
Work-in-Progress: Development of Margin-shared
System-level Logical Execution Time Simulator to
Support Scheduling Design of Automotive ECUs

Masashi Mizoguchi
Research and Development Group

Hitachi, Ltd.
Hitachi, Japan

masashi.mizoguchi.re@hitachi.com

Yuma Kato
Research and Development Group

Hitachi, Ltd.
Hitachi, Japan

yuma.kato.vd@hitachi.com

Kentaro Yoshimura
Research and Development Group

Hitachi, Ltd.
Hitachi, Japan

kentaro.yoshimura.jr@hitachi.com

Takaaki Nokaido
Mobility Solution Business Unit

Hitachi Astemo, Ltd.
Hitachinaka, Japan

takaaki.nokaido.yh@hitachiastemo.com

Yasuhiro Ikeda
Mobility Solution Business Unit

Hitachi Astemo, Ltd.
Hitachinaka, Japan

yasuhiro.ikeda.to@hitachiastemo.com

Hideyuki Sakamoto
Mobility Solution Business Unit

Hitachi Astemo, Ltd.
Hitachinaka, Japan

hideyuki.sakamoto.br@hitachiastemo.com

Recently, more and more vehicles are shifted to be software-
defined, i.e., any functions are expandable by continuously
updating software on Electronic Control Units (ECUs) during
the entire vehicle life cycle. In addition, some ECUs are
composed of multiple Systems on Chips (SoCs) for high
computation performance. These trends make software de-
velopment more challenging than ever before. Then, system-
level logical execution time (SL-LET) scheduling has attracted
attention as a solution to it. SL-LET fixes the start and end
timing of each task and that of each communication between
tasks. This allows data flow and end-to-end latency to be
deterministic, facilitating timing design and verification.

We are conducting research to support timing design based
on SL-LET for ECUs consisting of multiple SoCs. As a first
step, we have developed a task scheduling simulator. For each
Central Processing Unit (CPU) on each SoC in the ECU, the
simulator calculates the time when a task starts or ends. The
characteristic of our method is that we extend [1] to handle
margin sharing among SoCs. If the worst-case execution time
of each task is used to fix the timing, the end-to-end latency
may become too long to meet requirements. This can be
overcome by margin sharing. Figure 1 shows the summary of
the margin shared between SoC1 and SoC2. Let the length
of the margin shared by Task1 and Task2 be m ∈ R>0.
The margin is limited to the execution period p ∈ R>0 of
inter-SoC communication denoted by com. Assume that the
processing time of Task1 exceeds the interval by e1 ∈ R≥0.
If e1 ∈ [0, p) holds, the delay of the timing of sending data is
p, not e1. Then, the start timing of Task2 is shifted by p and
the remaining margin is m − p. If the exceed of processing
time of Task2 (denoted by e2 ∈ R≥0) is less than m − p,
it is assured that other tasks such as Task3 are not affected.
Figure 2 shows a part of the output from the simulator with

p = 10[ms]. The start of subsequent Task2 was successfully
shifted from 650[ms] to 660[ms] when the preceding Task1
did not finish by its deadline 630[ms].

Using the task scheduling simulator, we will continue re-
search to support timing design. We plan to estimate the end-
to-end latency possibly spanning multiple SoCs and the bus
load for inter-SoC communication in the ECU by considering
the relationship of the input and output data of each tasks.

Fig. 1. Summary of the margin shared among SoC1 and SoC2.

Fig. 2. Simulator output showing the margin sharing among SoCs.

REFERENCES

[1] A. Biondi and M. Di Natale, “Achieving predictable multicore execution
of automotive applications using the let paradigm,” in 2018 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2018, pp. 240–250.

2

2024 International Conference on Embedded Software (EMSOFT)

2771-571X/24/$31.00 ©2024 IEEE
DOI 10.1109/EMSOFT60242.2024.00007

