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Abstract—In this paper, we perform a safety and performance
analysis of an autonomous vehicle utilizing a reactive planner
and controller to navigate a race lap. Unlike traditional planning
algorithms that use a map of the environment, the reactive
planner generates the plan based solely on current sensor inputs.
Our reactive planner selects a waypoint on the local Voronoi
diagram, and we use a pure-pursuit controller to navigate
towards this waypoint.

Our analysis consists of two parts. The first part demonstrates
that the reactive planner computes a plan locally consistent with
the Voronoi plan derived from a full map. The second part models
the vehicle’s navigation along the Voronoi diagram as a hybrid
automaton. To prove the safety and performance specifications,
we compute the reachable set of this hybrid automaton and apply
enhancements to simplify this computation.

We show that an autonomous vehicle using our reactive
planner and controller is safe and successfully completes a lap
on five different circuits. Additionally, we have implemented
our planner and controller in a simulation environment and
on a scaled-down autonomous vehicle, demonstrating that our
approach works well across a variety of circuits.

I. INTRODUCTION

Autonomous vehicles (AVs) are expected to yield several
societal benefits by improving the efficiency, lowering resource
utilization, and improved passenger safety. However, these
benefits would be in jeopardy if AV implementations do not
meet the required safety standards. To provide rigorous end-to-
end formal guarantees of AV navigation, one needs to provide
not only individual formal guarantees for each component
in AV, but also compose the safety certificates. A typical
workflow of an autonomous vehicle involves three main steps:
perception, planning, and control. The estimation of the current
state of the vehicle and its surroundings is performed by
perception. The sequence of states to be visited for safely
navigating the environment is determined by planning. And
finally, the plan is realized through a control algorithm. Percep-
tion is often performed using neural networks and localization
algorithms; planning is often performed by sampling based
motion planners; and control is performed using geometric or
optimization techniques. Given the complexity of each indi-
vidual steps and their composition, rigorous safety certificates
for end-to-end AV navigation is beyond the scope of current
state-of-the-art verification techniques.

For providing end-to-end guarantees on AV navigation, we
consider a slightly different implementation of AV navigation
— reactive planning and control. Unlike traditional perception

techniques, reactive planning and control do not have a map
of the environment. Instead, reactive planners navigate the
environment based on the current data that it receives from the
sensors. Hence, the plan and the control inputs are generated
on-the-fly. For example, one of the simplest algorithms for nav-
igating a narrow corridor by an autonomous vehicle is follow-
the-wall. In follow the wall strategy, the perception algorithm
of the vehicle estimates the distance between the AV and the
walls of the corridor. The planner would dynamically decide
on a way-point that is safe and is at a pre-determined distance
ahead from the vehicle’s current position along the wall. To
reach that way-point, the controller deploys a standard PI/PID
controller or a model predictive controller. Such algorithms
are standard examples in undergraduate robotics courses for
navigation.

While not particularly sophisticated, such reactive planning
and control algorithms are simple and can be deployed in
instances with limited computational resources. Additionally,
reactive planning and control based approaches are useful
in instances where the environment is highly dynamic or
mapping of the environment has not yet been performed or
is computationally very expensive. Finally, these algorithms
can be deployed in a wide range of scenarios as it doesn’t
require constructing a high-fidelity map of the environment.

A major drawback of reactive planning and control is
that it is very challenging to provide safety or performance
guarantees. Since the map of the environment is not known,
the waypoints generated during the motion planning are al-
ways relative to the vehicle. Hence, as the vehicle navigates
through the environment, the waypoint in the next instance
also evolves. This dynamic nature of the state of the vehicle
and the waypoints makes the safety analysis very challenging.
Furthermore, as the vehicle navigates through the environment,
the new sensor readings could cause changes in the planned
path making safety analysis a very challenging task.

In this paper, we perform safety and performance analysis
of a reactive planning and control algorithm deployed on an
autonomous vehicle that is navigating a race lap. Our planner
involves computing a Voronoi diagram of the walls visible to
the perception and our control algorithm implements the pure-
pursuit algorithm. Our safety and performance analysis has
two parts. In the first part, we demonstrate that the waypoint
computed by the reactive planner is consistent with the planner
that has access to the full map. In the second part, we model
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the co-evolution of the state of the vehicle and the waypoint
as a hybrid automata and compute an artifact called reachable
set. The reachable set contains all the configurations visited
by the autonomous vehicle while realizing the plan using the
pure-pursuit control algorithm. We show that the reachable set
is safe (no overlap with the boundaries of the race track) and
achieves a fixed point after the vehicle completes a full lap.
This proves that the vehicle satisfies the safety specification
while guaranteeing that it will eventually complete the lap.
We also employ abstraction techniques from hybrid systems
literature [51, 42] to improve the efficiency of the reachable
set computation algorithm.

The primary contribution of this paper is to establish the
safety and performance specification of reactive planning
and control algorithm used for navigation of autonomous
vehicles. While several works provide individual guarantees
for perception or planning or control algorithms, this paper
investigates end-to-end guarantees for robot navigation. In
addition, we also show the effectiveness of our reactive plan-
ning and control algorithm in two ways. First, we develop a
simulation environment of a race lap using Unreal engine and
deploy the vehicle in various types of race tracks. Second, we
implement the algorithm on an open source hardware platform
of F1Tenth, a scaled down version of autonomous vehicle built
on a Traxxas RC car.

II. RELATED WORK

Planning and control of autonomous vehicles as well as their
safety verification has received a lot of attention in the recent
past. A comprehensive survey of many of these techniques
are provided by [37, 39]. In this section, we briefly discuss
the various planning and control techniques and some of the
verification techniques presented in the literature and contrast
them with the techniques presented in this paper.

Planners for autonomous vehicles are often hierarchical
in nature [31, 52]. The task planner selects the high level
task to be performed by the vehicle and the motion planner
implements the task decided by the task planner. In this paper,
since we are concerned with an autonomous racing vehicle, the
task of the vehicle is to complete the lap. We hence focus our
attention to the motion planning aspect of the vehicle.

Motion planning of autonomous vehicles is primarily di-
vided into two methods. First are the geometric based planning
methods where the sequence of waypoints for the vehicle are
decided on the geometry of the configuration space [50, 32].
Planning based on Voronoi diagrams is one of the popular
geometric techniques for planning [48, 46]. Second are the
sampling based motion planning techniques. In particular,
Rapidly-exploring Random Trees (RRTs) [27, 22] and Proba-
bilistic roadmaps (PRMs) [24] are two of the most influential
techniques. In the literature, several variants of RRTs and
PRMs specific to the domain of autonomous vehicles have
been proposed [55, 6, 28, 40, 21]. All of these techniques
assume that a partial map of the environment is provided and
the location of the vehicle in the map is known. In the case of

reactive planning and control, we do not assume that a partial
map of the system is known.

Reactive planning was proposed as an alternative to offline
planning when all the information for completing a task are not
available to the robot [19], or when the environment is highly
dynamic [8] such as robot soccer [9] or human collaborative
environment [15]. Such reactive plans have been successfully
deployed in robots that are resource constrained such as small-
scale helicopters [44], micro air vehicles [45], and autonomous
sailboats [41]. Additionally, reactive planners have also been
used to modify an existing plan due to the presence of dynamic
obstacles [33, 34]. Finally, when autonomous vehicles have
to satisfy service requests along liveness specification given
according to a temporal logic formula, a reactive sampling
based motion planning algorithm has been used [53, 54].

Control of autonomous vehicles is also divided into two
categories, geometric and model based. In geometric con-
trol techniques, the underlying geometric properties of the
bicycle model are used in order to make the vehicle reach
its destination. Two popular geometric control techniques are
pure-pursuit [38, 47] and Stanley [20]. These techniques are
intuitive and easy to implement. Model based control (MPC)
techniques assume a given model of the vehicle and generate
control inputs depending on the model [12, 35]. Variants of
MPC such as, linearization with path tracking [17], online
linearization [18], and successive linearizations [43] have been
proposed in the literature. In fact, MPC based control methods
have been used in other autonomous racing vehicles [49].

In the safety analysis of mobile robots, the synthesis of a
safe plan based on temporal logic specification has received
a lot of attention [26, 16, 25]. For proving the safety of
the control algorithms, various reachable set computation
methods have been proposed and evaluated for behavior of
an autonomous vehicle in different scenarios [2, 30, 29, 36].
Given a map of the environment, accurate sensors, noise free
localization, and accurate model of the vehicle dynamics, it is
possible to provide a sequence of waypoints for moving along
the track and prove that the vehicle finishes the lap without
colliding with any obstacles using standard reachability based
techniques. However, in this paper, we consider reactive plan-
ning and control, where the waypoint dynamically changes
along with the vehicle position and orientation.

The works that are closest to the current work are [11] and
[13]. In both these works, the plan of the vehicle is based on
computing the Voronoi diagram. In [11], the authors do not
precisely model the interaction between the waypoint decided
by the planner and the control algorithm and hence do not
provide any safety guarantees even when the track is known
apriori. In [13], in contrast to our work, the authors assume that
a partial map of the environment is known. Furthermore, they
do not provide any safety guarantees assuming an uncertainty
in the initial conditions of the vehicle.
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Fig. 1. Bicycle model [47]

III. PRELIMINARIES

A. Problem definition

Consider that an autonomous vehicle is tasked to complete
a circuit track without hitting the borders of the track. Com-
pleting the track is a progress requirement, and avoiding the
track boundaries is a safety requirement. Furthermore, the
planning and control algorithms are required to be reactive:
at each time step, steering and speed controls are calculated
from the current sensor data only. Assuming that there is no
lateral wheel slippage, we can isolate the problem of finding
the steering control from finding the velocity control. This is
because if a wheel does not slip laterally, it will move along its
direction and so the shape (i.e. footprint) of the trajectory only
depends on the steering angle. In other words, the shape of the
trajectory is not influenced by the speed, as long as the speed
is nonzero. In this paper, we present a simple reactive planner
and controller and formally analyze its safety and progress
properties.

B. Bicycle model of a car

Our formal analysis is based on the bicycle model of a
car, where we imagine that there is one rear wheel at the
center of the rear axle and one front wheel at the center of
the front axle. We assume no wheel slippage, and only the
front wheel can steer. This model defines a dynamical system.
The state of the system at time t is described by the triple
(x(t), y(t), θ(t)) where (x, y) are the coordinates of the rear
wheel in some inertial frame, say the racing track, and θ is the
angle of the heading direction of the bicycle measured from
the x-axis counter-clockwise. If v is the speed (magnitude
of velocity) of the rear wheel, L is the wheelbase (distance
between the rear and front wheels), and δ is the steering angle,
then 

ẋ = v · cos(θ)
ẏ = v · sin(θ)
θ̇ = v

L tan(δ)

Illustration of the bicycle model of the vehicle is provided
in Figure 1.

IV. PLANNING AND CONTROL

In this section we describe our planning and control al-
gorithms which are a variation of Voronoi-based planning

Fig. 2. Example of a vehicle calculating the local Voronoi diagram and
selecting the way-point on the Voronoi diagram.

[11] and geometric control [47]. The safety and progress
properties of our algorithms will be formally analyzed and
experimentally validated in subsequent sections.

A. The Planner

Our planner is reactive in the sense that it does not remem-
ber its past inputs or outputs. The input is simply a 2D point-
cloud from lidar, and the output is a 2D waypoint passed to
the controller. We assume that the environment is polygonal.
The planner calculates a Voronoi diagram corresponding to the
point-cloud, then it chooses a point on the Voronoi diagram
as the waypoint.

The first step is to calculate a Voronoi diagram. Since
the environment is polygonal, the planner converts the 2D
point cloud to a set of line segments. Representing a set
of points by a line segment simplifies the computation and
representation of the Voronoi diagram. Since the input to the
Voronoi computation is a set of line segments, the Voronoi
edges are either linear or parabolic arcs. After computing
the Voronoi diagram, we approximate each parabolic edge
by a polyline using a deviation threshold. The deviation
threshold determines the maximum distance of the points on
a parabolic arc from the approximating polyline. This linear
approximation simplifies the planner and its formal analysis.
A Voronoi diagram calculated by the planner is called a local
Voronoi diagram since it is computed for the point-cloud
visible from lidar. This is in contrast to the global Voronoi
diagram where the diagram is computed with respect to the
whole polygonal environment.

The next step is to choose a waypoint based on the local
Voronoi diagram. We choose a point on the Voronoi diagram
to try to stay as far as possible from the track walls (i.e. to
be as safe as possible). If the waypoint is too close or too far
from the vehicle, the controller may make the car steer too
sharply or slowly. We choose among the points at a fixed
distance from the center of the rear axle. This distance is
called the lookahead distance and the corresponding circle is
called the lookahead circle. The lookahead circle may intersect
the Voronoi diagram in more than one point, so we need to
choose among them. Since the goal is to make the car progress
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Fig. 3. Purepursuit controller [47].

towards finishing the track, the intersection point further along
the heading direction of the car is selected as the waypoint.

This is illustrated in the Figure 2. Here, an autonomous
vehicle is navigating a lap where the inner and outer walls
are aligned rectangles. The Voronoi diagram — the set of
points that are equidistant from the walls is shown in the blue
straight segments and the curved green segments. The vehicle
(depicted as a black cross) is currently situated on one of the
edges of the Voronoi diagram. The circle with the radius of
lookahead distance intersects with the Voronoi diagram and
the appropriate intersection is labeled as the waypoint in the
figure. While the figure shows the global Voronoi diagram, the
vehicle does not have access to the global Voronoi diagram but
can only observe part of the map.

B. The Controller

The pure-pursuit controller [5] as formulated in [47] is used
to determine the steering angle. This simple controller was
“the most stable and accurate tracker” of the three methods
tested in [5]. Furthermore, pure-pursuit performed “fairly well
and is quite robust to large errors and discontinuous paths” in
comparison to a few more complicated (geometric, kinematic
or dynamic) controllers [47].

The input to the pure-pursuit controller is a waypoint
described in the car’s rear-axle coordinates. The origin of
the rear axle coordinates is the center of the rear axle, the
x-axis is the heading of the car, and the heading of the y-axis
is 90 degrees counterclockwise from the x-axis. The output
is the steering angle δ for the bicycle model of a car. Let
(gx, gy) be the coordinates of the waypoint in the rear-axle
frame. Note that the lookahead distance ℓ is

√
g2x + g2y . If L

is the wheelbase of the car (i.e. distance between rear and
front axles), then the pure-pursuit steering angle δ is1

δ = tan−1(
2Lsin(α)

ℓ
)

= tan−1(
2Lgy
ℓ2

) (1)

1See [47] for the derivation of the formula.

Note that this formula is valid even when the waypoint is on
the right of the car, where α, gy and δ are all negative. This
formula is valid only when gx > 0 i.e. when the waypoint is
in front of the rear axle. In this case, we have −π

2 < δ < π
2 .

In practice, −δmax ≤ δ ≤ δmax where δmax < π
2 is the

maximum possible angle that the car can steer. For example,
the maximum steering angle for the Traxxas car in the open
source hardware platform of F1Tenth vehicle is about 34
degrees.

V. RIGOROUS ANALYSIS OF PLANNING AND CONTROL
ALGORITHMS FOR SAFETY AND PROGRESS PROPERTIES

In this section we perform rigorous analysis of the Voronoi
planning along with the pure-pursuit controller. We prove that
the vehicle would not hit any of the walls and will successfully
complete a lap when its starting position belongs to a defined
set of initial states. Our analysis has two parts: the first part
is about the properties of the planner and the second part is
about the closed loop behavior of the vehicle.

In the first part, we prove that the local Voronoi diagram
computed by the vehicle from its current environment will
be consistent with the global Voronoi diagram under certain
conditions. This consistency ensures that the reactive path
planning performed by the robot is equivalent to the path
planning performed while having access to the map. The
second part of analysis requires computing an artifact called
reachable set of the closed loop vehicle dynamics. We model
the evolution of the vehicle along the edges of the Voronoi
diagram as a hybrid automaton. As shown in Figure 2, the
vehicle tries to move along the edges of the Voronoi diagram.
We assign one mode for modeling the evolution of the dy-
namics on each straight edge and use new overapproximation
techniques for modeling the vehicle navigation through the
curved segments. Given a set of initial positions for the vehicle
on the lap, we compute the reachable set that includes all the
set of states visited by the trajectories starting from the set.
We demonstrate that the reachable set does not overlap with
any of the walls and achieves a fixed point after finishing the
lap, thus proving the safety and progress properties.

A. Consistency of local Voronoi diagrams

In this section, we prove that the Voronoi diagram computed
by the vehicle with a given lidar scan is consistent with the
global Voronoi diagram computed from the map. Intuitively,
this proof formalizes the notion that a lidar with a sufficiently
long range can detect all the edges for computing the Voronoi
diagram for a small neighborhood. The proof will formalize
the requirements on the track and the range of the lidar. At
each point in time, only a subset of the walls are visible to the
lidar, i.e. all the walls in its range that are not occluded. A local
Voronoi diagram is the Voronoi diagram of the visible walls.
The global Voronoi diagram is the Voronoi diagram of all
walls. The planner chooses the waypoint from the intersection
of the local Voronoi diagram and the lookahead circle. Recall
that the lookahead circle is a circle of fixed radius centered at
the rear axle of the car. We also assume that the lidar is placed

25



at the middle of the front axle of the car. We give sufficient
conditions such that within the lookahead circle the local and
global Voronoi diagrams coincide.

Consider the visible subset of the walls, the local Voronoi
diagram, and the lookahead circle at some arbitrary time. Pick
a point p on the global Voronoi diagram inside the lookahead
circle. We give sufficient conditions such that the closest
wall points to p in the global Voronoi diagram are visible
to the lidar. Thus, p is also on the local Voronoi diagram.
The sufficient conditions rule out the two possible cases for
invisibility of the closest wall points: being out of range, or
occluded by a visible point.

Let R be the range of lidar, L the distance from lidar to
the rear axle, ℓ the lookahead radius, m the minimum width
of the track, M the maximum width of the track, and D the
minimum distance between lidar and the walls at any point in
time. Then we have the following guarantee:

Theorem 1. The local and global Voronoi diagrams coincide
within the lookahead circle if

R > M, (2)

R > L+ ℓ+
M

2
, (3)

and, D2 ≥ (L+ ℓ)2 − m2

4
. (4)

Before proving Theorem 1, we will prove a lemma about
the relationship between lookahead circle, walls of the circuit,
and distance between a point on the Voronoi diagram and the
walls.

Lemma 2. 1) Any point on (local or global) Voronoi dia-
grams is at most M

2 away from its closest walls.
2) The lookahead disk is contained in the circle CL+ℓ of

radius L+ ℓ centered at lidar.
3) For any point p on the global Voronoi diagram inside

CL+ℓ, p’s closest walls are in lidar’s range.

Proof. 1) Lidar can see its closest walls since R > M . Fur-
thermore, a point on the Voronoi diagram is equidistant
to its closest walls.

2) The distance from lidar to rear axle is L, and lookahead
circle is the circle of radius ℓ centered at the rear axle.

3) The closest wall points to p are in the circle of radius
L + ℓ + M

2 centered at lidar. By Equation 3, p’s closest
wall points are in lidar’s range.

Proof of Theorem 1. We need to show that for any point p on
the global Voronoi diagram, if p is inside the lookahead circle
then p’s closest walls are visible from lidar, so that p is also
on the local Voronoi diagram. By the lemma, the circle CL+ℓ

of radius L+ ℓ centered at lidar contains the lookahead circle,
so it is sufficient to assume that p is in CL+ℓ. Consider an
arbitrary visible wall point w occluding a wall point u. That
is, both w and u are on the same ray from lidar but u is further

Fig. 4. Consistency of local and global Voronoi diagrams. The blue curve is
the global Voronoi diagram. The green dot is lidar, and the pink dot is the
waypoint. The gray area is H \ Cu,m

2
.

away than w. We show that p is closer to w than u. Let d be
the distance of lidar to w and c be the distance of w to u
(so the distance of lidar to u is d+ c). First note that there is
no Voronoi point inside the circle Cu,m2

of radius m
2 centered

at u, since m is the minimum width of the track. Also, the
points that are closer to u than w constitute a half-plane H
with distance d + c

2 from lidar and its boundary being the
bisector of u and w. Hence Voronoi points that are closer to
u than w are in H \ Cu,m2

i.e. in H and outside of Cu,m2
.

See Fig. 4. If (d+ c
2 )

2 + m2

4 − c2

4 > (L+ ℓ)2 or equivalently
d2+dc > (L+ℓ)2−m2

4 then CL+ℓ does not intersect H\Cu,m2
.

The stronger condition

d2 ≥ (L+ ℓ)2 − m2

4
(5)

ensures that a global Voronoi point inside CL+ℓ is closer
to w than any wall point in w’s shadow. This inequality is
guaranteed by Inequality 4, since D is the minimum distance
of lidar to walls so d2 ≥ D2.

Observe that Theorem 1 gives us some bounds on the size
of the lookahead circle. The lookahead circle cannot be too
large, else, the closest walls to a points in the lookahead circle
might be occluded from the lidar.

B. Coupled model of control and plan

As described in Section IV-B, the pure-pursuit controller
determines the steering angle δ according to the waypoint
(gx, gy) by the planner (given in Equation 1). This waypoint
lies on the local Voronoi diagram and always at a distance ℓ
from the rear-axel. When the conditions given in Theorem 1
are satisfied, the waypoint also lies on the global Voronoi
diagram. Given that the Voronoi diagram is a conjunction of
several line segments, without loss of generality, we assume
that the waypoint lies on one such line segment.

Observe that as the vehicle moves towards the waypoint,
the position and orientation of the vehicle changes. This
indeed changes the intersection of the lookahead circle with
the Voronoi diagram and as a result, changes the waypoint.
Thus, the evolution of the state of the vehicle (position and
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orientation) and the waypoint are tightly coupled. In this
section, we model the joint behavior of the waypoint along
with the vehicle dynamics.

Observe that for the pure-pursuit controller, the waypoint
(gx, gy) is described in the vehicle’s coordinate system (i.e.,
the origin being the center of the rear-axel and the orientation
of the vehicle as the x-axis). We transform this waypoint along
the coordinate axis where the Voronoi line segment is the x-
axis with the new origin is such that the initial position of
the center of the rear-axel has no displacement on the x-axis.
In the trajectory, the rear wheel has coordinates (x, y) and
the orientation of the vehicle θ is w.r.t the line segment on
the Voronoi diagram. After the coordinate transformation, the
orientation δ in this coordinate system will be

tan(δ) =
2L

ℓ2
(−

√
ℓ2 − y2 · sin(θ)− y · cos(θ)).

Therefore,

θ̇ =
v

L

2L

ℓ2
(−

√
ℓ2 − y2 · sin(θ)− y · cos(θ))

=
2v

ℓ2
(−

√
ℓ2 − y2 · sin(θ)− y · cos(θ)) (6)

The closed loop behavior of the vehicle dynamics is there-
fore given as:

ẋ = v · cos(θ)
ẏ = v · sin(θ)
θ̇ = 2v

ℓ2
(−

√
ℓ2 − y2 · sin(θ)− y · cos(θ))

Notice that this closed loop behavior is accurate as long as
the waypoint lies on the same line segment. When the vehicle
makes progress, the lookahead circle would intersect with a
different line segment on the voronoi diagram. As a result, the
coordinate system for modeling the evolution of vehicle state
and the waypoint changes. We model this change as a hybrid
automata.

Definition 3. A hybrid automata is defined as a tuple
⟨Mod,X,E, F lows⟩ where

• Modes is the set of discrete modes,
• X is the state space,
• E is the set of discrete transitions among modes, and
• Flows describes the evolution of the system in each

mode.

Often, Flows are described as a collection of nonlinear dif-
ferential equations, one for each mode. Each discrete transition
e = (mode,mode′) ∈ E among the modes mode,mode′ ∈
Modes of the hybrid automata has an associated guard(e)
condition. The hybrid automata can take the transition only
when the state of the trajectory satisfies the guard condition.
Additionally, after taking the discrete transition e, the state of
the system changes from its current state x to a new state x′

defined according to a reset function x′ = reset(e, x).
In the case of the vehicle following the waypoint on Voronoi

diagram, when a new line segment is encountered by the
lookahead circle, the change of basis variables (alignment

Fig. 5. Over-approximation of guard. l is the look ahead distance of the car.
The original exact guard is circular and we linearize it as a convex polytope
that is defined using linear constraints.

of the x-axis along the new segment) is the reset function.
Notice that the set of states that take this transition lies
on a circle of radius ℓ from an end point of the new line
segment. This set is a non-convex set. Performing analysis on
such a hybrid automata with non-convex guard conditions is
very challenging. We therefore construct an abstract hybrid
automata that allows more behaviors than the original hybrid
automata, but is easier to analyze. More specifically, we allow
the hybrid automata to non-deterministically take a transition
whenever the vehicle enters the convex overapproximation of
the original guard condition. Given that we strictly increase
the set of possible states that can take the discrete transitions,
it is easy to observe that the abstract hybrid automata includes
all the behaviors of the original hybrid automata. Illustration
of the abstraction of the guard condition for a hybrid automata
modeling the behavior of the vehicle is given in Figure 5.

Given a circuit, we construct the hybrid automata model of
the vehicle moving in the lap using our Voronoi planning and
pure pursuit control algorithm. In the next section, we present
the details of the techniques employed to prove the safety and
progress properties of the vehicle.

C. Reachable Set Computation

Definition 4. Given a hybrid system H modeled as an hybrid
automaton and an initial set of states Θ, an execution of
H is a sequence of trajectories and transitions ξ0e1ξ1e2 . . .
such that (i) the first state of ξ0 denoted as q0 is in the
initial set, i.e., q0 = (mode0, x0) ∈ Θ, (ii) each trajectory
ξi is the solution of the differential equation Flowsi of the
corresponding mode modei, (iii) the state of the trajectory
before each discrete transition ei = (modei,modei+1) satis-
fies guard(ei), (iv) and the state of the trajectory after taking
the transition ei changes to qi+1 = (modei+1, xi+1) where
xi+1 = reset(ei, xi).

The set of states encountered by all executions that conform
to the above semantics is called the reachable set and is
denoted as Reach[H,Θ]. Bounded-time variant of these exe-
cutions and the reachable set defined over the time bound
T is denoted as ReachT

[H,Θ]. We drop H and/or Θ from
ReachT

[H,Θ] whenever it is clear from the context, and abuse
the term trajectory to denote the hybrid system execution as
well as the solution of the differential equation of a mode.
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We say the reachable set computation has a fixed point at
time t when there exists t ≤ T such that Reacht = Reacht+1.
Since it is computationally hard to compute the exact reachable
set for most system classes including hybrid systems [4, 7], a
verification engine is typically used to compute an overapprox-
imation of the reachable set denoted as ˜ReachT . Given the
sequence of reachable set computed at discrete time instances,
the ith element in the is denoted as ReachT [i].

Definition 5. A hybrid system H with initial set Θ, time bound
T , and unsafe set U is said to be safe with respect to its
executions if all trajectories starting from Θ for bounded time
T are safe i.e., ˜ReachT ∩ U = ∅.

As the reachable set overapproximation ˜ReachT includes
more behaviors than the exact reachable set, its safety w.r.t. U
proves the safety of the exact reachable set w.r.t. U . However,
the safety result is inconclusive when ˜ReachT ∩ U ̸= ∅. We
next discuss the fixed point based computation of the reachable
set for a given initial set Θ.

• Computing a Fixed Point : Recall that the vehicle motion
for a given circuit is modeled as the hybrid automata where
each mode is associated with an edge from the global
Voronoi diagram. We denote the lap as one full pass of
the given circuit which is the sequence of edges from the
global Voronoi diagram such that an end point of the last
segment coincides with an initial point of the first segment.
Informally, the number of laps represents the number of
passes of the given circuit performed by the vehicle.
As the vehicle completes one lap while following Voronoi
edges by switching modes of the hybrid automaton, it may
not arrive back at the exact system state it initially started
from. As a consequence, the set of states reachable in a
mode during next lap is not necessarily same as the set
of states reachable in this mode during previous lap(s).
Whereas, a fixed point at some time t is an evidence that
the set of reachable states beyond time t is time-invariant.
Computing a fixed point for the reachable set serves three
important purposes - (i) arriving at the same mode(s) after
completing a lap underscores progress, (ii) safety of the
fixed point at t ensures safety of the reachable set at all times
beyond t, (iii) it makes the analysis efficient because one can
save a significant amount of computational resources by not
requiring to compute the reachable set after t for a much
larger initial set as explained next.

• Computing additional reachable sets : The error bound of
reachable set overapproximation is proportional to the size
of the initial set Θ, i.e., the larger the initial set, the higher
is the overapproximation error. Whereas, computing the
reachable set for each state in an infinite state system such
as ours is practically impossible. The standard approach for
handling this trade-off is to refine the large initial set into
smaller subsets and perform a reachable set computation on
each subset.
A fixed point can assist in accelerating the reachable set
computation for a large set Θ. For any two given sets

θ, θ′ ⊂ Θ, it may not be necessary to compute the fixed
point of Reachθ′ once the fixed point Reacht

θ at time
t is obtained. While computing Reachθ′ , we iteratively
check whether Reachi

θ′ [i] ⊆ Reacht
θ[i], i ≤ t, and halt the

computation as soon as the containment check returns true.
Generalizing this approach to more than two sets would
mean computing the fixed point of one set and performing
the containment check for the rest w.r.t. the fixed point.

• Refinement techniques : One way to computing the reach-
able set for a large set Θ is to manually obtain the fixed point
candidate θ ∈ Θ, and find the partitions θ′ ∈ Θ, θ ∪ θ′ = Θ
such that each partition has its reachable set at some i ≤ t
contained in the fixed point. An efficient strategy is to
automatically obtain both the fixed point candidate and other
partitions. If the overapproximation error is too high for the
given set Θ, it is automatically refined into multiple sets.
One of these subsets is picked for the fixed point candidacy.
If the overapproximation error for the candidate set is still
high, it is further divided into parts until a candidate with its
fixed point at some t is found. The rest of Θ is automatically
partitioned depending on whether their reachable sets are
contained in the fixed point at i ≤ t or not.

VI. EVALUATION

In this section, we evaluate our fixed-point based reach-
able set computation on five different tracks with different
characteristics. For each track given as the sequence of global
Voronoi diagram edges, a new hybrid automaton model for the
evolution of vehicle along this track is generated. Typically, a
hybrid automata has as many discrete modes as the number of
Voronoi edges. The dynamics in each mode of the automaton is
the closed loop behavior of the vehicle dynamics and the way
point as described in Section V-B. Then, we employ a non-
linear hybrid systems verification tool to compute the fixed
point of the reachable set for each track. The computation of
a fixed point in each track underscores both safety and progress
of the vehicle. In addition, we tested the planning and control
algorithm both in simulation and on the open source F1Tenth
platform.2

We experiment with multiple safety verification platforms
such as CORA [3], Flow* [10], and C2E2 [14] for non-linear
hybrid systems. Different platforms use different symbolic
representations for the reachable set. For instance, Flow* uses
Taylor models, C2E2 uses Jacobian matrix and discrepancy
functions, and CORA primarily makes use of zonotopes for
representing the reachable sets. As their utility is application
specific, we observed that overapproximation error in both
C2E2 and Flow* is very high for our case studies. One possible
reason could be that Taylor model approximation in Flow* and
discrepancy function computed in C2E2 are too conservative.
We illustrate the reachable set accuracy across Flow* and
CORA on a small system in Section IX-A in the Appendix.

In the safety verification of our dynamical model, the
obstacles or walls constitute the unsafe set i.e., the objective is

2https://tinyurl.com/24zfjvmn
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(a) for small initial set (b) for a large initial set

Fig. 6. Reachable set computation for Track-1. In Fig. 6(a), the fixed point is obtained in mode 3 in the second lap. The filled black rectangle depicts the
initial set. In Fig. 6(b), the smaller rectangle corresponds to the fixed point partition and larger one is the originally given initial set.

to verify that the reachable set does not overlap with the walls.
The initial set considered during reachable set computation in
track-1 is x ∈ [−0.3, 0.3], y ∈ [−0.3, 0.3] and θ ∈ [−0.2, 0.2].
The Voronoi diagram and the corresponding reachable set for
track-1 are shown in Fig. 6(a). Based on the track width, the
turns in this track encompass 4 different transitions - wide
to narrow, wide to wide, narrow to narrow, and narrow to
wide. Also observe that the fixed point of the reachable set
computation is obtained in mode 3 in lap 2. The values of
state variables in mode 3 across lap-1 and lap-2 are depicted in
Fig. 10 that establishes our fixed point claim. The reachable set
computation results for other tracks are illustrated in Fig. 11
in the Appendix. CORA takes roughly a minute to compute
the reachable set for each track.

An observation from the safety verification results is that
if the set of initial conditions is large (larger uncertainty
of vehicle’s initial orientation and position with respect to
the map), CORA fails to compute the reachable set over-
approximation. As suggested earlier, this can potentially be
mitigated by fixed-point based partitioning of the large initial
set and verifying the safety for each partition.

We have implemented the automatic partitioning algorithm
and evaluated the approach on track-1 for the initial set
x ∈ [−0.8, 0.6], y ∈ [−0.8, 0.6] and θ ∈ [−0.2, 0.2]. CORA
fails to compute the reachable set for this initial set. Our
technique keeps partitioning the set until it finds a partition
x ∈ [−0.2, 0.2], y ∈ [−0.2, 0.2] and θ ∈ [−0.2, 0.2] having
a fixed point. (We do not partition θ in this case). Once the
fixed point is found, the rest of the initial set is partitioned into
intervals of the given width and reachable set is computed for
each partition. In addition, at each step, reachable set contain-

ment w.r.t. the fixed point is conducted to avoid redundant
computation. Fig. 6(b) demonstrates the safe reachable set
successfully computed by our approach for the given set.

We also performed reachable set computation using CORA
over tracks where the vehicle had to take a steep turn (turns
of more than 90 degrees). For such instances, CORA failed
to compute an overapproximation of the reachable set that is
sufficient to establish the safety even for small initial sets.
This shows that there is room for improvement in the current
reachable set computation methods.

VII. EVALUATION OF PLANNING AND CONTROL IN
SIMULATION AND NOISY ENVIRONMENTS

A. Computer simulations

We have built a virtual environment including various racing
circuits in Unreal Engine for testing the reactive planning
and control algorithm. Some of these tracks are provided in
Figure 7. The tracks in the left column are similar to the
tracks on which F1Tenth competitions [1] were conducted.
Other tracks include a triangular track, and a straight track with
static obstacles. We have also tested the simulation on some
polygonal tracks for which we will provide formal analysis
in the subsequent sections. Videos of these simulations are
available on the web.3 Our algorithm was able to successfully
complete a lap while not colliding with any of the race track
boundaries or obstacles in nine different circuits.

The vehicle used in the simulations is the vehicle from
Unreal Engine 4.21’s ‘Vehicle Advanced’ template project.
The default tire friction constants are increased to avoid

3https://tinyurl.com/24zfjvmn
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Fig. 7. Racing tracks for the simulations.

Fig. 8. Physical validations.

wheel slippage. We have implemented a model of Hokuyo
UST-10LX LiDAR in Unreal Engine. The measurements are
taken using Unreal Engine’s line tracing. We do not model
measurement errors and uncertainty.

B. Physical validation

We also have tested the planner and controller on the open
source hardware platform of F1Tenth vehicle. This is to show
the practicality of our simple reactive planning and control in
the presence of noise, unstructured environment, and limited
computational resources. For example, Hokuyo UST-10LX
LiDAR provides a new point-cloud every 25 milliseconds, but
our planning and control is an order of magnitude faster on
the Nvidia Jetson TX2’s CPU so we can process every point-
cloud.

We tested the car on two tracks. The simpler one is shown in
Fig. 8 where the track boundaries are mostly structured using
corrugated cardboard rolls. The harder track (provided in the
videos) is an office with chairs and tables around the office
walls and in the middle of the office. Our algorithm manages
to successfully complete a lap while avoiding obstacles on
both these tracks.

VIII. CONCLUSION AND FUTURE WORK

We have illustrated the reachability based verification results
of a reactive planning and control autonomous vehicle that
uses Voronoi diagrams for planning and pure-pursuit controller

(a) Flow*

(b) CORA

Fig. 9. Reachable sets computed in Flow* and CORA with time step 0.02
sec and time bound 15 sec for a set of initial states. The vehicle follows a
vertical path downwards before making a left turn.

for navigation. To the best of authors’ knowledge, this is the
first work that considers all three aspects of planning, control,
and the dynamically changing waypoint for prove the safety
specification. We also demonstrated reactive planning and
control technique in various tracks in simulation, and on two
physical tracks using a scaled down version of autonomous
vehicle. We believe that the coupled effect of planning and
control requires further investigation. In future, we intend to
extend this to prove and demonstrate the safety of autonomous
vehicles in presence of dynamic obstacles.
Acknowledgements: The authors would like to acknowledge
the support from AFOSR under award number FA9550-23-
1-0286 and NSF under awards 2038960 and 2303564. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of AFOSR or NSF.

IX. EVALUATION DETAILS

A. Reachable set accuracy

Suppose the track is defined in a stationary (x, y) frame, θ
is the vehicle’s orientation and ℓ is the look ahead distance.
As a part of experimentation, we perform the reachable set
computation in Flow* and CORA by modeling a single turn
on the track as the hybrid automata. The initial set is given as
intervals over state variables i.e., x ∈ [0.0, 0.5], y ∈ [0.9, 1.1]
and θ ∈ [−0.5,−0.5]. The reachable sets computed in both
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(a) Track 1-X

(b) Track 1-Y

Fig. 10. Fixed point illustration using state variables in Track-1

tools are shown in figures 9(a) and 9(b). The divergent
behavior of the reachable set in Flow* is seemingly due to
error compounded over time because of coarse approximation.
The figures also illustrate that the vehicle while turning swings
to some extent before merging back on to the track.

B. Fixed Point of Reachable Sets

The proof that our reactive planning and control algorithms
completes a lap requires the reachable set to reach a fixed
point. We illustrate that the reachable set after completing a
lap is contained within the initial set or reachable set of the
previous lap. The projection of reachable set on x and y axis
is given in Figure 10

C. Reachable Sets on Various Tracks

The reachable sets of our reactive planner and controller on
two of the tracks are given in Figure 11. The reachable sets
for more laps are available in [23].
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curve optimization. In 2019 IEEE Intelligent Vehicles
Symposium (IV), pages 1048–1053. IEEE, 2019.

[35] Richard M Murray and Sosale Shankara Sastry. Nonholo-
nomic motion planning: Steering using sinusoids. IEEE
transactions on Automatic Control, 38(5):700–716, 1993.

[36] P. Nilsson, O. Hussien, A. Balkan, Y. Chen, A. D. Ames,
J. W. Grizzle, N. Ozay, H. Peng, and P. Tabuada. Correct-
by-construction adaptive cruise control: Two approaches.
IEEE Transactions on Control Systems Technology, 2016.

[37] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry
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