those used by
the monolithic design. However, if data domain knowledge
can be used to remove a few redundant features in a few
compositional models, it should be used to reduce the num-
ber of neurons in the compositional models, which can be
beneficial for hardware implementation.

3.2. Compositional Design for Regression

The compositional design for regression problems is
similar to the classification problem, with a few differences.
Since there are no classes in a regression problem, we do
not divide the monolithic MLP design based on the values
of the output feature. Here, we exploit the divisibility of the
input feature set into individual compositional models. The
division must be based on either data domain knowledge
or a quantitative approach. We propose using data domain
knowledge first, followed by quantitative methods, if the
former is not feasible or does not achieve the same level of
performance as the monolithic design.

Similar to the classification problem, the compositional
design for the regression problem is also a two-staged
design, with the first stage containing the compositional
models (running in parallel) and the second merge stage
combining the several model outputs into one. The individ-
ual compositional models output a single continuous value.
These are then combined using a mathematical function. We
propose a weighted combination of the outputs from the
compositional models as shown in Equation 1 for a simpler
hardware implementation.

output value =

n∑
i=1

wi × outputi (1)

As we are dividing based on the features, the models
in the compositional design will have a different number of
features than the monolithic model, but the total number of
features entering both designs will remain the same. The
divided feature sets can be mutually exclusive or have re-
peated features. However, we advise using a set of mutually
exclusive features to prevent feature redundancy, if that is
desired, in the compositional models when we combine the
models in the second step of the compositional design.

4. ANN Model Development

We follow the following steps for MLP-based ANN
design development of the datasets described. First, we pre-
process the data with standard normalisation/scaling if it

49

TABLE 1: Search values (or limits) for parameters during hyperparameters optimisation of the Depression Dataset.
(We use N.A (Not Applicable) for cells with no value. The values are the ranges and values used for hyperparameter search.)

Hyperparameter Monolithic Compositional
Lower Limit Upper Limit Values Lower Limit Upper Limit Values

Number of layers 2 4 N.A 2 4 N.A
Neurons in input layer 50 90 N.A 10 15 N.A

Activation N.A N.A tanh, relu, elu, linear N.A N.A tanh, relu, elu, linear
Batch size N.A N.A 4, 6, 8 N.A N.A 4, 6, 8

is not normalised. Second, we train the monolithic design
model for different ANN architectures, as we do not have
existing monolithic models for any of the example datasets
considered. Third, we build the compositional design ar-
chitecture. When building the compositional design models,
we can choose to have the same number of total neurons or
different numbers in the two designs. While the former en-
sures a fairer performance comparison, we experiment with
both approaches to comprehensively evaluate the two-stage
compositional design. Finally, we train the compositional
design with corresponding datasets using a 5-fold cross-
validation (CV) method [3].

Additionally, we adopt best-model saving and learning
rate reduction practices to alleviate the undesirable effect
of stochasticity in training. Furthermore, the compositional
and monolithic model training is performed in Python using
the well-known TensorFlow-Keras Library [33] on a 64-bit
AMD Threadripper 3990 with 64 cores and 256 GB RAM.

4.1. Small Dataset Models

We use a four-layer classification architecture for all
monolithic and compositional designs for all three datasets.
We ensure that the monolithic and compositional designs
have the same number of total neurons. The Wine and
Diabetes dataset monolithic designs have 24, 12, 6, and 3
neurons, while the iris dataset monolithic model has 20, 10,
4 and 3 neurons in the four layers from input to output.
Next, we find the classes to build the compositional models
using the quantitative method mentioned in Section 3.

We build compositional models for classes 0 and 1 for
the Wine and Diabetes classes and classes 0 and 2 for the Iris
dataset. We do not optimise the neuron division; instead, we
divide the neurons equally between the two compositional
models, as there was no performance loss. Further, we use
tanh for all layers except for the last layer, which uses
softmax for the monolithic model and sigmoid for the
compositional models. Also, both designs are trained for
200 epochs and a batch size of 8 for the Wine and Diabetes
datasets and 4 for the Iris dataset.

4.2. Depression Dataset Models

We build personalised regression models for the De-
pression dataset, which contains data from seven human
subjects. As it is usually challenging to build models on
data collected from human biophysical signals due to their
complexity, models often need to be optimised for their
performance. Instead of manually choosing and tweaking

a few parameters to obtain better performance, we chose
Evolutionary Algorithm (EA) based algorithms to optimise
the number of hidden layers in the model, the number of
neurons in the input layer, the activation of the hidden layers,
and the training batch size for both monolithic and compo-
sitional models. The designs are optimised for 50 iterations
using Mean Absolute Error (MAE) as the performance
metric.

Once we have optimised the monolithic models, we
divide the input feature into six mutually exclusive sets. We
divide the features based on whether they refer to food, ac-
tivity, sleep, physiological, psychological or neurocognitive
feature sets and build compositional models for the sets. A
compositional design contains these six models, which are
trained and optimised separately and then combined using
the merge block, the weights of which are learned using
a gradient descent-based algorithm. The search parameters
for the optimisation can be found in Table 1. Regardless of
the optimisation procedure, as we are making models for a
regression problem, the final layer in the models for both
designs always uses the linear activation function.

Furthermore, we do not ensure that the compositional
and the monolithic designs have the same total neurons.
However, we ensure that the neuron ranges for the compo-
sitional models are nearly a sixth of the monolithic model.
This difference helps ascertain how well the compositional
approach works when the total number of neurons in the
compositional design differs from the monolithic design.

TABLE 2: Best Neuron Divisions (DLC Dataset). (TN
refers to the total number of neurons in the model. Left and
Right refers to the compositional models for the Left and
Right lane change classes. The values are the fraction of
neurons in each model after optimisation.)

1 Layer 3 Layers
Models ↓ / TN → 118 157 195 118 157 195

Left 0.69 0.71 0.74 0.62 0.54 0.51
Right 0.31 0.29 0.26 0.38 0.46 0.49

6 Layers 10 Layers
Models ↓ / TN → 118 157 195 115 157 192

Left 0.58 0.60 0.64 0.70 0.58 0.58
Right 0.42 0.40 0.36 0.30 0.42 0.42

4.3. DLC Dataset Models

We build different monolithic and compositional classi-
fication designs for the DLC dataset, each with a different
architecture. The Left and Right lane change (LC) classes
are chosen for the compositional design based on observed

50

DLC behaviour, and the No lane change class is left out.
Moreover, we experiment with three values of total neurons,
i.e. {118, 157, 195}, and different numbers of layers, i.e. {1,
3, 6, 10}, in the monolithic and compositional designs.

Furthermore, we optimise the neuron division as the
equal division of neurons between the models did not
yield designs with good compositional performance. We
optimise the designs using Bayesian optimisation based on
the Precision of the compositional designs. We end the
optimisation after 50 trials and use 20 initial points with
LHS. Table 2 contains the near-optimal division (fraction of
neurons in each model) of neurons in compositional design
obtained after optimisation as mentioned in Section 3. We
also experiment with a design with three models (C models)
and neurons equally divided neurons among them for a more
thorough comparison.

Moreover, while we have 22 features for the monolithic
examples, we remove the features corresponding to cars on
the right lane for the Left LC Model, and for the Right
LC Model, we do the vice-versa. This feature reduction is
justified as the vehicles travelling in the right lane have
a limited impact on a driver’s decision to change lanes
to the left and vice-versa. This reduction results in each
compositional model having just 16 features. We should,
however, note that the compositional design, on the whole,
has the same number of inputs as the monolithic model.

5. Hardware Implementation

We implement the monolithic and compositional designs
on hardware to analyse their timing performance through
WCET analysis. Therefore, we develop a compiler to com-
pile the ANN designs (TensorFlow-Keras [33] and Pytorch
[34] ANN designs) to Very high-speed integrated circuit
Hardware Description Language (VHDL) for implementa-
tion on a Field Programmable Gate Array (FPGA) through
a process adapted from [15]. In contrast to the work in [15],
we develop the compiler in Python. This allows the compiler
to be imported (as a module) into existing Python-based
ANN projects for easy compilation of ANN models. The
compiler allows for arbitrary combinations of feedforward
MLP-based ANN models developed using TensorFlow and
Pytorch, including the 2-stage design we use.

5.1. Compilation of ANN design to VHDL

Algorithm 1 shows the high-level pseudo-code for the
compiler. It converts an ANN design composed of single
or multiple ANN models to a VHDL design with multi-
ple files using an intermediate JSON design representation
to represent the hierarchical inter-model (between models)
and intra-model (with a model, i.e. between model layers)
dependencies and connections.

The nn2V HDL function is the compiler’s entry point.
It accepts models (models), their interconnections (conn),
the number of pieces/parts to use for the piecewise linear
activation function approximation (aParts), and the fixed-
point representation bit size as inputs (bSize). It then passes

Algorithm 1 Compile ANN Designs to VHDL

1: function NN2VHDL(models, conn, aParts, bSize)
2: jModel← PARSE(models, conn, aParts, bSize)
3: vhdlF iles← WRITEVHDL(jModel)
4: return WRITEVHDLFILES(vhdlF iles)
5: end function
6: function PARSE(models, conn, aParts, bSize)
7: jModel← {}
8: for model,model name, in models do
9: mA← GETMODELARCHITECTURE(model)

10: mW ← GETMODELWEIGHTS(model)
11: mAc← GETPIECEWISEACT(model, aParts)
12: mLc← GETLAYERCONNECTION(model)
13: mJ ← {“architecture” : mA, “weights” :

mW, “act parts” : mAc, “layer conn” : mLc}
14: jModel[model name]← mJ
15: end for
16: jModel[“conn”]← conn
17: jModel[“fp size”]← bSize
18: return jModel
19: end function
20: function WRITEVHDL(jModel)
21: modelV HDL← []
22: aFile← []
23: for conn in jModel[“conn”] do
24: for model names in conn do
25: mJ ← jModel[model names]
26: mVHDL← GENERATEVHDL(mJ)
27: append GENACTVHDL(jModel[”mAc”])

to aFile
28: end for
29: append mVHDL to modelV HDL
30: end for
31: mFile← GENMODPIPELINEMAP(modelV HDL)
32: lF ile← GENLIBRARY(jModel[“fp size”])
33: return [mFile, aF ile, lF ile]
34: end function

these arguments to a parser that parses the design into a
JSON representation (jModel). The activation approxima-
tion is implemented through Look-Up-Tables (LUTs). Fol-
lowing this, the representation is passed to a VHDL mapper
(writeV HDL) that uses the model and layer connectivity
information in the JSON representation to map the design
to VHDL. The ANN model computations are combined into
a single VHDL design file (using genModPipelineMap),
while the activation functions are written into separate
VHDL files (using genActV HDL) and are used as com-
ponents in the VHDL design file. Also, genActV HDL is
only called once for each activation. A library VHDL file
is also produced to perform fixed-point computations (using
genLibrary).

Furthermore, the VHDL mapping (using
genModPipelineMap) is based on a synchronous
multicyclic and pipelined approach that enables the reuse
of neuron instances mapped into hardware to reduce the

51

Wine Diabetes Iris
Datasets

0

10

20

30

40

50

60

AL
M

 R
ed

uc
ti

on
 (

in
 %

) 46.9

40.1

60.8
Small Datasets

ucsd18 ucsd19 ucsd20 ucsd21 ucsd23 ucsd26 ucsd29
Subject ID

0

20

40

60

80

AL
M

 R
ed

uc
ti

on
(i

n
%

)

76.1
79.5

26.7

67.6

76.7 75.8

85.9

76.1
79.5

26.7

67.6

76.7 75.8

85.9

76.1
79.5

26.7

67.6

76.7 75.8

85.9

76.1
79.5

26.7

67.6

76.7 75.8

85.9

76.1
79.5

26.7

67.6

76.7 75.8

85.9

76.1
79.5

26.7

67.6

76.7 75.8

85.9

76.1
79.5

26.7

67.6

76.7 75.8

85.9
Depression Dataset

118 157
Comp

195 118 157
Comp_equal

195 118 157
Comp_3models

195

Neurons/Model Type

0

100
0

100
0

100
0

100

AL
M

 R
ed

uc
ti

on
 (

in
 %

)

32.6 31.7 31.3

39.1 40 41.1

43.5 40.2 39.5

35.9 41.8 41.1

33.9 31.5 30.5

40.8 40.5 41.1

44.7 41.7 43.1

51.9 43.9 42.3

26.3 23.7 22.9

49.7 50.3 51.7

54.5 54.5 53.8

50.8 53.6 55

DLC Dataset

1 Layer

3 Layers

6 Layers

10 Layers

Figure 4: ALM reductions (in %) for all datasets. Each bar plot refers to each small dataset in the Small Datasets plot.
The bars in the Depression Dataset plot correspond to the seven human subjects (with anonymised names) considered. The
DLC dataset plot is shown for various total neuron numbers, layer counts, and model combinations. ”Comp” stands for
the optimised compositional design, ”Comp-equal” stands for the compositional design with an equal number of neurons
between the compositional models, and ”Comp-3models” stands for when the compositional design has three models with
an equal number of neurons.

total hardware components needed for mapping. In this
approach, a neuron is instantiated for each activation
in hardware. A neuron reads a set of internal variables,
performs computation, and then writes the updated output
back to memory within one cycle. Subsequently, a counter
is incremented, which causes the neuron to read the next set
of variables from memory in the next clock cycle. Once all
required computations have been performed, the execution
is complete, signifying the end of the tick. This will cause
variables to be mapped to their subsequent neurons in
the next layer and allow execution for the next tick to
begin. The number of cycles needed for a single execution
is proportional to the maximum number of neurons of a
particular activation.

The multicyclic approach enables us to fit networks
larger than would usually be possible but at the cost of
increased computation time. Since modern FPGAs have
reasonably high clock frequencies, the increase in computa-
tion time should be minimal. The formal semantics for the
multicylic approach can be found in [15].

6. Results

This section presents the results of the monolithic and
compositional designs. We quantify the benefits and limita-
tions of a compositional design against a monolithic design
by comparing the predictive performance using F1− score
for classification models and MAE (Mean Absolute Error)
for regression models, the hardware usage in terms of Adap-
tive Logic Modules (ALMs) and the Worst-Case Execution
Time (WCET) for the hardware implementations, and the
number of computations and connections in the design.

F1 − score is the harmonic mean of the Recall and
Precision, and produces a real number between 0 and 1.
The MAE, as expected, is a real number over the entire
real number domain. The performance of a classification
(or regression) design is better if a design has a higher (or
lower) F1 − score (or MAE) value. Equations 2, 3, and
4 define the F1 − score, Precision, and Recall metrics,
respectively. Since we use a 5-fold CV approach, we average
the performance metrics across the five folds before the F1−
score and MAE calculation.

52

Wine Diabetes Iris
Datasets

0.000

0.005

0.010

0.015

0.020

0.025

F1
-s

co
re

 R
ed

uc
ti

on

0.006

0.028

0.013

Small Datasets

ucsd18 ucsd19 ucsd20 ucsd21 ucsd23 ucsd26 ucsd29
Subject ID

−0.10

−0.05

0.00

0.05

0.10

0.15

M
AE

 R
ed

uc
ti

on

-0.014
-0.003

-0.134

-0.019

0.13

-0.023

0.18

-0.014
-0.003

-0.134

-0.019

0.13

-0.023

0.18

-0.014
-0.003

-0.134

-0.019

0.13

-0.023

0.18

-0.014
-0.003

-0.134

-0.019

0.13

-0.023

0.18

-0.014
-0.003

-0.134

-0.019

0.13

-0.023

0.18

-0.014
-0.003

-0.134

-0.019

0.13

-0.023

0.18

-0.014
-0.003

-0.134

-0.019

0.13

-0.023

0.18
Depression Dataset

118 157
Comp

195 118 157
Comp_equal

195 118 157
Comp_3models

195

Neurons/Model Type

0

0.1
0

0.1
0

0.2
0

0.2

F1
-s

co
re

 R
ed

uc
ti

on

0.025 0.012 0.012

0.013 0.007 0.007

0.05 0.03 0.015

-0.038

0.062 0.038

0.037 0.021 0.016

0.02 0.011 0.01

0.077
0.029 0.02

0.041
0.093

0.053

0.077
0.042 0.027

0.069
0.029 0.016

0.163
0.097

0.059

0.035

0.175
0.135

DLC Dataset

1 Layer

3 Layers

6 Layers

10 Layers

Figure 5: Predictive performance reduction (in absolute terms) for all datasets. Each bar plot refers to each small dataset in
the Small Datasets plot. The bars in the Depression Dataset plot correspond to the seven human subjects (with anonymised
names) considered. The DLC dataset plot is shown for various total neuron numbers, layer counts, and model combinations.
”Comp” stands for the optimised compositional design, ”Comp-equal” stands for the compositional design with an equal
number of neurons between the compositional models, and ”Comp-3models” stands for when the compositional design has
three models with an equal number of neurons.

F1− score =
1

|l|
∑
l

(
2×Recalll × Precisionl

Recalll + Precisionl

)
(2)

Precisionl =
TruePositivesl

TruePositivesl + FalsePositivesl
(3)

Recalll =
TruePositivesl

TruePositivesl + FalseNegativesl
(4)

where l is the label for a classification example, |l|
is the number of classes, TruePositivesl is the number
of samples for which the model infers the correct label l,
FalsePositivesl is the number of samples for which the
model infers an incorrect label as the correct label, and
FalseNegativesl is the number of samples for which the
model infers a correct label as incorrect.

Also, we found that using a 32-part piecewise linear
approximation of the activation function and a 32-bit fixed-
point representation of all numbers in the design, with

16 bits reserved for the fraction part, results in minimal
performance loss due to loss in precision when compiling
the designs to VHDL. Furthermore, the ALMs are computed
by fitting the developed VHDL designs onto the hardware
of Stratix-V FPGA using Quartus Prime Standard Version
19.1. We discontinue design fitting and call the design
unsynthesisable if Quartus takes longer than 24 hours or
if the design logic requirements are higher than the device
can provide. In such instances, we report the ALM estimate
as produced by Quartus but do not report the WCET as it
cannot be calculated.

Additionally, the WCET is calculated from the maxi-
mum cycle frequency of the slow hardware synthesis model
of Quartus for each design as shown in Equation 5, where
fmax is the maximum cycle frequency of the design, and
Ncycles is the number of cycles required for a single execu-
tion of the design.

WCET =
Ncycles

fmax
(5)

Finally, we compare the number of ANN computations,

53

i.e. the number of additions and multiplications, and the
number of connections encountered during one pass of a set
of inputs. We report the percentage reduction in calculations
and connections for the compositional design against the
monolithic design.

6.1. Hardware Performance

Figure 4 shows the ALM reductions for all datasets
considered in this work. As we can see, the compositional
design results in a hardware resource usage (measured using
ALM usage) reduction of between 26 and 85 percent, with
an average reduction of 53.51 across all datasets. Within the
DLC dataset designs, the optimised compositional model
and the equally divided compositional model seem to have
similar ALM reductions and outperform the three-model
compositional model.

Furthermore, we see more variation in the ALM re-
duction in the Depression dataset as the monolithic and
compositional designs do not have the same number of total
neurons. Especially for subject ucsd20, the decrease in ALM
usage is only 26.7%. This outlier is explained by the massive
increase of 187% in the total number of neurons used in
the compositional design vis-à-vis the monolithic design,
reducing the resource gain. Notably, despite this significant
increase in the number of neurons between the designs, the
compositional design still needs fewer hardware resources.

6.2. Predictive Performance

Using a compositional design results in a minor reduc-
tion in designs’ predictive performance for most designs and
datasets, as shown in Figure 5. The reduction in F1−score
for classification models is less than 0.1 for most designs,
with the exception of the 3-model compositional design,
where the reduction is around 0.2 for some cases. Within
the DLC dataset designs, the optimised compositional model
seems to perform the best.

Also, as F1 − score (which lies between 0 and 1) is
generally less than 0.1, we can safely say that the reduction
is less than 10% for 92% and is less than 5% for 76% of all
classification designs. Moreover, the reduction in MAE for
regression designs is less than 0.1 for 85% of the subjects.
As mood scores are integer values that range between 1
and 7, an absolute error/difference of 0.1 can be considered
minor. Interestingly, designs for two subjects (ucsd23 and
ucsd29) outperform the monolithic design.

Further, the F1 − score reduction shows a general
decreasing trend for most designs for the DLC dataset,
with the reduction decreasing as neurons increase. As the
neurons increase, the compositional design is able to learn
the complex DLC dataset better and begins to catch up
with the monolithic design in performance. One exception
is the 10-layer design with 118 total neurons, where the
compositional design marginally outperforms the F1−score
of the monolithic design. Since this is an outlier, we attribute
this performance to artefacts arising from randomness in the
ANN architecture parameters.

6.3. WCET Performance

0 20 40 60 80 100
Reduction (in %)

Small
datasets

DLC
dataset

D
at

as
et

88.07

85.26

Model WCET Reduction (in %)

Figure 6: Percentage WCET Reduction for the DLC dataset
and the Small Datasets. The DLC and Small dataset reduc-
tions are averaged over their respective cases. The red error
bars at the end show the variation in the values that have
been averaged.

The percentage reduction in WCET for the composi-
tional designs against the monolithic designs for the DLC
and Small datasets is shown in Figure 6. We averaged the
percentage of WCET reduction across cases for both the
DLC and small datasets, as they had minimal variation. We
compute and average the WCET reduction for designs that
are synthesisable. Overall, 47.22% of the compositional and
25% of the monolithic designs are synthesisable for the DLC
dataset designs. All compositional and monolithic designs
developed for the Small datasets were synthesisable.

We can see from Figure 6 that the WCET reduction
for both the DLC and Small datasets is around 85%. This
indicates a significant increase in the network speed for the
compositional designs. As the compositional design has a
much smaller fan-out of addition and multiplication compo-
nents on hardware, compositional designs are significantly
better in timing performance than monolithic designs.

Furthermore, we found that none of the Depression
dataset monolithic designs could be synthesised on hardware
due to their high resource requirements. Hence, we could not
compute the WCET reduction metric, and the results were
not presented. Nevertheless, as all compositional models
were synthesisable on hardware, we could compute the
WCET of the compositional designs, which was around
1.4µs for all subjects.

6.4. Computations and Connection Reduction

The percentage reduction in computations and connec-
tions for the compositional designs against the monolithic
designs for all datasets is shown in Figure 7. We average
the values across cases for both the DLC and Depression
datasets for brevity. We observe that a compositional design
results in an average reduction of computations and connec-
tions of 40% over all datasets. This reduction is higher for
bigger datasets and larger models at around 40-70%, and at
least 24% for smaller datasets.

54

0 20 40 60 80 100
Reduction (in %)

Wine

Diabetes

Iris

LC

Depression

D
at

as
et

33.95

24.28

27.48

41.67

70.4

35.84

25.07

28.48

42.86

71.57

Model Computation and Connection Reduction (in %)

Figure 7: ANN computation and connection reduction for
the hardware ANNs for all datasets. The blue bars represent
the percentage reduction in computations, whereas the or-
ange bars represent the percentage reduction in connections
when using a compositional design instead of a monolithic
design. The Red bars show the variation in the values.

The Depression dataset has the highest reduction in
computations and connections of around 70% with a stan-
dard deviation of around 16%, which can be attributed to
a larger number of models per design and unequal neuron
numbers between the monolithic and compositional designs.
The DLC dataset has a reduction of around 40% with a
standard deviation of around 6%. The Diabetes dataset has
the lowest reduction in computations and connections, which
can be attributed to its small design size.

Also, the reduction in connections and computations
is similar across all datasets, as reducing the connections
will also reduce the computations, and vice versa. This
reduction in connections and computations corroborates the
excellent hardware resource gains design we saw when using
compositional in previous subsections.

6.5. Summary

Overall, we make the following findings for the MLP-
based ANN designs.

• The compositional designs result in a significant
reduction in hardware usage vis-à-vis monolithic
designs with an average reduction of 53.51% over
all datasets at a minor reduction (<5% for most de-
signs) in performance. The reduction in performance
decreases as neurons increase.

• The compositional designs result in a massive reduc-
tion in WCET vis-à-vis monolithic designs with an
average reduction of around 86% over all datasets.

• The compositional designs significantly increase im-
plementable designs vis-à-vis monolithic designs
with an average increase of around 58% over all
datasets.

• The compositional designs significantly reduce de-
sign computations and neuron connections vis-à-vis
monolithic designs with an average reduction of
around 40% over all datasets.

• The C − 1 model compositional design performs
better at ALM reduction and predictive performance

reduction than the C model compositional design for
classification problems.

Overall, the smaller size of individual compositional
models (through fewer neuron connections) and the reduc-
tion in computations in the compositional design should
also allow for easier verification of an ANN for its func-
tional specifications. Nevertheless, we emphasise that the
compositional designs’ performance is intrinsically linked
to the architecture chosen for the models and may need
some tuning.

7. Conclusion

In this paper, we present a novel application-agnostic
approach to replacing single monolithic feedforward ANN
designs with compositional designs composed of several
smaller ANNs and use several examples and tests to ex-
amine the capabilities of each design, both on software and
hardware.

We illustrate the approach through a two-stage method
to designing compositional ANNs and examine it against
monolithic ANNs to discern potential advantages through
multiple example classification datasets, including a depres-
sion dataset and a Discretionary Lane Changing (DLC)
dataset. To aid in proper timing analysis using WCET, we
develop a compiler and method for synchronous execution
of ANN designs to their hardware equivalents. We further
use a multi-cyclic approach that enables the reuse of hard-
ware components.

After a comprehensive comparison, we show that the
very nature of compositionality makes it possible to signifi-
cantly reduce the number of hardware resources (ALMs) re-
quired to synthesise the Multilayer Perceptron (MLP) based
ANN models into hardware, specifically the Stratix-V FPGA
board. Despite the minor performance loss, we discuss how
a compositional design helps significantly reduce neuron
connections, hardware resources and the WCET. The sig-
nificant decrease in neuron connections and the overall size
of individual models should also make verification easier.

The method presented is not specific to the datasets
presented and the type of ANNs considered in this work.
We are confident that it can be used with most feedforward
ANNs and even combinations of ANNs with machine-
learning models with minor to no changes. Moreover, al-
though we have only shown the 2-stage approach with
MLP models, where the merge block can be any relevant
arbitrary mathematical function, the compositional design
allows for arbitrary combinations of models as long as the
input-output compatibility of the stages is maintained. We
will explore this further in future work. We are also keen
on quantifying how a compositional design may aid the
functional verification of ANNs.

References

[1] S. Tripakis, “Compositionality in the science of system design,”
Proceedings of the IEEE, vol. 104, no. 5, pp. 960–972, 2016.

55

[2] R. Alur, Principles of Cyber-Physical Systems. The MIT Press, 2015.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The
MIT Press, 2016.

[4] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety veri-
fication of deep neural networks,” in Computer Aided Verification,
R. Majumdar and V. Kunčak, Eds. Cham: Springer International
Publishing, 2017, pp. 3–29.

[5] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith,
Model checking. MIT press, 2018.

[6] T. Mitra, J. Teich, and L. Thiele, “Time-critical systems design: A
survey,” IEEE Design & Test, vol. 35, no. 2, pp. 8–26, 2018.

[7] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal
methods: Practice and experience,” ACM computing surveys (CSUR),
vol. 41, no. 4, p. 19, 2009.

[8] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Re-
luplex: An efficient smt solver for verifying deep neural networks,”
in Computer Aided Verification, R. Majumdar and V. Kunčak, Eds.
Cham: Springer International Publishing, 2017, pp. 97–117.

[9] X. Yang, P. Roop, H. Pearce, and J. W. Ro, “A compositional approach
using keras for neural networks in real-time systems,” in 2020 Design,
Automation Test in Europe Conference Exhibition (DATE), 2020, pp.
1109–1114.

[10] R. Sarić, D. Jokic, N. Beganović, L. Gurbeta Pokvic, and A. Bad-
njevic, “Fpga-based real-time epileptic seizure classification using
artificial neural network,” Biomedical Signal Processing and Control,
vol. 62, p. 102106, 09 2020.

[11] D. Nguyen, H. Ho, D. Bui, and X. Tran, “An efficient hardware imple-
mentation of artificial neural network based on stochastic computing,”
in 2018 5th NAFOSTED Conference on Information and Computer
Science (NICS), 2018, pp. 237–242.

[12] T. Dreossi, A. Donzé, and S. A. Seshia, “Compositional falsification
of cyber-physical systems with machine learning components,” 2018.

[13] T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh,
M. Vazquez-Chanlatte, and S. Seshia, “Verifai: A toolkit for the
design and analysis of artificial intelligence-based systems,” ArXiv,
vol. abs/1902.04245, 2019.

[14] N. Naik and P. Nuzzo, “Robustness contracts for scalable verification
of neural network-enabled cyber-physical systems,” Memocode2020,
2020.

[15] N. Allen, Y. Raje, J. W. Ro, and P. Roop, “A compositional
approach for real-time machine learning,” in Proceedings of the
17th ACM-IEEE International Conference on Formal Methods and
Models for System Design, ser. MEMOCODE ’19. New York,
NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3359986.3361204

[16] S. Gokulanathan, A. Feldsher, A. Malca, C. Barrett, and G. Katz,
“Simplifying neural networks using formal verification,” 2020.

[17] Y. Y. Elboher, J. Gottschlich, and G. Katz, “An abstraction-based
framework for neural network verification,” in Computer Aided Veri-
fication, S. K. Lahiri and C. Wang, Eds. Cham: Springer International
Publishing, 2020, pp. 43–65.

[18] N. C. C. f. M. Health (UK), “The classification of depression and
depression rating scales/questionnaires,” in Depression in Adults with
a Chronic Physical Health Problem: Treatment and Management.
British Psychological Society (UK), 2010. [Online]. Available:
https://www.ncbi.nlm.nih.gov/books/NBK82926/

[19] M. K. Ross, T. Tulabandhula, C. C. Bennett, E. Baek, D. Kim,
F. Hussain, A. P. Demos, E. Ning, S. A. Langenecker, O. Ajilore,
and A. D. Leow, “A Novel Approach to Clustering Accelerometer
Data for Application in Passive Predictions of Changes in Depression
Severity,” Sensors, vol. 23, no. 3, p. 1585, Jan. 2023, number: 3
Publisher: Multidisciplinary Digital Publishing Institute. [Online].
Available: https://www.mdpi.com/1424-8220/23/3/1585

[20] R. V. Shah, G. Grennan, M. Zafar-Khan, F. Alim, S. Dey,
D. Ramanathan, and J. Mishra, “Personalized machine learning of
depressed mood using wearables,” Translational Psychiatry, vol. 11,
no. 1, pp. 1–18, Jun. 2021, number: 1 Publisher: Nature Publishing
Group. [Online]. Available: https://www.nature.com/articles/s41398-
021-01445-0

[21] E. Balal, R. L. Cheu, T. Gyan-Sarkodie, and J. Miramontes,
“Analysis of discretionary lane changing parameters on
freeways,” International Journal of Transportation Science and
Technology, vol. 3, no. 3, pp. 277 – 296, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2046043016301149

[22] P. Gipps, “A model for the structure of lane-changing
decisions,” Transportation Research Part B: Methodological,
vol. 20, no. 5, pp. 403 – 414, 1986. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0191261586900123

[23] D. Xie, Z.-Z. Fang, B. Jia, and Z. He, “A data-driven lane-changing
model based on deep learning,” Transportation Research Part C
Emerging Technologies, vol. 106, pp. 41–60, 07 2019.

[24] X. Liu, J. Liang, and B. Xu, “A deep learning method for lane
changing situation assessment and decision making,” IEEE Access,
vol. 7, pp. 133 749–133 759, 2019.

[25] R. A. FISHER, “The use of multiple measure-
ments in taxonomic problems,” Annals of Eugen-
ics, vol. 7, no. 2, pp. 179–188, 1936. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-
1809.1936.tb02137.x

[26] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” The Annals of Statistics, vol. 32, no. 2, pp. 407–451,
2004. [Online]. Available: http://www.jstor.org/stable/3448465

[27] S. Aeberhard and M. Forina, “Wine,” UCI Machine Learning Repos-
itory, 1991, DOI: https://doi.org/10.24432/C5PC7J.

[28] S. Chatterjee, J. Mishra, F. Sundram, and P. Roop, “Towards
personalised mood prediction and explanation for depression from
biophysical data,” Sensors, vol. 24, no. 1, 2024. [Online]. Available:
https://www.mdpi.com/1424-8220/24/1/164

[29] U. D. of Transportation Federal Highway Administration,
“Next generation simulation (ngsim) vehicle trajectories and
supporting data [dataset].” Accessed 2021-07-09 from
http://doi.org/10.21949/1504477, 2016.

[30] Q. Wang, Z. Li, and L. Li, “Investigation of discretionary lane-change
characteristics using next-generation simulation data sets,” Journal of
Intelligent Transportation Systems, vol. 18, 06 2014.

[31] J. Zheng, K. Suzuki, and M. Fujita, “Predicting driver’s lane-changing
decisions using a neural network model,” Simulation Modelling
Practice and Theory, vol. 42, pp. 73 – 83, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1569190X13001792

[32] J. Močkus, “On bayesian methods for seeking the extremum,” in
Optimization Techniques IFIP Technical Conference Novosibirsk, July
1–7, 1974, G. I. Marchuk, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1975, pp. 400–404.

[33] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online].
Available: https://www.tensorflow.org/

56

[34] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems
32. Curran Associates, Inc., 2019, pp. 8024–8035. [Online].
Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf

57

