
Sustainable Deployment of Deep Neural Networks
on Non-Volatile Compute-in-Memory Accelerators

Yifan Qin†⊛ Zheyu Yan† Wujie Wen‡ Xiaobo Sharon Hu† Yiyu Shi†∗
†University of Notre Dame, ‡North Carolina State University {⊛yqin3, ∗yshi4}@nd.edu

Abstract—Non-volatile memory (NVM) based compute-in-
memory (CIM) accelerators have emerged as a sustainable
solution to significantly boost energy efficiency and minimize
latency for Deep Neural Networks (DNNs) inference due to their
in-situ data processing capabilities. However, the performance of
NVCIM accelerators degrades because of the stochastic nature
and intrinsic variations of NVM devices. Conventional write-
verify operations, which enhance inference accuracy through
iterative writing and verification during deployment, are costly in
terms of energy and time. Inspired by negative feedback theory,
we present a novel negative optimization training mechanism to
achieve robust DNN deployment for NVCIM. We develop an Ori-
ented Variational Forward (OVF) training method to implement
this mechanism. Experiments show that OVF outperforms exist-
ing state-of-the-art techniques with up to a 46.71% improvement
in inference accuracy while reducing epistemic uncertainty. This
mechanism reduces the reliance on write-verify operations and
thus contributes to the sustainable and practical deployment of
NVCIM accelerators, addressing performance degradation while
maintaining the benefits of sustainable computing with NVCIM
accelerators.

Index Terms—in-memory computing, sustainable, neural net-
work, accelerators

I. INTRODUCTION

Deep Neural Networks (DNNs) have revolutionized our
society, but their acceleration is hindered by the constant
need for data movement between memory and processing
units, known as the von Neumann bottleneck [1]. Non-volatile
memory (NVM) based Computing-In-Memory (CIM) DNN
accelerators [2] offer a potential solution by enabling parallel
in-situ data processing, surpassing CMOS-based counterparts
in energy efficiency and density [1], [3]. These accelerators
utilize emerging NVM devices such as ferroelectric field-
effect transistors (FeFETs) [4], resistive random-access memo-
ries (RRAMs) [5], magnetoresistive random-access memories
(MRAMs) [6], and phase-change memories (PCMs) [7], pro-
viding a sustainable solution for DNN inference acceleration.
Despite their advantages, NVM devices in NVCIM DNN
accelerators suffer from inherent non-idealities, such as device
variations [5], [8]. These variations cause perturbations in
device conductance after programming [9], often resulting
in Gaussian-distributed conductance values [5]. Consequently,
the model weights are affected, ultimately impacting the
inference accuracy of NVCIM DNN accelerators [5], [8], [10].

Ensuring reliable DNN inference on unreliable NVM sub-
strates presents a significant challenge. Among solutions
[11]–[13], hardware write-verify has emerged as a widely
adopted method for accelerator deployment. However, the
time-consuming and energy-intensive iterative write and verify
operations hinder sustainable deployment. Therefore, we need

t-1 t t+1

Inf

Backbone
Weight

OutputTesting Data

Training

Inference

(b)

System+

−𝜷

Time

Out

OutIn

Feedback(a) New Equilibrium
State

Backbone
Weight t

Output

+Loss

Out n

−𝜷
Update

Input

Epoch+1 Epoch+1

OVF

Fig. 1. (a) Schematic diagram of a classic negative feedback system and the
process of the system setting to a new equilibrium state. (b) Illustration of
negative optimization training mechanism.

more robust network models to achieve more sustainable
deployment and acceleration.

Noise-injection training [8] is widely used to enhance
model robustness by exposing DNNs to Gaussian noise during
training. This improves the model’s noise tolerance. How-
ever, state-of-the-art (SOTA) noise-injection methods have
limitations, such as limited accuracy improvement, increased
epistemic uncertainty [14], and challenges in achieving con-
vergence. We attribute this to the mismatch between the non-
deterministic nature of noise and the deterministic nature of
training. Specifically, first, the network is exposed to only a
finite number of noise samples during training, limiting its
ability to fully understand noise patterns. Second, random
noise samples provide diverse optimization directions, but
some may lead to incorrect states, increasing uncertainty and
hindering convergence.

We believe this mismatch can be mitigated by acquiring
sufficient variation information during training, rather than
relying solely on the final output, as is common in SOTA
methods. This hypothesis is rooted in modern control theory,
where stability relies on negative feedback. When a system
is subjected to noise, noisy outputs help the system resist
perturbation through negative feedback, achieving a new equi-
librium state. Figure 1(a) illustrates this process. Feedback is
generated from a portion of the outputs and modulated by the
negative feedback coefficient β. Inspired by this, we introduce
a novel negative optimization training mechanism, which
incorporates negative contributions from outputs, reduces the
impact of noise, and helps the neural network achieve a more
robust state, as shown in Figure 1(b). At a high level, the entire

47

2024 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)

2832-6474/24/$31.00 ©2024 IEEE
DOI 10.1109/CODES-ISSS60120.2024.00017

negative optimization training mechanism can be summarized
as follows, we use negative optimization training to enhance
the robustness of the DNN backbone. After training, all neg-
ative contribution components are removed, leaving a robust
and unaltered DNN backbone model.

Here we provide an implementation called the Oriented
Variational Forward (OVF) training method to ground this
mechanism. During training, variational inference outputs
Outn are generated with the same backbone weights and
oriented increasing amplitude noise, and contribute negatively
to the objective in back-propagation with coefficient β, thereby
enhancing DNN robustness. The “negative” aspect of OVF
reduces the bad effects of target variation while preserving
its subject status, and the “feedback” component introduces
supplementary noise information that differs from what the
backbone output contains, contributing to the objective. OVF
constrains network optimization based on the influence of
noise itself, with stronger constraints corresponding to greater
perturbations. This ensures the network does not deviate far
from the optimal direction, facilitating stable convergence to
the optimal state during the training process.

Our contributions can be summarized as follows:
• We introduce a negative optimization training mechanism

into the DNN training process to enhance stability and
improve robustness to device variations. To the best of
our knowledge, this is the first approach of its kind.

• We propose a novel implementation of this mechanism:
Oriented Variational Forward (OVF), which optimizes the
network from a comprehensive variational performance
perspective.

• Our simulations on NVCIM DNN accelerators with
varying device variations demonstrate the effectiveness
of OVF in mitigating sensitivity and output fluctua-
tions. OVF boosts confidence and convergence probabil-
ity while reducing epistemic uncertainty. For example, it
achieves up to a 46.71% improvement in DNN average
inference performance compared to state-of-the-art meth-
ods.

II. PROPOSED METHODOLOGY

In this section, we introduce the negative optimization with
the OVF training method.

Our proposed method is inspired by negative feedback
theory, a cornerstone of system control. We treat weight vari-
ations as perturbations and aim to improve system robustness
by suppressing this “noise” through negative optimization.
The primary challenge is constructing an effective negative
constraint. Simply employing a negatively scaled output of the
DNN, as in standard negative feedback systems, is insufficient
because it only scales the loss function without altering the
training method.

Instead, we require negative constraints that can track
changes in the output while remaining distinct from it. The
constraint must satisfy two criteria: First, it should be gen-
erated by components influenced by the same noise pattern
present in the backbone. Second, the negative constraint

𝑳𝒐𝒔𝒔 = 𝑪𝑬[𝒔𝒐𝒇𝒕𝒎𝒂𝒙 	𝒂𝒃 . 𝑶𝒖𝒕𝒑𝒖𝒕 − 𝒂𝒇 . 𝜷 .4 𝜸𝒏 . 𝑶𝒖𝒕𝒏
𝑵

𝒏%𝟏
]

Backbone Forward

… Variational
Forwards

Output

Out n

…

…

Sharing inputs
and weights

Update
Backbone

Input

+Loss

𝝈
+++

𝝈
++

𝝈
+

−𝜷

𝜸𝟏 𝜸𝟐 𝜸𝟑

OVF

Fig. 2. Negative optimization implementations: oriented variational forward
training.

should strongly connect with the backbone weights, accurately
reflecting weight perturbations.

As shown in Figure 2, OVF generates constraints using
less representative outputs Outn from oriented variational
forwards, which involve device variations larger than those in
backbone inference. By employing negative constraints, OVF
prevents the backbone from deviating from the optimal opti-
mization direction. Specifically, during each training iteration,
we sample a variation instance ∆wi from a Gaussian distri-
bution Dist = N (0, σ2), which is the same as the inference
device variations in accelerators. This variation is added to
the backbone weights in the feed-forward process, generating
the backbone output Obackbone. Unlike typical training, which
directly performs back-propagation and weight update, OVF
performs multiple oriented variational forwards using the same
variation-free backbone weights with noises sampled from
N (0, σ2) but with larger σ, collecting N constraint outputs
Outn. The total output Ototal is given by

Ototal = ab · Obackbone − af · β ·
N∑

n=1

γn ·Outn (1)

where β is the negative constraint coefficient, γn are the
decay factors, and ab and af are factors influencing the
contribution of the two-part outputs. The back-propagation
process commences only after all outputs have been obtained.

When selecting hyperparameters, it is important to note
that as the standard deviation σ of the Gaussian distribution
increases, noise instances introduce a higher degree of entropy
and uncertainty to the model and its outputs. This leads to
more significant deviations from the target. Consequently,
Outn generated with a larger σ is assigned a larger decay
factor γn in Eq. 1, thereby imposing a stronger constraint on
the backbone model. To achieve this, we set γn as 10n−N .
These variational forwards generate constraints from the same
variation-free backbone weight and employ the same Gaussian
noise pattern as the backbone variational forward with differ-
ent parameters, thus satisfying the criteria outlined previously.

III. EXPERIMENTS

In this section, we introduce the weight variation model and
the setup of experiments, then show the effectiveness of the
OVF method with experimental results.

48

A. Model and Setup

Without loss of generality, we primarily consider device
variations stemming from the programming process, where the
programmed conductance value in NVM devices deviates from
the desired value. Set a DNN weight with M bits, the desired
weight value W̄d after quantization can be expressed as

W̄d =
max |W|
2M − 1

M−1∑
i=0

mi × 2i (2)

where W represents floating-point weights, max |W| denotes
the maximum absolute value among weights, and mi ∈ {0, 1}
signifies the value of the ith bit of the desired weight value.
For a NVM device representing K bits of data, each weight
can be stored in M/K devices1, and the mapping process
is given by ḡj =

∑K−1
i=0 mj×K+i × 2i, where ḡj is the

desired conductance of the jth device. It is worth noting that
negative weights can be mapped in the same manner to a
separate crossbar array. Taking device variation into account,
the actual device conductance after programming is denoted
as gj = ḡj + ∆g, where ∆g represents the deviation from
the desired conductance value ḡj and follows a Gaussian
distribution. Consequently, the actual weight Wp represented
by programmed NVM devices is given by

Wp = W̄d +
max |W|
2M − 1

M/K−1∑
j=0

∆g × 2j×K (3)

In our study, we set K = 2, while the value of M
was determined by the specific model configuration. For this
research, we selected M = 8, indicating 8-bit precision for
a single DNN weight and 2-bit precision for a single device
conductance. To model device variation, we employed a Gaus-
sian distribution with ∆g ∼ N (0, σ2

d), where σd represents
the relative standard deviation of conductance corresponding
to the maximal conductance of a single device. We set a
constraint on σd, limiting it to σd ≤ 0.4. This range is
considered reasonable in prior research [4]–[7] and can be
achieved through optimizations at the device level, including
write-verify techniques.

We carried out experiments using the PyTorch environment
on NVIDIA GPUs. Unless otherwise specified, the reported
results represent the average of at least five independent runs.
We used the average accuracy of noise-injection inference as
the performance metric and performed a Monte Carlo simula-
tion with 200 runs to ensure high precision. Our experiments
show that the results have a 95% confidence interval of ±0.01,
in line with the central limit theorem. We compared OVF with
two baselines: 1) vanilla training (W/O Noise) and 2) Gaussian
noise-injection training (W/ Noise). We did not evaluate OVF
against other orthogonal methods, such as NAS-based DNN
topology design or Bayesian Neural Networks, as it can be
used in combination with them.

Through our experiments with comprehensive datasets and
neural network backbones, we have found that the appropriate

1For simplicity, we assume that M is a multiple of K.

value of the negative constraint coefficient β consistently falls
within the set {1e− 1, 1e− 2, 1e− 3, 1e− 4}. Consequently,
a four-step search suffices to determine the setting. For hy-
perparameter values, we set start = 0 and end = 2 × σd,
evaluating OVF efficacy across various σd values. We also
set the contribution factors ab = af = 1/(N + 1), where N
represents the number of variational forwards. Other training
hyperparameters, such as learning rate, batch size, and learning
rate schedulers, follow best practices for training a noise-free
model.

B. Accuracy Improvement

+5.35%

+3.22%

Fig. 3. Effectiveness of OVF: Average noisy inference accuracy on VGG-8
and ResNet-18 backbone models for different datasets across σd values.

For our experiments, we employed the VGG-8 backbone
and the ResNet-18 backbone on the MNIST, CIFAR-10,
CIFAR-100, and Tiny ImageNet datasets. In OVF, we empiri-
cally set the variational forwards N = 3 for both VGG-8 and
ResNet-18, with each increase ∆σd fixed at 0.05. Furthermore,
the negative constraint coefficient β for each model on a
specific dataset was determined through a four-step search
process, as stated in section III-A.

Figure 3 illustrates the Top-1 inference accuracy of models
trained with different methods under varying levels of device
variations σd, following the noise model discussed in Sec-
tion III-A. OVF clearly surpasses all baselines in most device
value deviation values and performs similarly to baselines in
rare cases where the device variation is too small to have a
significant impact. Compared to the Gaussian noise-injection
training baseline, OVF enhances the Top-1 accuracy by up to
46.71%, 6.78%, 5.35%, 16.30%, 17.21%, and 3.22% in VGG-
8 for MNIST and CIFAR-10, ResNet-18 for MNIST, CIFAR-
10, CIFAR-100, and Tiny ImageNet, respectively. OVF con-
strains the network based on the overall forward performance
and is particularly suitable for networks that have not reached
the limit of their representational ability, such as VGG-8 on
MNIST.

49

The effectiveness of the OVF method highlights the gen-
erality and practicality of the negative optimization training
mechanism in enhancing DNN robustness against device vari-
ation, thereby contributing to the sustainable deployment of
NVCIM accelerators.

C. Uncertainty and Convergence

0.0 0.1 0.2 0.3 0.4
Device variation d

0

2

4

6

8

EK
L

D
iv

er
ge

nc
e

(1
0

2)

W/O Noise
W/ Noise
OVF

Fig. 4. Average EKL divergence for correct predictions with different
methods.

Device variation amplifies epistemic uncertainty, resulting
in increased output uncertainty. To quantify the impact of
device variation on uncertainty, we employ the Expected
Kullback–Leibler (EKL) divergence [14] (lower values in-
dicate better performance). Accuracy is excluded from the
analysis for fair comparison purposes. Specifically, among
all correct predictions in noisy inference, we calculate the
Kullback–Leibler divergence between each softmax output and
its corresponding label. The results, shown in Figure 4, repre-
sent the average EKL divergence for each correct prediction.
Compared to the W/O Noise baseline, the W/ Noise baseline
improves accuracy but at the cost of increased uncertainty.
In contrast, our OVF method not only achieves even higher
accuracy than the noise-injection training baseline but also
maintains low uncertainty and high confidence in the output.
In cases where device variation is too substantial for effective
predictions using the vanilla training baseline, its EKL diver-
gence appears slightly lower than that of OVF, as it generates
completely random and meaningless predictions.

For certain devices and aging-related issues, the device
variation can be significant. The low uncertainty achieved by
OVF also contributes to model convergence. For example, in
10 separate runs of experiments with VGG-8 on MNIST using
σd = 0.35, the number of non-converging models2 is 6 and 0
for noise-injection training and OVF, respectively. In addition
to the increase in accuracy, this may also partially explain the
substantial improvement of OVF in VGG-8 for MNIST, as
shown in Figure 3.

IV. CONCLUSION

In conclusion, the proposed Oriented Variational Forward
(OVF) method significantly enhances the robustness of deep
neural networks (DNNs) against device variations and con-
tributes to the sustainable deployment of NVCIM accelerators.
By maintaining high accuracy while keeping uncertainty low,

2where accuracy decreases by more than 5% compared to the average
accuracy across multiple independent runs

OVF reduces the reliance on write-verify operations, improv-
ing deployment time and energy efficiency, and achieving
better inference accuracy on chips with the same devices.
This method demonstrates the generality and practicality of the
negative optimization training mechanism, providing valuable
insights into the development of robust AI accelerators that can
adapt to the non-ideal characteristics of NVM devices, thereby
promoting the sustainable development of AI hardware.

ACKNOWLEDGMENT

This research was supported by ACCESS – AI Chip Center
for Emerging Smart Systems, sponsored by InnoHK funding,
Hong Kong SAR.

REFERENCES

[1] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” ACM
SIGARCH computer architecture news, vol. 44, no. 3, pp. 367–379,
2016.

[2] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26,
2016.

[3] W. Zhang, P. Yao, B. Gao, Q. Liu, D. Wu, Q. Zhang, Y. Li, Q. Qin,
J. Li, Z. Zhu et al., “Edge learning using a fully integrated neuro-inspired
memristor chip,” Science, vol. 381, no. 6663, pp. 1205–1211, 2023.

[4] D. Reis, M. Niemier, and X. S. Hu, “Computing in memory with fefets,”
in Proceedings of the international symposium on low power electronics
and design, 2018, pp. 1–6.

[5] Y. Qin, R. Kuang, X. Huang, Y. Li, J. Chen, and X. Miao, “Design of
high robustness bnn inference accelerator based on binary memristors,”
IEEE Transactions on Electron Devices, vol. 67, no. 8, pp. 3435–3441,
2020.

[6] S. Angizi, Z. He, A. Awad, and D. Fan, “Mrima: An mram-based in-
memory accelerator,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 5, pp. 1123–1136, 2019.

[7] X. Sun, W. Khwa, Y. Chen, C. Lee, H. Lee, S. Yu, R. Naous, J. Wu,
T. Chen, X. Bao et al., “Pcm-based analog compute-in-memory: Impact
of device non-idealities on inference accuracy,” IEEE Transactions on
Electron Devices, vol. 68, no. 11, pp. 5585–5591, 2021.

[8] Z. Yan, Y. Qin, W. Wen, X. S. Hu, and Y. Shi, “Improving realistic worst-
case performance of nvcim dnn accelerators through training with right-
censored gaussian noise,” in 2023 IEEE/ACM International Conference
on Computer Aided Design (ICCAD). IEEE, 2023, pp. 1–9.

[9] M. Rizzi, A. Spessot, P. Fantini, and D. Ielmini, “Role of mechanical
stress in the resistance drift of ge2sb2te5 films and phase change
memories,” Applied Physics Letters, vol. 99, no. 22, 2011.

[10] Z. Yan, D.-C. Juan, X. S. Hu, and Y. Shi, “Uncertainty modeling of
emerging device based computing-in-memory neural accelerators with
application to neural architecture search,” in Proceedings of the 26th
Asia and South Pacific Design Automation Conference, 2021, pp. 859–
864.

[11] R. Degraeve, A. Fantini, N. Raghavan, L. Goux, S. Clima, B. Govoreanu,
A. Belmonte, D. Linten, and M. Jurczak, “Causes and consequences of
the stochastic aspect of filamentary rram,” Microelectronic Engineering,
vol. 147, pp. 171–175, 2015.

[12] W. Shim, J.-s. Seo, and S. Yu, “Two-step write–verify scheme and
impact of the read noise in multilevel rram-based inference engine,”
Semiconductor Science and Technology, vol. 35, no. 11, p. 115026, 2020.

[13] A. Eldebiky, G. L. Zhang, G. Böcherer, B. Li, and U. Schlichtmann,
“Correctnet: Robustness enhancement of analog in-memory computing
for neural networks by error suppression and compensation,” in 2023
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2023, pp. 1–6.

[14] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng,
A. Kruspe, R. Triebel, P. Jung, R. Roscher et al., “A survey of uncertainty
in deep neural networks,” Artificial Intelligence Review, vol. 56, no.
Suppl 1, pp. 1513–1589, 2023.

50

