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Abstract—Reaching a target safely and quickly is a control
goal pursued by various applications, such as post-disaster rescue
robots and industrial shipment. However, it is hard to formally
guarantee safety and time-optimality under unknown dynamics
via model-free controller synthesis algorithms. As a response,
we propose a model-free reinforcement learning (RL) algorithm
that synthesize a controller to reach a predefined target set of
states with a probabilistic guarantee of time optimality, i.e., the
actual reaching time is bounded close to the shortest time possible
with high probability, and the bound becomes tighter when more
training data is sampled. Our algorithm leverages a reward
function that based on signal temporal logic (STL) robustness
to reward fast reaching. With this reward function, we prove
that Probably Approximately Correct (PAC) optimality in the
state-value function implies PAC optimality in reach time. Then,
we build our algorithm by extending Deplayed Gaussian Process
Q learning (DGPQ) algorithm with a safety margin to protect
the controlled agent. Consequently, our algorithm guarantees
safety and a PAC bound in recovery time. Experiments show
our method can achieve 97.7% success rate to reach the target
with in the maximum time tolerance and outperform baselines.

I. INTRODUCTION

Time is life, and time is money — this saying applies to
various controller synthesis scenarios. For example, a post-
disaster rescue robot needs to find survivors within the shortest
time possible [1], [2], and any delay in industrial shipping
may impose a large cost on manufacturing [3]. Therefore,
researchers have discussed time-optimal control [4], [5] since
1950s. Recent progress in controller synthesis has also targeted
safe and fast task accomplishment, such as by setting a
maximum tolerable time [6], [7], [8] or encouraging high
speed by rewards [9], [10].

Consider a motivating example of a post-disaster rescue
robot [1]. The robot navigates through ruins after an earth-
quake, aiming to reach a location where trapped survivors
are detected. This scenario presents numerous challenges: the
robot must traverse highly irregular terrains, avoid obstacles,
and contend with varying road surface conditions and different
loads. These factors make the system dynamics complex and
hard to be identified in an explicit form, such as ordinary
differential equations (ODE). Traditional control methods,
which rely on precise mathematical models, struggle in such
unpredictable environments. In scenarios with such unknown
and complex dynamics, our objective is for the robot to reach

* denotes equal contribution.

survivors in the shortest possible time. However, if achieving
the absolute shortest time is infeasible due to unforeseen
obstacles and unknown dynamics, the robot’s reaching time
should not significantly exceed this shortest time.

To address this problem, we find the concept of Probably
Approximately Correct (PAC) bounds [11] relevant. Specifi-
cally, a PAC bound is a probabilistic bound on a quantity’s
deviation from its optimal value, that is achievable with
small computational overhead. This concept is particularly
useful in control systems where exact optimality is difficult
to guarantee due to uncertainty and complexity. Our major
challenge is to guarantee a PAC-bounded gap between the
actual target reaching time and the shortest time possible
with dynamics unknown. Controller synthesis for constraint
satisfaction without knowledge of the dynamics still remains
an open problem [12]. So far, controllers with guaranteed time-
optimality in reaching targets require knowing the dynamics
explicitly. To tackle time-optimality in black-box dynamics
[9], [10], scientists have leveraged model-free reinforcement
learning (RL) [13], which generates adaptive control policies
and bypasses dynamics identification. Indeed, with RL, we can
train the rescue robot in similar environments, and its control
policies are able to adapt to the actual dynamics [14], [15],
[16]. However, existing works cannot provide a guarantee in
a bounded reaching time gap in RL-based solutions so far.

To address this limitation, we propose Safe and PAC Time-
Optimal DGPQ (SPT-DGPQ), a model-free RL algorithm
that guarantees PAC time-optimality in target reaching tasks
on top of safety. SPT-DGPQ is extended from a PAC-MDP
algorithm, Delayed Gaussian Process Q-learning (DGPQ)[17],
added with (1) a specific reward function that aims for time-
optimality and (2) safety margins during exploration and
inference time. We prove that as long as the synthesized
control policy has its state-value function PAC-bounded, it also
has the target reaching time PAC-bounded. That is, starting
from any initial state in the initial set, the gap between the
actual reaching time and the shortest reaching time possible is
bounded with high probability, and the bound becomes tighter
with more training data.

In summary, we have the following contributions:
1) We propose a model-free RL algorithm that produces

controllers safely reaching a target fast in unknown
dynamics. To the best of our knowledge, this is the
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Methods Model
-free

Time-optimality
guaranteed

Safety
considered

Model-based
e.g. [4], [18], [19], [20], [21], [22] ✓

RL-based
e.g. [9], [10], [23], [24] ✓ ✓

SPT-DGPQ (ours) ✓ ✓(PAC) ✓

TABLE I: SPT-DGPQ vs. existing time-optimal control methods.

first model-free RL algorithm provides a probabilistic
guarantee on the reaching time.

2) We prove that the synthesized control policies guarantee
PAC time-optimality with enough training samples. Our
method is the first to integrate all three essential features:
robustness to uncertainty, temporal logic satisfaction,
and optimal control performance for systems operating
in a continuous state space.

3) We run extensive experiments on various benchmarks
including linear systems and non-linear systems. We
provide a case study that validates the PAC time-
optimality of SPT-DGPQ.

The rest of this paper is organized as follows: Section II
discusses related papers. Section III presents preliminaries.
Section IV presents the problem statement and assumptions.
Section V presents the time-optimality proof. Section VI
evaluates our method. Section VII concludes the paper.

II. RELATED WORKS

The problem of time-optimal control has been well-
established since the 1950s. The motivation is to achieve the
fastest trajectory to achieve a given objective. The first known
time-optimal control is developed in bang-bang systems, i.e.,
the systems that switch between two discrete states like power
on/off for a water heater [4]. In the following decades, online
optimization-based time-optimal control has been synthesized
for planning the fastest routes in robots [20] and identifying
the fastest quantum state transition using magnetic pulses [21].
In 2000s, MPC-based time-optimal control has been leveraged
in both linear [22], [18] and nonlinear dynamical systems [19].

The assumption for these methods above is a known system
dynamics, and therefore analytical time-optimal control can be
derived. Additionally, the above literature have not considered
obstacles that have to be avoided during the control synthesis.
When the system model is unknown, data-driven control
synthesis takes place. For fully unknown dynamics, state-
of-the-art techniques leverage model-free RL [25]. Recently,
researchers have addressed the issue of achieving maximal
reward within the time limit using RL, where these time limits
can be set by either the environment or for training purposes
[24]. More research in RL has shown time-optimality can be
encouraged by reward function designs in various applications,
including autonomous racing and quadcopter drones [9], [10],
[23].

However, one shortcoming of these RL-based time-optimal
control is the lack of guarantees. Researchers have categorized
control synthesis methods into three levels of guarantees:
(level 1) no guarantee, only empirical supports available, (level
2) probabilistic guarantee and (level 3) analytical guarantee

[12]. So far, all model-free time-optimal control algorithms
belong to level 1, and our goal is to develop the first algorithm
in level 2. PAC RL has been studied in scenarios such as
simulation-to-reality transfer [26]. To obtain a probabilistic
guarantee of time-optimality, we consider probably approx-
imately correct (PAC) RL [27], [11], [28], which provides
probabilistic guarantees in achieving maximal total reward
with sample efficiency.

Unfortunately, the majority of PAC RL algorithms assume
finite state and action spaces, which are not applicable to
continuous systems. We have identified one method that
assumes continuous state space, namely delayed Gaussian
process Q learning (DGPQ) [17]. This approach provides
a PAC bound on training sample efficiency to achieve the
maximum expected reward by using Gaussian processes to
represent value functions. In this paper, we modify DGPQ
so that its PAC guarantee on value is converted into PAC
guarantee on time-optimality.

A comprehensive comparison between our method and
existing time-optimal control methods is listed in Table I. We
categorize existing works into model-based methods and RL-
based methods. We compare these methods on three features:
model-free, guarantee of time-optimality and safety consid-
eration. Model-based methods have time-optimality guarantee
since the control is obtained by solving optimization problems
based on the system model. This guarantee is generally
unavailable in RL-based methods. Our method is the first work
that includes all three features.

III. PRELIMINARIES

A. Signal Temporal Logic (STL) and Robustness

Signal temporal logic (STL) is a logical formalization to
specify properties of continuous signals [29], such as trajec-
tories in a physical state space. On a trajectory denoted as
s̄ := s0s1 . . . sT , ∀st ∈ S, the grammar of STL is defined as

φ ::= ⊤ | g(s̄) < 0 | ¬φ | φ1 ∧ φ2 | φ1U[t1,t2]φ2. (1)

Here, ⊤ is tautology and g : ST 7→ R is a real-valued
function on signals. Temporal operator U[t1,t2] denotes the
until operator, and φ1U[t1,t2]φ2 means φ2 must hold at some
time t ∈ [t1, t2] and φ1 must always hold before t. The
until operator can be converted into two additional tempo-
ral operators (1) eventually/finally operator F[t1,t2] and (2)
always/globally operator G[t1,t2]. Please refer to [29] for more
details.

Researchers have defined robustness scores on STL, also
known as quantitative semantics [30], [31], [32]. Specifically, a
robustness score is a real-valued function ρ : ST ×N≥0×Φ 7→
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R that evaluates ρ(s̄, t, φ) on three inputs: a trajectory s̄ of
length T , a starting time step t of the trajectory, and a STL
task φ ∈ task space Φ. The function ρ evaluates how much
a trajectory satisfies a specification, with ρ ≥ 0 equivalent to
task accomplished, and ρ < 0 equivalent to failure. Please
refer to [30] for more details.

B. Model-free reinforcement learning (RL)

Model-free RL is a machine learning paradigm that learns
control policies in black-box dynamics without system iden-
tification [13], [33], [34]. Specifically, RL models a system
state’s evolution with a Markov decision process (MDP)
M = (S,A, f, r, γ). Here, S and A are the state space and
action space. In addition, r : S 7→ R is a real-valued reward
at each state, and γ ∈ (0, 1) is a discount factor.

The transition distribution f : S × A 7→ ∆(S) models a
stochastic dynamics. The notation ∆(·) denotes the space of
all probability distributions over a set. Moreover, a stochastic
control policy is a function π : S 7→ ∆(A). Based on this
formalization, from an initial state s0 ∈ S, a trajectory of
states is sampled by: (i) at a discrete time step t, action at ∼
π(st) and (ii) the next state st+1 ∼ f(st, at). Notice that
deterministic dynamics, control policies and initial states are
special cases of their stochastic versions, with a probability of
obtaining a state or action being either 0 or 1.

Under the model-free assumption, f is unknown. The goal
for model-free RL is to find a control policy that maximizes
the value function for all s ∈ S, i.e.,

maximizeπ v(s) := Ef,π[

∞∑
t=1

γtr(st) | s0 = s]. (2)

C. PAC-MDP RL

A RL algorithm A is PAC-MDP [11], [27] iff it synthe-
sizes a control policy π within a polynomial sample size
m = poly(1/ϵ, 1/δ) and satisfy

∀s ∈ S, Pr
f,π,A

[v∗(s)− vπ(s) ≤ ϵ] ≥ 1− δ, (3)

where v∗ and vπ are the value function under optimal control
policy π∗ and the synthesized control policy π, respectively,
ϵ ≥ 0 is an error rate, and δ ∈ (0, 1) is the probability of
failure. Notice that besides f and π, randomness also sources
from the algorithm A, such as sampling training trajectories.

D. Q Learning

Q learning is a standard value-based model-free RL tech-
nique [35], [36], [37]. The idea is to estimate an action-value
function, also known as Q-value function q : S ×A 7→ R and
represent it as learnable parameters. The Q-value function is
defined as

q(st, at) := Ef,π[

∞∑
t′=t

γt′−tr(st′) | st, at]. (4)

That is, the expected cumulative reward that can be received
if we take an action at at a state st. From this definition,
we can see the relationship between Q-value function and the

Fig. 1: A rescue robot is learning how to reach people in
shortest time possible in a training field.

state-value function (also known as the V-value function) is
v(st) = Eπ[q(st, at)], i.e., the V-value is the expected Q-
value over all actions according to the policy π. Q-learning
can be implemented in various ways. The most naive method
is to represent the Q-value function as a table, updating and
caching the estimated Q-value at each state, action tuple [38],
[39], [40]. However, this table representation has overhead
proportional to the size of discrete state and action spaces, and
is not feasible for continuous spaces. Therefore, researchers
have investigated deep Q learning, where the Q-value function
is represented by a deep neural network [41]. State-of-the-
art deep Q learning algorithms include prioritized experience
replay [42], error reduction by double representations [43],
and injecting noises into learnable parameters for exploration
tuning [44].
E. Gaussian Process and DGPQ

An alternative learnable parameter representation in model-
free RL is Gaussian Processes (GP) [45]. A GP represents
the joint distribution between an input x and a target y as
y | x ∼ N (µ, k), where µ is a mean living in the same space
of the target y and k is a covariance function, also known
as a kernel. In plain words, the parameters to be updated
throughout learning are µ and k. The motivation behind using
GP for RL is to handle continuous state spaces while modeling
the uncertainty behind the decision process. Example model-
free RL using GP representation include GP-Sarsa [46] and
iGP-Sarsa [47].

Delayed Gaussain Process Q-learning (DGPQ) is a PAC-
MDP model-free RL algorithm that leverages GP represen-
tation in Q learning[17]. It is able to achieve Equation (3)
by sampling m = poly(NS , 1/ϵ, 1/δ, 1/(1 − γ)) data points.
Here, NS is a covering number of state space S. This method
assumes a continuous state space and a finite action space,
and parameterizes one GP per action. The idea is to maintain
both GP representations and a tabular representation, and the
table is updated only when the GP converges to a significantly
different Q value. Therefore, the table’s learning is delayed.

IV. PROBLEM FORMULATION

A. Motivating Example

There are plenty of cases where we prefer an agent to
complete a task as fast as possible. Let us consider a mo-
tivating example of a rescue robot [1], which is required to
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reach the location of injured people, and time-optimality is
desired. As illustrated in Figure 1, the robot must identify
a route that takes as little time as possible while avoiding
obstacles. In various post-disaster scenarios, the ground-truth
dynamics would be too complex to be captured, and model-
free RL can be leveraged to train the robot in a similar
training environment. Then, transfer learning shall be adopted
at runtime [48].

It would be promising that the time-optimality of a rescue
robot, or any other applications that ask for speediness, can be
theoretically guaranteed. Although a deterministic guarantee
remains an open problem, we hope to reach the low-hanging
fruit of probabilistic guarantee. Specifically, we would like to
develop a learning algorithm that provides a PAC bound on
time-optimality. That is, by using this algorithm, with high
probability and low sample complexity, the learned policy
would produce a trajectory that takes not much longer time
than the shortest time possible.

B. Assumptions

Let t = 0, 1, 2, . . . , T be discrete time steps, with T being
the maximum tolerable time of target reaching. We denote a
continuous, compact and bounded physical state space as S,
and a finite action space as A. Both S and A are metric spaces.
A control policy is abstracted as a deterministic function π :
S 7→ A, i.e., the action at = π(st). A system dynamics is
abstracted as another deterministic function f : S × A 7→
S, i.e., the next state st+1 = f(st, at). We assume that the
explicit model of f is unknown, but we can sample trajectories
for training purposes. Moreover, we are given a safe set of
states Ssafe ⊂ S and a target set of states Starget ⊂ Ssafe to
be reached. We always start from some s0 ∈ Ssafe \ Starget.
Finally, a trajectory’s length will not exceed the tolerable time
T . That is, if a trajectory successfully reaches Starget within
T steps, we call an early stop. If it enters an unsafe state or
does not reach the target within T , the task is aborted.

C. Problem Statement

We first define the target reaching time.

Definition 1 (Target reaching time). Given dynamics f and
target state set Starget, the target reaching time tπrec : S 7→
{0, 1, . . . , T,∞} evaluates the number of time steps needed for
reaching the target. That is, tπrec(s) = argmint∈{0,...,T} st ∈
Starget if Starget is reached from s0 = s within T steps under
control policy π, and tπrec(s) =∞ otherwise.

The target reaching time is a way to measure how quickly
the system can reach one of the goal states starting from an
initial state, following a specific strategy, and within a given
time limit. The target reaching time tells us the number of steps
needed to get to the goal state from the starting point if it is
possible to do so within the allowed time. If the system reaches
the goal state within the allowed time, the target reaching time
will be a specific number of steps it took to get there. If the
system cannot reach the goal state within the allowed time,

the target reaching time will indicate that it’s not achievable
in the given time horizon.

Next, we define a safe and time-optimal reaching problem
as follows.

Definition 2 (Safe and Time-Optimal Reaching Problem).
Given dynamics f and Starget ⊂ Ssafe ⊂ S, this problem
aims to solve
∀s0 ∈ Ssafe \ Starget,minimizeπ tπrec(s0)

subject to ∀t ∈ {0, . . . , T}, st ∈ Ssafe,
(5)

With the dynamics being unknown, solving for the optimal
solution of Equation (5) becomes undecidable for an arbitrary
initial state s0 in the initial set. This is because reachability
problems under unknown dynamics are already proven to be
undecidable [49], and if we can decide whether there exists
a solution for (5), we can also decide whether Starget is
reachable. This is primarily because the lack of complete
knowledge about the system’s behavior makes it impossi-
ble to exhaustively explore all possible state transitions and
outcomes. These undecidability results highlight the inherent
limitations of algorithmic methods in dealing with complex
systems where the dynamics are not fully known or are highly
complex. Therefore, we aim for a sub-optimal solution as
follows.

Definition 3 (Safe and PAC Time-Optimal Reaching Problem).
This problem aims to solve the problem in Definition 2
by model-free RL. Instead of finding a controller π∗ that
minimizes the reaching time trec(s0) for all s0 ∈ S, it seeks a
RL-based synthesis algorithm A for a sub-optimal controller
π, such that, within m = poly(NS , 1/ϵ, 1/δ) samples, we can
achieve

∀s0 ∈ Ssafe \Starget, Pr
A
[tπrec(s0)− t∗rec(s0) ≤ ϵrec] ≥ 1− δ,

(6)
where tπrec(s0) and t∗rec(s0) denote the reaching time by π and
π∗ from a state s0, respectively, ϵrec ≥ 0 is a gap in reaching
time and δ ∈ [0, 1] is a failure probability.

We aim to solve a problem where we want to minimize
the time it takes to reach a goal state from any starting point,
but we do this using a learning approach that doesn’t rely on
the model of the system’s dynamics. Instead of aiming for a
perfect controller that optimally minimizes the reaching time
from any starting state, this problem focuses on developing
a sub-optimal controller through an RL-based synthesis algo-
rithm. This approach ensures that, with a reasonable number
of samples, the resulting controller can achieve nearly optimal
reaching times with a high probability, while allowing for a
small acceptable difference in performance compared to the
optimal controller.

V. SAFE AND PAC TIME-OPTIMAL DGPQ (SPT-DGPQ)
A. Reward Function Design for PAC Time-Optimality

Our goal in this subsection is to design a reward function,
so that a PAC bound on value function implies a PAC bound
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on reaching time. To do so, at time t, we start from a STL
formula on trajectory segment s̄ = s0 . . . st

φ(t) := Ft′∈[0,t]dtarget(st′) ≤ 0, (7)

where dtarget : S 7→ R≥0 evaluates the smallest distance
from st′ to a point on Starget’s boundary. Since S is bounded,
we have a maximum distance ∀s ∈ S, dtarget(s) ≤ dmax.
Then, we design the following reward function on s̄ =
s0 . . . st.

r̃(s̄) :={
ρ(s̄, 0, φ(t)) = maxt′∈[0,t](−dtarget(st′)) if st ̸∈ Starget

rmax ≥ (dmax

∑T
t′=0 γ

t′)/γT otherwise.
(8)

That is, if the trajectory segment has not reached Starget,
we give it a negative reward, which is the negative of its
closest distance to Starget so far, i.e., the STL robustness
of φ(t). Once Starget os reached, we offer a large positive
reward rmax and terminate the trajectory. Notice that this r̃
is not Markovian, since it requires a trajectory segment as
input instead of just the current state. We can turn it into a
Markovian r by:

r(st, rprev) :={
ρ(s̄, 0, φ(t)) = max(rprev, (−dtarget(st))) if st ̸∈ Starget

rmax ≥ (dmax

∑T
t′=0 γ

t′)/γT otherwise.
(9)

This reward caches the previous robustness into rprev ,
which is initialized to −∞. Therefore, we have Markovian
r : S × R 7→ R, with the state space augmented by a one-
dimensional reward rprev .

To support our forthcoming claims, we present the following
Lemma:

Lemma 1 (Monotonicity between Reaching Time and Value).
With the reward in Equation (9), starting from a s0 ∈ Ssafe \
Starget, for any two control policies π1 and π2 with values
vπ1(s0), vπ2(s0) and reaching time tπ1

rec(s0), t
π2
rec(s0), we have

monotonicity

∀s0 ∈ Ssafe \ Starget,(
tπ1
rec(s0) ≤ tπ2

rec(s0)⇐⇒ vπ1(s0) ≥ vπ2(s0)
) (10)

Proof. For policies π1, we denote rπ1
t as the reward received

at time t. Likewise, we have rπ2
t . To prove⇒, the value under

a policy πi is vπi(s0) = γt
πi
rec(s0)rmax+

∑t
πi
rec(s0)
t=0 γtrπi

t . That
is, a large discounted positive reward upon reaching the target,

plus the sum of negative discounted rewards before. Therefore,

vπ1(s0)− vπ2(s0)

= (γtπ1
rec(s0) − γtπ2

rec(s0))︸ ︷︷ ︸
≥γT

rmax +

tπ1
rec(s0)∑
t=0

γtrπ1
t︸ ︷︷ ︸

≥−dmax
∑T

t=0 γt

−
tπ2
rec(s0)∑
t=0

γtrπ2
t︸ ︷︷ ︸

≤0

≥ γT rmax − dmax

T∑
t=0

γt ≥ 0 by definition of rmax

(11)

To prove ⇐, we can use the same bounds above to show the
contrapositive holds, i.e., tπ1

rec(s0) > tπ2
rec(s0) ⇒ vπ1(s0) <

vπ2(s0).

Lemma 1 establishes a connection between the value and
the concept of reaching time. The value function represents
the expected total reward an agent can obtain, starting from
a given state and following a particular policy. Usually, the
RL algorithm uses the estimated value function to improve
the policy. The optimal policy is one that maximizes the value
function, ensuring the agent accumulates the highest possible
reward over time. Lemma 1 claims that shorter reaching time
is equivalent to a higher value. Therefore, the optimal control
policy with largest value must reach the target within shortest
time possible.

In light of this relationship between reaching time and
value, it is crucial to explore how the optimization of the
value function translates to practical performance metrics.
By maximizing the value function, the agent is effectively
seeking the policy that yields the highest expected cumulative
rewards. Consequently, the pursuit of maximizing the value
function aligns with minimizing the reaching time, as the agent
efficiently navigates toward states that yield maximal rewards.
While maximizing the value function inherently guides the
agent towards strategies that reduce reaching time, it is not
sufficient to only establish this qualitative relationship. For
practical applications, especially in scenarios requiring per-
formance guarantees, a more rigorous quantitative analysis is
necessary.

Therefore, to bridge this gap, we employ bounding tech-
niques to derive a Probably Approximately Correct (PAC)
guarantee on the reaching time. This approach allows us to
leverage the PAC guarantee on the value function to obtain
a corresponding bound on the reaching time, thus providing
a more concrete and actionable performance metric for the
optimal policy.

Lemma 2 (PAC Time-Optimality). Under a model-free RL
algorithm A that synthesizes a control policy π to reach
Starget, if we use the reward in Equation (9), with an error
ϵ ≥ 0, failure probability δ ∈ [0, 1], maximum trajectory length
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T > 0, maximum distance from a state to Starget as dmax > 0,
and discount factor γ ∈ [0, 1], we have

∀s0 ∈ Ssafe \ Starget,
(
Pr
A
[v∗(s0)− vπ(s0) ≤ ϵ] ≥ 1− δ

=⇒ Pr
A
[tπrec(s0)− t∗rec(s0) ≤ ϵrec] ≥ 1− δ

)
,

with ϵrec = logγ

(
1−

ϵ+ dmax

∑T
t=0 γ

t

γT rmax

)
.

(12)

Proof. From Lemma 1 we know tπrec(s0) ≥ t∗rec(s0) on all
s0 ∈ Ssafe \ Starget, so let tπrec(s0) = t∗rec(s0) + ∆t, with
∆t ≥ 0. We have

v∗(s0)− vπ(s0) ≤ ϵ

=⇒ (γt∗rec(s0)rmax +

t∗rec(s0)−1∑
t=0

γtr∗t )

− (γt∗rec(s0)+∆trmax +

t∗rec(s0)+∆t−1∑
t=0

γtrπt ) ≤ ϵ

=⇒ γt∗rec(s0)(1− γ∆t)rmax ≤ ϵ+

t∗rec(s0)+∆t−1∑
t=0

γtrπt︸ ︷︷ ︸
≤0

−
t∗rec(s0)−1∑

t=0

γtr∗t︸ ︷︷ ︸
≥−dmax

∑T
t=0 γt

=⇒ γtrec(s0)
∗
(1− γ∆t)rmax ≤ ϵ+ dmax

T∑
t=0

γt

=⇒ ∆t ≤ logγ

(
1−

ϵ+ dmax

∑T
t=0 γ

t

γt∗rec(s0)rmax

)
≤ logγ

(
1−

ϵ+ dmax

∑T
t=0 γ

t

γT rmax

)
︸ ︷︷ ︸

ϵrec

.

(13)

Therefore, the event ∆t ≤ ϵrec must occur with probability at
least that of v∗(s0)− vπ(s0) ≤ ϵ, i.e., ≥ 1− δ.

The idea behind Lemma 2 is that when the positive reward
rmax received upon reaching is large, a small delay ∆t will
lead to rmax being discounted, causing a large difference in
value. Therefore, to maintain a small gap in value, we need to
maintain a small gap in reaching time. Based on the connection
established by Lemma 1, Lemma 2 maps the PAC bound on
value to the PAC bound on reaching time.

We can plug in some numbers to check the tightness of
ϵrec. For example, when ϵ = 0.1, γ = 0.95, T = 100 and
dmax = 10, we have rmax ≥ 33590.8 by Equation (9). If we
choose rmax = 105, then ϵrec = 7.99. This means we have
a high probability of the reaching time is no more than 7.99
steps from the shortest time possible.

B. Main Algorithm with Safety Margin

With Lemma 2, any model-free PAC-MDP algorithm on
continuous state space can achieve PAC guarantee in time
optimality when equipped with our reward. We choose DGPQ
[17], which is one of the few algorithms that satisfy the above
criteria. The training algorithm is modified with the following
differences.

1) The reward function is modified to Equation (9).
2) Any training episode terminates upon Starget is reached

or after T steps.
3) Upon exploration and inference, we encourage safety

with a safety margin. That is, if we enter a state within
a distance dsafe ≥ 0 to Sunsafe, the task is aborted.

That is, safety constraint is encouraged by terminating
the trajectory upon reaching within a margin of Sunsafe.
Termination provides clear feedback about the consequences
of the agent’s actions. If the agent’s policy leads to frequent
terminations due to collisions, the agent will quickly learn to
recognize and avoid states and actions that increase the risk
of collisions. This feedback loop is crucial for refining the
agent’s policy to improve performance

With the modified SPT-DGPQ, we have our main theorem.

Theorem 1 (PAC Time-Optimality of SPT-DGPQ). With our
algorithm SPT-DGPQ, we achieve PAC time-optimality is
Definition 3 if we have maximum tolerable trajectory length
T > 0 and maximum distance to Starget as dmax > 0.

Proof. As mentioned in Section III-B, DGPQ is PAC-MDP
and satisfies

∀s0 ∈ Ssafe \Starget, Pr
A
[v∗(s0)−vπ(s0) ≤ ϵ] ≥ 1−δ, (14)

with ϵ ≥ 0 and δ ∈ [0, 1], achievable with number of training
samples m = poly(NS , 1/ϵ, 1/δ, 1/(1 − γ)). Therefore, by
Lemma 2, we have

∀s0 ∈ Ssafe \Starget, Pr
A
[tπrec(s0)− t∗rec(s0) ≤ ϵrec] ≥ 1− δ,

(15)
with ϵrec = logγ

(
1 − ϵ+dmax

∑T
t=0 γt

γT rmax

)
achievable in m

training samples.

Theorem 1 states the probability that our algorithm’s per-
formance is close to the optimal performance is very high.
This is achievable with a certain number of training samples,
which depends on various factors like the number of states,
the accuracy we want, and the confidence level we desire.

Then, Lemma 2 helps translate this value performance into
time performance. Specifically, it tells us that the time it
takes for our algorithm to reach the target state from any
safe state is very close to the optimal time, within a small
error margin. This error margin can be achieved with enough
training samples.

To be noticed, the time PAC bound is dependent to the
maximum of the reward and the ϵ. However, increasing the
magnitude of the reward does not necessarily lead to better
reaching performance due to various reasons. When the max-
imum reward is very large, the estimated value of states and
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actions can become exaggerated. This can lead to instability
in the learning process as the algorithm might become overly
optimistic about certain states or actions. Furthermore, large
rewards can cause the learning algorithm to converge more
slowly. The agent may take longer to learn the optimal policy
because the value function updates become larger, causing
more fluctuation in the estimates. Additionally, modifying the
value of ϵ will also change the number of training examples
to achieve the PAC bound in Theorem 1.

Algorithm 1 SPT-DGPQ (single target, reach&avoid task)
Input: GP kernel k(·, ·), state space S, action space A,

STL property φ, dynamics f that is unknown but allows
trajectory sampling, target set Starget, sampled trajectory
length T , discount factor γ, thresholds σtol and ϵ

Output: Estimated Q-value function as a table q̂

1: for each action a ∈ A do
2: GPa ← N (rmax/(1− γ), k)
3: Table q̂a ← empty table
4: end for
5: while mtrain < m do
6: s0 ← uniform sampling from S
7: rprev ← −∞
8: for t = 0, . . . , T do
9: at ← argmaxa∈A(q̂a(st) using the upper bound

method in [17]
10: st+1 ← sampling from f(·|st, at)
11: rt ← r(st, rprev) as in Equation (9)
12: σ2

1 ← variance of GPat(st)
13: if σ2

1 > σ2
tol then

14: GPat
.fit(st, rt + γq̂at

(st+1))
15: end if
16: σ2

2 ← variance of GPat
(st)

17: if σ2
2 ≤ σ2

tol < σ2
1 and q̂at

(st)− mean of
GPat(st) > ϵ then

18: Update table entry q̂at(st) to GPat(st) + ϵ/2
19: Reinitialize GPat

to N (q̂at
, k)

20: end if
21: rprev ← rt
22: mtrain ← mtrain + 1
23: end for
24: end while
25: Concatenate tables by q̂ ← {q̂a | a ∈ A}

Delay Gaussian Process Q-Learning (DGPQ) is an algo-
rithm that combines delay Q-Learning with Gaussian pro-
cesses to address the challenges of model-free learning and
maintain the PAC-MDP property when the state-space is con-
tinuous. DGPQ maintains two representations of the estimated
Q value function: a set of tables q̂a and a set of GPs GPa for
all a ∈ A. The idea is to only cache values of converged GPs
into the table. The control policy is therefore taking the action
that maximizes the estimated Q value at each state.

As shown in Algorithm 1, we extend DGPQ into SPT-
DGPQ, which produces a control policy with PAC bound
on time-optimality. From lines 1 to 4, the final Q table is

initialized to empty, and the intermediate GPs are initialized
to Gaussians the same way as in DGPQ. Then, from lines 5
to 24, we train the GPs as well as the Q table. At line 7 and
11, we generate and cache our designed reward as in Equation
(9), which ensures the equivalence between optimality in time
and value based on Theorem 1. The update rule of the Q table
is the same as in DGPQ. First, the GP of an action is updated
when the current Q value at a state has a large variance (from
lines 12 to 15). Then, the Q table is updated by caching the
value of a GP when the GP converges (line 16 to 20).

VI. EXPERIMENTS

In this section, we evaluate SPT-DGPQ on various bench-
marks and compare it with other baselines. This section is
organized as follows: We first introduce the benchmarks that
are used for evaluation, then the baselines and settings for
comparison. After that, we explain the metrics we use and
show the experiment results.

A. Benchmarks

We have done experiments on two benchmarks with linear
dynamics: DC motor position and aircraft pitch, as well as one
nonlinear dynamics: inverted pendulum.

The DC motor position benchmark involves a compre-
hensive assessment of the performance characteristics and
capabilities of direct current (DC) motors in terms of their
ability to accurately and efficiently reach, maintain, and adjust
to specific positions. This benchmark is particularly relevant in
fields like robotics, automated control systems, and precision
machinery, where exact motor positioning is crucial. Key
aspects of this benchmark include evaluating the positional
accuracy of the motor, which is the measure of how precisely
and how efficiently the motor can achieve a given position,
often quantified as the deviation from the target position. DC
motor position benchmark uses the current as control input to
control the system to drive the motor angle to a target position,
for more details please refer to [50].

The aircraft pitch benchmark is governed by longitudinal
dynamics. We assume that the aircraft maintains a steady
cruising state at a fixed altitude and velocity, ensuring that
the forces of thrust, drag, weight, and lift are in equilibrium
both horizontally (x-direction) and vertically (y-direction).
Additionally, we assume that variations in the aircraft’s pitch
angle will not affect its speed under any conditions. We want to
control the angle of attack using the elevator deflection angle
as control input, for more details please refer to [51].

The inverted pendulum swingup benchmark consists of a
pendulum attached at one end to a fixed point, and the other
end being free. The goal is to make the system balance the
free end at an upright position, with its center of gravity
right above the fixed point. The control input of this bench-
mark is the torque which is binary, it is either clockwise
or counterclockwise. For more details, please refer to the
documentation on the official website of Openai Gym [52]
and its implementation.
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B. Baselines

We have implemented two baselines to compare with SPT-
DGPQ:

1) φ-reward deploys standard quantitative semantics as re-
ward function for training, the details of the quantitative
semantics of STL can be found in [53]. Additionally, we
apply the dense rewards settings introduced in [32] to
make the training more efficient. STL control synthesis
aims to ensure that an agent satisfies temporal logic
formulas efficiently and effectively. By leveraging opti-
mization techniques and robustness metrics, it is possible
to encourage the agent to meet these specifications in a
short time,

2) d-reward deploys heuristic distance-based reward func-
tion for training. In the baseline, the reward function
is crafted from a heuristic combination of two distinct
reward elements. The former is designed to encourage
the agent’s movement toward the target, and the latter
aims to discourage proximity to obstacles. The format is
the same as the settings in [33]. These two elements are
merged into a single reward via a linear combination,
with each element weighted with a coefficient. To make
a fair comparison with other methods, these coefficients
have been left untuned.

These two baselines are trained with the DGPQ method for
a fair comparison to SPT-DGPQ.

C. Settings

1) Benchmark Settings: The benchmark settings include
the settings for the initial set, the target set, the obstacle
position and other settings related to the benchmark. The
initial set of DC motor position benchmark is [0,−1,−1]
to [π, 1, 1], the target set is a ball with a radius 0.5
centered at [π/2, 0, 0], the unsafe set is set as a ball
with radius 0.2 centered at [π/4, 0, 0], the time step
of this benchmark is 0.05 seconds and the maximum
time tolerance is 100 control steps. The initial set of
the aircraft pitch benchmark is [−1, 0, 0] to [1, 0, 0],
the target set is a ball with a radius 0.5 centered at
[0, 0, 0], the unsafe set is set as a ball with a radius 0.1
centered at [0.7, 0, 0], the time step of this benchmark
is 0.05 seconds and the maximum time tolerance is 30
control steps. The initial set of the inverted pendulum is
[sin(π/4), 0, 0], the target set is a ball with a radius 0.5
centered at [1, 0, 0] which is the balance position, the
unsafe set is set as a ball with a radius 0.1 centered at
[0, 1, 3], the time step of this benchmark is 0.05 seconds
and the maximum time tolerance is 20 control steps.

2) Training Settings: The training settings include the
parameters of DGPQ and other baselines. The train-
ing steps for the three benchmarks are set to 40,000
control steps, the delta tolerance parameter of DGPQ
is 0.5, and the epsilion of DGPQ is 0.05. The action
of the DC motor position benchmark is discretized to
{−10,−5,−2, 2, 5, 10}, the action of the aircraft pitch

benchmark is discretized to{−10, 0, 10}, the action of
the inverted pendulum is {−1, 1}, the discount factor of
the value function is set to 0.95.

The target sets and unsafe sets are set to ball shape in the
experiments to simplify the distance calculation. They can also
be set to rectangles like in Fig. 1 or other shapes as users prefer
as long as we can get the distance between the state to the sets
to measure the degree of the robustness of satisfying these STL
formulas. The experiments are deployed on a PC with Intel(R)
Core(TM) i7-10700KF CPU @ 3.80 GHz, a Nvidia GeForce
GTX 3080 GPU and 64 GB RAM and a laptop with Intel(R)
Core(TM) i7-13700HX @ 2.10 GHz, Nvidia GeForce RTX
4060 GPU and 32 GB RAM.

For the training and the implementation details of DGPQ,
we use the same settings from [17].

D. Metrics

We evaluate our experimental results on the following
metrics.

1) Success rate. This is the percentage of the testing
trajectories that successfully reach the predefined target
set within maximum tolerable time without touching the
unsafe region (obstacles).

2) Reaching time. This is the average reaching time of
all testing trajectories. If a trajectory fails to reach due
to collision into obstacles or take time longer than
maximum tolerable time, we assign it with reaching time
= maximum tolerable time + 1.

3) Collision rate. This is the percentage of the testing
trajectories that failed due to touching the unsafe region,
i.e., colliding into the obstacles.

4) Stable rate (for inverted pendulum only). For inverted
pendulum, we are also interested in whether we are able
to stay within a stable set of states after reaching the
target. Therefore, we record the percentage of testing
trajectories that not only reach the target but also stay
stable.

E. Results

Table ?? shows the main results of SPT-DGPQ performance
on the three benchmarks compared with the two reward
baselines. There are three main observations from this table:

1) SPT-DGPQ has the highest success rate on three bench-
marks compared with the other two baselines. SPT-
DGPQ achieves 85.2% success rate on the DC motor
position benchmark, 74.7% success rate on the aircraft
pitch benchmark and 97.7% success rate on the in-
verted pendulum benchmark. In comparison, φ-reward
achieves 85.0% success rate on the DC motor position
benchmark, 68.5% success rate on aircraft pitch bench-
mark and 90.8% success rate on the inverted pendulum
benchmark. d-reward achieves 72.7% success rate on
the DC motor position benchmark, 69.3% success rate
on aircraft pitch benchmark and 92.3% success rate
on the inverted pendulum benchmark. Since SPT-SGPQ

41



DC Motor Position Aircraft Pitch Inverted Pendulum
Success Collision Time Success Collision Time Success Collision Stable Time

φ-reward 85.0 5.2 37.06 68.5 12.1 8.20 90.8 0 15.5 4.33
d-reward 72.7 3.2 50.58 69.3 9.1 6.97 92.3 0 18.3 3.88

SPT-DGPQ 85.2 0.9 36.63 74.7 12.2 4.30 97.7 0 24.4 2.89

TABLE II: Performance of SPT-DGPQ and baselines. The success rate and collision rate are in percentage, the unit of reach
time is number of time steps.

has a reward mechanism that guarantees the PAC time-
optimality by design, therefore, SPT-SGPQ will have
a higher chance to reach the target set before the
maximum time tolerance.

2) SPT-DGPQ has the shortest reach time on three bench-
marks compared with the other two baselines. SPT-
DGPQ needs 36.63 time steps on average to reach
the target set on the DC motor position benchmark,
4.30 time steps on average to reach the target set on
the aircraft pitch benchmark and 2.89 time steps on
average to reach the target set on the inverted pendulum
benchmark. In comparison, φ-reward needs 37.06 time
steps on average to reach the target set on the DC
motor position benchmark, 8.20 time steps on average
to reach the target set on the aircraft pitch benchmark
and 4.33 time steps on average to reach the target set on
the inverted pendulum benchmark. d-reward needs 50.58
time steps on average to reach the target set on the DC
motor position benchmark, 6.97 time steps on average
to reach the target set on the aircraft pitch benchmark
and 3.88 time steps on average to reach the target set
on the inverted pendulum benchmark. Similar to the
above insights, SPT-DGPQ has encouraged the policy
to achieve PAC time-optimality, therefore, it will have
short reach time compared to baselines.

3) Sometimes SPT-DGPQ can have a slightly higher col-
lision rate compared to the two baselines. We notice
SPT-DGPQ has 12.2% collision rate on aircraft pitch
benchmark, in comparison, φ-reward has 12.1% colli-
sion rate and d-reward has 9.1% collision rate. This is
due to that the policy choose to take the risk of collision
but intends to achieve a shorter reach time and a higher
success rate since safety is encouraged but not enforced.
Moreover, this does not conflict with Theorem 1 since
there is no explicit guarantee on the collision probability.

There are also some minor observations from this table. There
is an additional metric for the inverted pendulum benchmark
which is the stay rate. This metric is evaluating whether the
system can stay in the target set after reaching it within the
maximum time tolerance. SPT-DGPQ achieves highest stay
rate compared with baselines. However, since the focus of our
work is reachability control instead of stability control, the
stay rate is not explicitly encouraged during training, and the
stay rate is not as high as reach rate. In the future, we plan to
make the control policy that satisfies fast reaching and stability
at the same time.

The reaching success rate of φ-reward is fairly close to the
reach rate of SPT-DGPQ. Since the only difference between
SPT-DGPQ and the φ-reward baseline is the reward shaping

after reaching, therefore, it is possible for them to have similar
performance on some tasks, but SPT-DGPQ has a higher reach
rate compared to the φ-reward baseline.

F. Case Study: PAC Time-Optimality Validation

In this subsection, we will implement experiments on the
DC Motor Position benchmark with some adaption to validate
the PAC time-optimality of SPT-DGPQ.

We have to compare the reach time of SPT-DGPQ with
the reach time of the optimal policy on the DC Motor
Position benchmark. However, it is challenging to make this
comparison since it is hard to find the optimal policy that takes
the shortest time to reach the target. Although the system is
linear and the action space is discrete, it is challenging to
search for a time-optimal policy.

To tackle with this problem, we make a compromise to find
the time-optimal policy for the set of test cases by traversing
the combinations of the actions over the time horizon. Un-
fortunately, the complexity of traversing is exponential to the
length of the time horizon. For example, if there are 4 actions
for the benchmark, and the time horizon is 20, we have to
traverse 420 ≈ 1.09 ∗ 1012 number of action combinations to
find the time-optimal control from a single initial point.

Therefore, we have to find efficient ways that compress
the size of search space to reduce computational cost. An
intuitive solution to compress the search space by reducing
the action space and the time horizon. For this case study,
we reduce the maximum time tolerance to 30, and we adapt
the action space to {−2,−1, 1, 2}. Furthermore, the search
progress can be accelerated by referring the solutions of SPT-
DGPQ. For example, assuming at one arbitrary initial point,
the control generated by SPT-DGPQ takes 12 time steps to
reach the target, we can search all the combinations of the
policies that take at most 11 time steps. In this case, we only
have to traverse 411 ≈ 4.19 ∗ 106 action combinations which
significantly reduces the search space. This process can be
further accelerated if we dynamically change the reference to
the current best solution instead of the solution generated by
SPT-SGPQ. For some special cases, such as linear systems
with binary control inputs, the time-optimal solution can be
obtained by optimization[4].

Fig. 2 shows qualitative results of testing trajectories for
the adapted DC Motor Position benchmark. We have included
the history of Euclidean distance, angle, and angular velocity
of 40 trajectories that reach the target by the maximum time
tolerance from random initial points in the initial set.

There are three main observations from Fig. 2:
1) Euclidean distance varies over time for different trajecto-

ries. The distances fluctuate significantly and are not in a
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Fig. 2: Qualitative results of testing. Each curve represents a trajectory from a random initial point in the initial set.

Fig. 3: Time gaps on 40 testing initial points from the initial
set. The left is a histogram chart showing the distribution, the
right is a pie chart showing detailed percentage of occurrences.

monopoly pattern. This does not conflict with the time-
optimality of SPT-DGPQ since the system dynamics and
the control strategies employed will jointly determine the
state transitions. The observed non-monotonic Euclidean
distances imply that the control strategy is adaptive to
the randomized initial points, responding to real-time
feedback from the system. This adaptability is crucial
for achieving time-optimality when the initial point is
not static.

2) Most angles of the trajectories stabilized in a short
time. Initially, the angles vary widely, but after around 5
time steps, most trajectories tend to stabilize. This rapid
stabilization highlights the efficiency and responsiveness
of the SPT-DGPQ approach. There are a few trajectories
with noticeable deviations, indicating some variability
in the angles over time. This observation partially vali-
dates the probabilistic guarantee of the time-optimality
of SPT-DGPQ. The initial wide variability in angles
suggests that the system undergoes rapid adjustments in
the early stages. These adjustments reflect the system’s
response to the control inputs aimed at steering it toward
the desired state.

3) Most angular velocities of the trajectories reduce to zero
in a short time. This is due to the design of reward
function in Equation 9 since the optimal policy is reach
the target in the shortest time and stay in it. The rapid
reduction of angular velocities to zero ensures that the
system remains stable at the target state. This stability
is crucial for applications requiring precise positioning
or steady-state maintenance.

Then we compare the control generated by SPT-DGPQ and
the time-optimal control policy.

By Theorem 1, the time gap should be less than ϵrec =

logγ

(
1− ϵ+dmax

∑T
t=0 γt

γT rmax

)
, the maximum reward is set to 20

and dmax = 1.5, then ϵrec ≈ 1.2, this should be rounded to 2
to make an overapproximation without violating Theorem 1.

Fig. 3 shows the time gap between SPT-DGPQ and the time-
optimal control policy by traversal. We use a histogram chart
and a pie chart to show the distribution of the time gap. There
are two observations:

1) The minimum time gap is one time step and the maxi-
mum time gap is seven time steps. From the histogram
chart We can see in most cases, the time gap is less or
equal to two time steps, only a few cases that the time
gap is greater than three time steps.

2) From the pie chart, we can see 15% of the total
occurrences take only one more time step to reach the
targets compared with the time-optimal policy, 46% of
the total occurrences take two more time steps to reach
the targets compared with the time-optimal policy. This
observation validates Theorem 1 since there are 61%
occurrences take less than or equal to two more time
steps to reach the target compared with the time-optimal
policy, which is greater than 1− δ.

VII. CONCLUSION

In conclusion, we propose a safe and PAC time-optimal
model-free learning method for reinforcement learning. The
results demonstrate that the proposed method, SPT-DGPQ,
can efficiently and safely control the system to a pre-defined
target set while outperforming baselines on three benchmarks.
Additionally, SPT-DGPQ offers a probabilistic guarantee on
time-optimality, which underscores its robustness and effec-
tiveness in various scenarios. In the future, we are interested
in designing new methods that can achieve stability alongside
the PAC time-optimality, thus addressing a broader range of
practical applications. Another compelling direction for future
research is to extend SPT-DGPQ to multi-agent scenarios,
which could open up new possibilities for collaborative and
competitive environments in reinforcement learning.
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