
Special Session: Estimation and Optimization of
DNNs for Embedded Platforms

Axel Jantsch,
Christian Doppler Laboratory

for Embedded Machine Learning
TU Wien, Vienna, Austria

Email: axel.jantsch@tuwien.ac.at

Song Han,
Department of EECS

Massachusetts Institute of Technology
Cambridge, MA, USA

Email: songhan@mit.edu

Lin Meng,
Department of ECE

Ritsumeikan University
Kusatsu, Shiga, Japan

Email: menglin@fc.ritsumei.ac.jp

Oliver Bringmann,
Department of Computer Science

University of Tübingen,
Tübingen, Germany

Email: oliver.bringmann@uni-tuebingen.de

Haotian Tang
Department of EECS

Massachusetts Institute of Technology
Cambridge, MA, USA

Email: kentang@mit.edu

Shang Yang
Department of EECS

Massachusetts Institute of Technology
Cambridge, MA, USA
Email: shangy@mit.edu

Hengyi Li,
Department of ECE

Ritsumeikan University
Kusatsu, Shiga, Japan

Email: lihengyi321@gmail.com

Matthias Wess
Christian Doppler Laboratory

for Embedded Machine Learning
TU Wien, Vienna, Austria

Email: matthias.wess@tuwien.ac.at

Martin Lechner
Christian Doppler Laboratory

for Embedded Machine Learning
TU Wien, Vienna, Austria

Email: martin.lechner@tuwien.ac.at

Abstract—Several state of the art estimation and optimization
techniques for CNNs and LLMs on embedded devices are sum-
marized. For LLMs an Activation-aware Weight Quantization
and on-the-fly dequantization techniques is presented. For CNNs
various pruning algorithms and an integrated optimization and
implementation flow is discussed. To estimate inference latency of
CNNs on specific hardware platforms, three different techniques
are reviewed: A mixed analytic-stochastic model, an analytic
model based on step-wise linear functions, and a method that
uses a detailed architecture description of the hardware.

Index Terms—Embbeded Machine Learning, CNN, LLM,
Accelerator, Estimation

I. INTRODUCTION

Efficient implementation of a Deep Neural Network (DNN)
on a given platform under tight constraints is challenging due
to many non-linear dependencies. Small changes in the DNN
or the platform configuration often have disproportional effects
on the performance.

In this paper, we explore state-of-the-art methods for opti-
mization (sections II and III) and estimation (sections IV and
V) of DNNs on tightly constrained embedded platforms.

Section II presents optimization techniques for implement-
ing state-of-the-art visual language models on embedded plat-
forms. By using Activation-aware Weight quantization, that
selectively quantizes only less important weights, and an on-
the-fly dequantization technique at inference time, the memory
footprint and the inference performance of Large Language
Models (LLMs) is greatly improved, thus facilitating their
deployment in embedded devices such as Jetson Orin. Then,

section III reviews optimization and implementation meth-
ods to customize Convolutional Neural Networks (CNN) for
tightly constrained embedded devices. The section focuses on
pruning and studies channel-level pruning, layer-level pruning
and a hardware-aware pruning technique. Further, the sec-
tion describes an integrated hardware aware optimization and
implementation flow for CPU and FPGA based platforms.
In addition, a CNN based object detection application for
embedded robots is elaborated.

Fast and accurate estimation facilitates the efficient explo-
ration of the design space without the need to implement
many model variants on various hardware platform, poten-
tially saving orders of magnitude of design time. Section IV
discusses two state of the art estimation tools, ANNETTE
and Blackthorn, for latency estimation of models on various
platforms. ANNETTE uses a mixed analytic-stochastic models
to estimate the latency of individual or fused layers on CPU-
, FPGA-, and NPU-based hardware, while Blackthorn uses
step-wise linear analytic functions for latency estimations on
GPUs and NPUs. Finally, section V presents performance
estimation based on an abstract computer architecture de-
scription language to capture relevant features of the target
platform. Given architecture model of the AI accelerator
and the DNN dataflow, the usage of buffers, memories and
compute units are tracked in detail and thus facilitate accurate
latency estimations.

23

2024 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)

2832-6474/24/$31.00 ©2024 IEEE
DOI 10.1109/CODES-ISSS60120.2024.00013

Quantization Algorithm: AWQ

Inference System: TinyChat

TinyChat Computer
(Jetson Orin Nano)

MacBook
(Apple M1)

AI PC
(CPU / GPU)

Raspberry Pi
(ARM CPU)

AWQ

int4fp16

Fig. 1. We introduce AWQ, a versatile weight quantization method for LLM.
To implement AWQ, we developed TinyChat to deploy 4-bit quantized LLMs
into various edge platforms, achieving a 3-4× performance boost compared
to FP16. Notably, we’ve also manufactured a TinyChat computer, powered
by TinyChat, which contains an NVIDIA Jetson Orin. Demo: https://youtu.
be/z91a8DrfgEw.

II. LLM QUANTIZATION FOR EDGE DEPLOYMENT

Large Language Models (LLMs) have revolutionized AI ap-
plications, but their deployment on edge devices remains chal-
lenging due to their enormous size and computational require-
ments. To solve these issues, we propose Activation-aware
Weight Quantization (AWQ) and TinyChat, an algorithm-
system full-stack solution for efficient on-device LLM de-
ployment. AWQ is a novel quantization method that iden-
tifies and protects salient weights based on activation dis-
tribution, significantly reducing model size while preserving
performance. TinyChat, an optimized inference framework,
translates AWQ’s theoretical memory savings into practical
speedups through techniques like on-the-fly dequantization,
SIMD-aware weight packing, and kernel fusion. Together,
they enable 4× model size reduction and 3-4× acceleration
across various edge platforms, from high-end desktop GPUs to
resource-constrained IoT devices. This solution democratizes
on-device LLM deployment, offering privacy-preserving, low-
latency AI capabilities across a wide range of applications.

A. AWQ: LLM Low-bit Weight Quantization

Deploying large language models (LLMs) on edge devices
is crucial. It eliminates delays caused by sending data to a
cloud server and better protects user’s privacy. However, the
large model size leads to the high serving costs. For example,
GPT-3 has 175B parameters, which is 350GB in FP16, while
the latest B200 GPU only has 192GB memory, let alone edge
devices. Quantization for LLMs can significantly reduce the
memory footprint of LLM inference.

Protecting Salient Channels. In this work, we first propose
Activation-aware Weight Quantization (AWQ), a hardware-
friendly low-bit weight-only quantization method for LLMs
illustrated in Figure 2. The first key observation in AWQ is
that the weights of LLMs are not equally important: there is
a small fraction (0.1%-1%) of salient weights that are much
more important for LLMs’ performance compared to others.
Skipping the quantization of these salient weights can help
bridge the performance degradation due to the quantization
loss without any training or regression.

Activation Awareness. However, identifying salient weight
channels can be challenging. Contrary to conventional wis-
dom, we find that the importance of weights should be deter-
mined by the activation distribution rather than the weight dis-

tribution itself, despite we are doing weight-only quantization:
weight channels corresponding to larger activation magnitudes
are more salient since they process more important features.
Keeping those weights in FP16 can preserve the salient fea-
tures, which contributes to better model performance.

To leverage this insight without resorting to inefficient
mixed-precision implementations, AWQ employs a mathemat-
ically equivalent scaling method. The algorithm scales up
the salient weight channels before quantization, effectively
reducing their relative quantization error. Intuitively, scaling
up a channel by 2× effectively adds one more bit, assuming
other channels are unchanged. For example, both 0.52 and
1.1 round to 1; but 1.04 and 2.2 will round differently and
can be distinguished. This scaling is determined by collecting
activation statistics offline, making the process efficient and
generalizable across different domains and modalities.

One of the key advantages of AWQ is its simplicity and
efficiency. Unlike methods that rely on back-propagation or
complex reconstruction processes, AWQ does not require fine-
tuning or extensive calibration data. This makes it particularly
well-suited for quantizing large pre-trained models, including
instruction-tuned LMs and multi-modal LMs.

Results. As in Figure 3, AWQ’s effectiveness has been
demonstrated across a wide range of model sizes and architec-
tures. For example, when applied to the LLaMA [1], [2] model
families, AWQ consistently outperforms both round-to-nearest
(RTN) quantization and more complex methods like GPTQ [3]
and GPTQ-R (GPTQ with reordering). For the Llama-2 70B
model with INT3-g128 quantization, AWQ achieves a perplex-
ity of 3.74, compared to 3.98 for RTN and 3.86 for GPTQ-R.
Moreover, AWQ shows remarkable generalization capabilities.
It performs well not only on standard language modeling
tasks but also on multi-image visual language models such as
VILA [4]. AWQ achieves lossless quantization performance on
11 visual-language benchmarks evaluated in the VILA paper.
To sum up, our method provides a push-the-button solution for
LLM/VLM quantization. It is the first study of VLM low-bit
quantization to the best of our knowledge.

B. TinyChat: Efficient Inference Engine for 4-bit LLMs

While AWQ substantially reduces the size of LLMs, con-
verting the theoretical memory savings from W4A16 (4-bit
weight, 16-bit activation) quantization into measured speedup
is non-trivial. Alternative W8A8 quantization methods, such
as SmoothQuant [5], maintain the same data precision for
both storage and computation. This allows the dequantization
procedure to be seamlessly integrated into the computation
kernel’s epilogue. On the other hand, W4A16 quantization
employs different data types for memory access and compu-
tation. As a result, its dequantization must be incorporated
into the primary computation loop for optimal performance,
posing implementation challenges. To tackle this, we introduce
TinyChat, a nimble system for AWQ model inference. It boasts
a PyTorch frontend and a backend harnessing device-specific
instruction sets (e.g., CUDA/PTX, Neon, AVX).

24

https://youtu.be/z91a8DrfgEw
https://youtu.be/z91a8DrfgEw

+1.2 −0.2 −2.4 −3.4
−2.5 −3.5 +1.9 +1.4
−0.9 +1.6 −2.5 −1.9
−3.5 +1.5 +0.5 −0.1
+1.8 −1.6 −3.2 −3.4
+2.4 −3.5 −2.8 −3.9
+0.1 −3.8 +2.4 +3.4
+0.9 +3.3 −1.9 −2.3

+1 +0 −2 −3
−3 −4 +2 +1
−1 +2 −3 −2
−4 +2 +1 +0
+2 −2 −3 −3
+2 −4 −3 −4
+0 −4 +2 +3
+1 +3 −2 −2

Q

(a) RTN quantization (PPL 43.2)

WFP16 Q(W)INT3
+1 +0 −2 −3

−1 +2 −3 −2
−4 +2 +1 +0
+2 −2 −3 −3
+2 −4 −3 −4
+0 −4 +2 +3
+1 +3 −2 −2

−2.5 −3.5 +1.9 +1.4determine the salient
weights by
activation

(b) Keep 1% salient weights in FP16 (PPL 13.0)

Q(W)MixPrec

X *

bad hardware efficiency

(c) Scale the weights before quantization (PPL 13.0)

Q(W)INT3

X *

α
scale before quantizeFP16

channel

average mag.

Fig. 2. We observe that we can find 1% of the salient weights in LLMs based on the activation distribution (middle). Keeping the salient weights in FP16
can significantly improve the quantized performance (PPL from 43.2 (left) to 13.0 (middle)), but the mixed-precision format is not hardware-efficient. We
follow the activation-awareness principle and propose AWQ (right). AWQ performs per-channel scaling to protect the salient weights and reduce quantization
error. We measure the perplexity of OPT-6.7B under INT3-g128 quantization.

W
ik

ite
xt

2
PP

L

6

6.2

6.4

6.6

6.8

6.24

6.426.43

6.66

RTN GPTQ GPTQ-R AWQ

Llama-2-7B
(W3g128)

Llama-2-13B
(W3g128)

5.2

5.3

5.4

5.5

5.6

5.32

5.41
5.48

5.52

Llama-2-70B
(W3g128)

3.4

3.6

3.8

4

3.74

3.863.88
3.98

Llama-2-7B
(W4g128)

5.4

5.5

5.6

5.7

5.8

5.60
5.63

5.69
5.73

Llama-2-13B
(W4g128)

4.9

4.95

5

4.97

4.99
4.984.98

Llama-2-70B
(W4g128)

3.4

3.45

3.5

3.41
3.43

3.42

3.46

Fig. 3. AWQ improves over round-to-nearest quantization (RTN) for dif-
ferent model sizes and different bit-precisions. It consistently achieves better
perplexity than GPTQ (w/ and w/o reordering) on Llama-2 models.

To understand the acceleration opportunities for quantized
LLMs on edge devices, we profiled the LLaMA-7B model on
an RTX 4090 GPU. Our analysis revealed three key insights:
(1) The generation stage is substantially slower than the con-
text stage, particularly for on-device interactive applications.
(2) The generation stage is memory-bound, with an arithmetic
intensity of approximately 1 for single-batch FP16 execution.
(3) Weight access dominates memory traffic. The amount of
weight access is orders of magnitude larger than the amount
of activation access. These findings suggest that weight-only
quantization to 4-bit integers can theoretically increase the
arithmetic intensity to 4 FLOPs/Byte, potentially leading to a
4× improvement in peak performance. This analysis provides
the foundation for TinyChat’s design, featured by the following
optimizations.

On-the-fly weight dequantization For quantized layers,
as the hardware does not provide multiplication instructions
between INT4 and FP16, we need to dequantize the integers to
FP16 before performing matrix computation. We avoid writing
dequantized weights into DRAM by fusing dequantization
kernels with the matrix multplication kernel. Note that we
designed a unified weight storage format for context stage
(which employs GEMM) and decoding stage (which employs
GEMV) linear kernels. We illustrate the context stage dequan-
tization kernel fusion implementation in Figure 4(a), where
we convert INT4 weights to FP16 in the register file before
sending the converted half-precision weights to tensor cores
for computation.

Kernel fusion. We also extensively apply kernel fusion
for other layers. For layer normalization, we fuse all oper-
ators (e.g., multiplication, division and square root) into a

single kernel. For attention layers, we fuse QKV projections
into a single kernel, and also perform on-the-fly positional
embedding calculation. We also pre-allocate KV caches and
perform cache updates within the attention kernel. Kernel
fusion is particularly useful for models with inefficient forward
pass implementations, such as Falcon [6] and StarCoder [7].
Notably, the computation time for each FP16 kernel is in the
order of 0.01ms on the 4090 GPU, comparable to the GPU
kernel launch overhead. Hence, reducing number of kernel
calls through kernel fusion leads to direct speedups.

SIMD-aware weight packing. On-the-fly weight dequanti-
zation reduces intermediate DRAM access, but remains expen-
sive. For instance, dequantizing a single 4-bit weight involves
1 shift, 1 bitwise AND, and 1 FMA scaling operations, while
the dequantized weight undergoes only 1 FMA computation.
This process is particularly costly on CPUs with SIMD ar-
chitecture that favor vectorized instructions. To mitigate this,
we suggest platform-specific weight packing tailored to the
bitwidth of a device’s SIMD units. Fig. 4(b) demonstrates
our strategy for ARM CPUs with 128-bit SIMD registers
offering up to 1.2× speedup. Here, each register holds 32 4-
bit weights, sequenced as w0, w16, w1, w17, ..., w15, w31. This
approach requires just three SIMD instructions to unpack all
32 weights, as opposed to 3 scalar instructions per weight in
a conventional packing (w0, w1, ..., w31). Generally, for 2n-
bit SIMD registers, adjacent weights will have indices off by
1/8×2n, since each register can hold 1/8×2n 8-bit integers.
On GPUs, we found it more efficient to pack each 8 weights
into w{0,2,4,6,1,3,5,7} following [8].

Results. As in Figure 5, TinyChat achieves significant
speedups (2.7-3.9×) for various LLM families (Llama-2, MPT,
Falcon) on NVIDIA GPUs. For Llama-2-7B on a 4090 GPU,
it improves inference speed from 52 to 62 tokens/s through
FP16 kernel fusion, with an additional 3.1× speedup from
quantized linear kernels. On the laptop 4070 GPU with only
8GB memory, it runs Llama-2-13B at 33 tokens/s where FP16
implementations can’t fit 7B models. TinyChat even enables
7B model deployment on resource-constrained devices like
Raspberry Pi 4B at 0.7 tokens/s. The system also accelerates
visual-language models like VILA-7B and VILA-13B by 3×
on NVIDIA Jetson Orin.

25

Q K V

BMM/BMV

Softmax

BMM/BMV
Single Kernel

INT4
to

Iter K-1

INT4
to

Iter 1

INT4
to

FP16
QW0

QW0 W0
SW0 ZW0

X0

Y0

Iter 0
Y

⋯

⋯

CUDA
Core

Tensor
Core

FP16

Single Kernel (context stage)

FP16

FP16

w31 w30 w16 w15 … w1 w0…Original
weights:

4bit
8bit

w31 w15 w2 w17 w1 w16 w0
Packed

weights:
…

Reordering offline

0 w15 … w2 0 w1 0 w0

0 w31 … w18 0 w17 0 w16

Mask = 0x0F…0F (128-bit mask)

Runtime unpacking

Wlow = Pw & Mask

Wlow

Whigh

Whigh = (Pw >> 4) & Mask
0127

0127

0127

0127

W

Pw

(a) Kernel fusion for attention and GEMM layers on GPU platforms (a) SIMD-aware Weight Packing for ARM CPUs

Fig. 4. (a) TinyChat extensively performs kernel fusion for both GEMM and attention layers, reducing intermediate DRAM access and saving kernel calls.
(b) TinyChat saves weight dequantization overhead through SIMD-aware Weight Packing on ARM CPU platforms.

0

50

100

150

200

124

49

158

110

194

536362
33

5952

Huggingface (FP16) Ours (FP16) Ours (AWQ, W4A16)

To
ke

ns
 /

se
c

FP16
OOM

(a) RTX 4090 desktop GPU (b) Jetson Orin mobile GPU

FP16
OOM

Llama-2
(7B)

Llama-2
(13B)

MPT
(7B)

MPT
(30B)

Falcon
(7B)

0

10

20

30

40

22

9

38

21

39

91212
7

1111
FP16
OOM

FP16
OOM

Llama-2
(7B)

Llama-2
(13B)

MPT
(7B)

MPT
(30B)

Falcon
(7B)

0

15

30

45

60
52

60

33

61

Llama-2
(7B)

Llama-2
(13B)

MPT
(7B)

Falcon
(7B)

(c) RTX 4070 laptop GPU

FP
16

 O
O

M

FP
16

 O
O

M

FP
16

 O
O

M

FP
16

 O
O

M

Fig. 5. TinyChat provides a turn-key solution to transform the theoretical memory footprint reduction into a quantifiable speedup. As a result, TinyChat is up
to 3.9× and 3.5× faster than the FP16 implementation from Huggingface on RTX 4090 (desktop GPU) and Jetson Orin (mobile GPU), respectively. AWQ
also democratizes Llama-2-13B deployment on laptop GPUs (4070) with merely 8GB memory.

III. DNN MODEL OPTIMIZATION AND IMPLEMENTATION
FOR EMBEDDED SYSTEMS

Deep neural networks’ (DNNs’) heavy workload and ineffi-
cient computations have always been major obstacles, mak-
ing widespread use and application difficult. To tackle these
challenges, we’ve conducted deep learning analyses focused
on speeding up DNN inference, specifically in hardware-
constrained scenarios like embedded systems. Drawing from
these insights, our presentation showcases compression tech-
niques tailored for deploying DNNs on embedded devices,
including innovative layer-wise pruning. The compressed
DNN models have been implemented on FPGA, GAP8, and
Raspberry Pi, with experimental results showing significant
improvement in inference time. Additionally, the presentation
features an application that combines DNN and robotics for
dish recycling automation, demonstrating substantial progress
in optimizing object detection models for limited hardware.

A. Software-level Optimization

The current typical DNN architectures exhibit substantial
inherent redundancies. Specifically, the layer-wise running
time studies of these DNN architectures reveal that convolution
operations account for approximately 42.30% to 90.34% of
the total inference time on single instruction multiple data
(SIMD) CPUs. And the input sparsity in convolutional layers
reaches an average of 69.61% [9]. These findings suggest that
the current DNN architectures could be significantly optimized
by reducing redundant operations.

The software-level solutions for optimizing DNNs could be
simply categorized into four groups: pruning and quantiza-
tion, low-rank factorization, transferred/compact convolutional
filters, and knowledge distillation [10], [11]. Among these,

pruning stands out as the most efficient solution because it
fundamentally simplifies the network architecture by removing
redundant structures. This approach not only alleviates the
overfitting effects of DNNs to a certain extent [12] but also
integrates seamlessly with the other four optimization tech-
niques. Given the notable advantages of pruning, our research
primarily focuses on the development and improvement of
pruning techniques. Specifically, we put forward four struc-
tured pruning methods for compressing DNNs: the refined
channel-level pruning method SI-Pruning, layer-level pruning
mechanism LL-Pruning, a hardware-aware approach IHSOpti,
and a two-stage generic optimization method GC&AO.

The key challenge in pruning lies in identifying the re-
dundant structures within the network. SI-Pruning addresses
this by utilizing two key factors: the input sparsity of the
convolutional layers, which quantitatively indicates network
redundancies, and the weights of batch normalization (BN)
layers, which denote the importance of layer-wise channels.
These factors help identify the superfluous channels in the
network. The identified redundant channels are then iteratively
pruned, effectively compressing the model.

SI-Pruning as well as traditional methods, are generally
effective for channel-level pruning but not for layer-level
optimization. To address the shortcoming, we further propose
the LL-Pruning, which employs the stochastic optimization
algorithm HSPG [13] and a residual strategy [14] to identify
not only channel-level redundancies but also layer-level redun-
dancies in DNNs.

IHSOpti aims to fully harness the potential of modern
hardware parallelism, with a particular emphasis on pipelin-
ing mechanisms [15]. Specifically, IHSOpti has developed
an advanced sparse training algorithm, Polar HSPG, which
incorporates a newly proposed layer-wise refined polarization

26

regularizer (LWPolar), based on the half-space project gradient
(HSPG) [16]. Furthermore, IHSOpti introduces an innovative
residual strategy to optimize layer-level redundancies in neural
networks, leveraging the inherent pipelining attributes of hard-
ware. Experimental results demonstrate that IHSOpti achieves
exceptional pruning ratios in both parameters and FLOPs.

The frequent data movement required between the processor
and off-chip memory limits system performance and energy
efficiency [17]. This problem is exacerbated on edge devices
with constrained memory bandwidth. Data movement opera-
tions stem from the multi-layer structure of DNNs, involving
tasks such as rearrangement (Im2col) [18], re-quantization
[19], and storage. This fact encourages us to propose a
generic deep learning architecture optimization method to
achieve further acceleration on edge devices. The CNNs are
optimized in two stages: Global Constraint (GC) and Archi-
tecture Optimization (AO) [20]. The GC stage aims to achieve
lossless channel pruning. The main paths are constrained by
the adjunct layers. While AO phase aims to identify residual
blocks that have lost function due to constraints and remove
them.

B. Implementation for Embedded Systems

At the hardware level, we aim to implement and accelerate
software-optimized DNNs on various hardware platforms,
including SIMD CPUs, FPGAs, and particularly RISC-V
devices, which offer a highly promising solution for embedded
DNN applications.

The acceleration of DNNs at the SIMD-instruction level
is realized by eliminating the meaningless calculations con-
cerning the sparsity elements at the SIMD level [21]. The
proposal achieves up to 28.02% improvement for certain layers
of VGG architecture. There are also significant limitations for
the proposal due to the reason that the method comes up with
too many branches and branch misses, which seriously break
the pipelining of CPUs.

The FPGA-based solution combines both hardware-level
and software-level optimization for DNNs. Considering the
great flexibility of hardware reconfigurable, the nature of high-
efficient parallel computing, power efficiency, etc., FPGA gen-
erally provides a promising solution for hardware-based DNN
accelerations. The implementation of DNNs on FPGA utilizes
the development stack Vitis AI which is for AI inference
on xilinx hardware platform. First, the optimized VGG13BN
and ResNet101 utilizing the proposed SI-Pruning method are
deployed on FPGA device ZCU102. The experimental results
show that the acceleration achieves up to 151.99 and 124.31
frames per second (FPS) for the two networks, respectively.
Second, the results of the GC method and GC&AO method
demonstrate significant latency reduction by the AO stage. For
CIFAR10, 21.90% latency is reduced in GC stage, while the
GC&AO method further reduces latency by 21.40%. On the
CIFAR100, it is also observed that the GC&AO method further
reduces latency by 24.00% compared to the GC method. In
addition, the accuracy achieved in GC and GC+AO methods

is similar. These data demonstrate that the proposal achieves
further acceleration on the pruned model.

Moreover, the optimized networks have been deployed
on the advanced RISC-V platform, specifically the GAP8
SoC. The GAP8 is a highly efficient ultra-low-power paral-
lel computing platform specifically designed for embedded
applications [22]. It integrates eight RISC-V cores and a
neural network acceleration engine, enabling it to execute deep
learning algorithms in resource-constrained environments ef-
fectively. However, the limited memory capacity of the GAP8,
particularly its L2 memory, imposes significant constraints on
the deployment and execution of algorithms. The IHSOpti
method presented in this article offers an effective solution
to the aforementioned deployment challenge. And the DNN
networks optimized by IHSOpti are further accelerated on
GAP8 utilizing the GAP8flow tool in the research.

GAP8flow is the official deployment tool-chain for GAP8,
comprising two primary components: NNTool and AutoTiler
[22]. NNTool performs static topology optimization, such
as node fusion, to enhance operational efficiency and mini-
mize redundant computations. Additionally, NNTool supports
quantization using calibrated datasets to convert floating-point
models to low-bit-width integer models (e.g., 8-bit). This
conversion substantially reduces computational and storage
resource consumption while preserving the model’s high-
precision inference capabilities. Finally, NNTool outputs the
model for AutoTiler. The Autotiler tool is designed to optimize
data movement and computational efficiency by optimizing
data transfer within the memory hierarchy and calculating
optimal tiling sizes. Furthermore, it generates GAP code em-
ploying double- or triple-buffered mechanisms, which leverage
optimized software library primitives to boost computational
parallelism and data processing speed.

VGG16BN architecture is adopted in the experiment for its
superior representational capability performance in feature ex-
traction. Before deployed on GAP8, the network is optimized
with the IHSOpti algorithm, resulting in a parameter reduction
of 98.82% and a pruning rate of 91.28% [23]. Compared to the
original model, which can not be deployed due to excessive
memory consumption, the IHSOpti-optimized model uses only
54% of the L2 memory on the GAP8 platform, achieving an
inference time of only 115.26 milliseconds.

C. Object Detection DNN Model Optimization for Embedded
Robot

In addition to the aforementioned sections focusing on
classification-task DNN architectures, we have developed mul-
tiple optimized object detection DNN models to address the
vast size and complex computations posed by conventional
object detection models. Initially, the YOLO-GS model is
proposed, featuring a modified CSPDarknet backbone struc-
ture [24]. YOLO-GS incorporates an ultralightweight neck
structure for efficient feature fusion, a lightweight head struc-
ture for object classification, and bounding box coordinate
regression utilizing ghost shuffle convolution (GSConv2D) and
the anchor-free method. The model is further optimized and

27

accelerated with TensorRT for efficient and intelligent dish
detection on the NVIDIA Jetson Xavier NX. Experimental
results demonstrate that YOLO-GS achieves an mean average
precision (mAP) of 99.38% with a parameter count of 0.61
M. The inference speed reaches 31.371 FPS, meeting the
needs of real-time dish detection on Embedded Robot. A
demo image is available at https://www.youtube.com/watch?
v=pCBo1nzm3qU&t=22s.

Furthermore, we have designed a multiscale stereoscopic
attention (MSA) network called YOLO-MSA to detect post-
prandial dishes for empty-dish recycling robots [25]. First, the
standard convolution is replaced with a Res2Net module to
enhance the network’s multiscale expressiveness at a finer-
grained level. Second, the MSA module is designed for coarse-
grained multiscale expression, employing Res2Net modules
with different dilation rates and a novel stereoscopic attention
mechanism. Third, to facilitate multiscale feature learning
during dimensionality reduction, the Dimension Reduction
Spatial Pyramid Pooling (DRSPP) method is proposed to
fuse feature maps from different scales. Extensive experiments
show that YOLO-MSA has achieved an mAP of 98.47% with
an inference speed of 33.93 FPS. The results on other public
datasets also demonstrate and provide the proposed model with
better generalization capability.

Additionally, to tackle the challenges posed by precise
dataset creation and the intricate construction of deep learning
models, we have developed an Internet of Things (IoT)-
based dataset creation method and an automatic deep learning
model generation strategy [26]. Specifically, our IoT-based
dataset creation approach facilitates convenient data collection
and accurate dataset construction. It involves an Android
application that captures images and transmits them to a
cloud server for dataset creation. This process includes a two-
level verification mechanism to filter out anomalous data and
ensure dataset integrity. Subsequently, leveraging the curated
dataset, the cloud server employs state-of-the-art deep learning
components to automatically train and generate a deep learning
model. This methodology has been successfully applied to
Empty-dish Recycling Robots, achieving an impressive accu-
racy of 99.86% with a compact parameter size of just 0.84MB.

IV. LATENCY ESTIMATION

Even when a small set of fixed Deep Neural Networks
(DNNs) is given, the design space of DNN based applications
in embedded devices is vast, complex and full of peculiar inter-
dependencies (figure 6). The embedded processors are com-
posed of discrete resources like buffers, caches and processing
elements. If a slightly larger network exceeds a threshold and
a given memory or resource array is too small to serve all of
it, we observe stalling and flushing effects that result in highly
non-linear performance measurements [27]. Also, a given HW
treats different algorithms differently reflecting the objectives
of their designers. E.g. depth-wise convolutions consume more
energy per operation than ordinary convolutions for Intel’s
NCU and Google’s TPU [28], 4-6 times more on average
and up to 20 times in specific cases. Because the efficiency

of execution varies greatly between kernel-HW combinations,
the number of operations is a poor and misleading proxy for
both latency and energy metrics [28], although it is easy to
calculate and therefore often used anyway.

Jetson Nano
Jetson TX2
Jetson TK1
TITAN X
Jetson AGX Orin
Jetson Orin NX
Jetson Orin Nano
Jetson AGX Xavier

ARM NN

Intel NCS2

Intel NUC

NXP i.MX8M

NXP i.MX93

Xilinx xDNN
Google edge TPU

Pruning

Quantization

Regularization

Shunt Connections

Partitioning

Fusion

Knowledge Distillation

DNN

ConvNeXt

MaskFormer

PP−Yolo

Yolo v6

Yolo v8

Yolo NAS

DDRNet

EfficientFormer SegFormer

UNet++

UNet++

MobileNet

Implementation

Platforms

Optimization

Fig. 6. Design space.

Even for a given algorithm-HW combination, the dynamic
settings during execution can have profound effects on energy
consumption and latency. In a study of the Nvidia Jetson Nano
- MobileNet combination we found that activating four cores
increases the energy consumption by 7.5% but reduces the
latency only by 0.1% [29]. Reducing frequency by 4x (from
1479MHz to 307MHz) decreases latency by 2x but energy
consumption only by 20%. Curiously, energy consumption
increases again at lower frequencies and thus, there is an
optimal frequency of 307MHz in a range of 102MHz to
1478MHz [29].

In every study we conducted [28], [30]–[35] we found
unexpected and often surprising relations, giving witness to a
complex, highly non-linear design space where small changes
in parameters can have over-proportional effects.

Considerable effort has been spent to analyze and under-
stand energy usage and delay behavior of DNNs executing
on various platforms, aiming at the granularity of individual
layers.

In a recent paper [28] we presented our profiling methodol-
ogy for assessing the energy efficiency of neural network ac-
celerators at both layer and network granularity. The approach
involves extracting per-layer timing reports from recorded
power profiles. The power and energy consumption of three
prominent neural network accelerators, namely the Intel Neu-
ral Compute Stick 2, the Coral Edge TPU, and the NXP
i.MX8M Plus is evaluated for three different DNNs using
this method. The study investigates the relationship between
decreasing sampling frequencies and the average error, as well
as the detailed energy consumption of individual DNN layers
and layer types.

28

https://www.youtube.com/watch?v=pCBo1nzm3qU&t=22s
https://www.youtube.com/watch?v=pCBo1nzm3qU&t=22s

We found that latency is a better predictor for both overall
and dynamic energy than the number of operations per layer,
with errors of 10% and 100%, respectively. The main con-
clusions are: a sampling frequency of 200 kHz is necessary to
achieve an average error of 5%; the number of operations is
an inadequate predictor of energy consumption; and specific
hardware settings significantly influence power and energy
consumption, emphasizing the need for their consideration in
estimation.

Fig. 7. Overview of the estimation flows of ANNETTE and Blackthorn using
selected benchmarking and model building. Optional usage of PRs to further
constrain the benchmark parameter space, shown with dashed arrows.

Using the many insights from our profiling experiments
ANNETTE [36], [37] and Blackthorn [27] tools have been
developed at TU Wien. They perform layer-wise latency
estimation of a given DNN for a given platform. ANNETTE
uses mixed analytic-stochastic models to estimate the latency
of individual or fused layers on CPU-, FPGA-, and NPU-based
platforms. Blackthorn uses step-wise linear analytic functions
for latency estimations on GPUs and NPUs. ANNETTE and
Blackthorn differ (i) by their benchmarking strategy, (ii) the
estimation models, and (iii) the targeted platforms. Blackthorn
assumes that the estimation functions are a step-wise linear.
This assumption has a strong influence on the model build-
ing algorithm and the benchmarking strategy, which tries to
select measurement points at the edges of the steps in the
estimation functions. Natural target platforms for Blackthorn
are hardware architectures with many computing resources
organized in parallel like GPU based processors and many
DNN accelerators. When a platform has been benchmarked
and characterized, both estimators have execution times be-
tween 0.5ms and 4ms, and exhibit estimation errors below
10%. Table I lists the main features.

For a user of an estimation tool it is important to obtain a
good estimate and an assessment of the quality of the estimate,
which we call confidence. In the context of ANNETTE we
have proposed a confidence metric and a method to quantify
the accuracy of the latency estimation. The metric is based on
the observation that an estimate is better if it is close to an
area with many measurements, as opposed to a point that is
hardly covered my actual measurements.

As stated before, the benchmarking process can be very
time-consuming, especially depending on the amount of re-

TABLE I
FEATURES OF THE ESTIMATORS ANNETTE AND BLACKTHORN.

.

Benchmarking
strategy

Model building Target
platforms

ANNETTE micro kernels,
multi-layer

mixed analytic
stochastic

CPUs, FPGAs,
NPUs

Blackthorn micro kernels
using
dynamically
selected
measurements

linear and
step-wise
functions

GPUs, NPUs

TABLE II
ESTIMATION ACCURACY OF ANNETTE AND BLACKTHORN TOOLS.

Network Estimation Error [%]
NCS2 ZCU102 Jetson Jetson

Nano TX2
YoloV3 4.1 3.2 - -

MobileNetV2 4.3 4.2 3.6 4.2
ResNet50 8.2 1.2 2.4 4.8
FPN Net 9.3 7.5 - -
AlexNet 5.2 4.8 5.5 6.6
VGG16 11.3 6.2 0.5 1.4

quired training data points for the stochastic models of AN-
NETTE. Therefore, the University of Tübingen has developed
a performance modeling methodology and benchmarking strat-
egy, building upon the ANNETTE tool, which aims at reducing
the amount of required training data points [38]. Similar to the
approach of Blackthorn, the step-wise execution time behavior
of many AI accelerator platforms is exploited by restricting
the benchmarking parameter space to only one (the last) point
of a step. This point we call a Performance Representative
(PR). The PRs can either be deduced from the hardware
and mapping parameters of an AI accelerator architecture or
determined algorithmically from initial parameter sweeps (see
Fig. 8).

Sampling the training data only from this restricted param-
eter set of PRs and mapping target layers to the corresponding
PR before making the estimation, leads to a significant reduc-
tion in benchmark points, and consequently benchmark time,
while maintaining estimation accuracy. How this approach
integrates with the existing ANNETTE workflow is shown in
Fig. 7 with dashed arrows. Fig. 9 shows the Mean Absolute
Percentage Error (MAPE) of a single Conv2D layer estimation
for the Versatile Tensor Accelerator (VTA) [39] for different
training dataset sizes. Sampling the benchmarks from the set
of PRs and mapping the target layer to the corresponding PR
and using it to make the estimation outperforms an uninformed
sampling approach while needing less than 10 000 training
samples.

V. MULTI-LEVEL PERFORMANCE ESTIMATION OF
MULTI-INSTANCE AI COMPUTE PLATFORMS

The very dynamic development in machine learning and
AI implies an equally dynamic development of AI hardware
platforms, which are composed of multiple NPU and SIMD

29

0 20 40 60 80 100 120
K

0.2

0.3

0.4

0.5
Ex

ec
ut
io
n
tim

e
[m

s]
Conv2D:
C=128,
Ch=Cw=64,
F=3

Output channel sweep

Fig. 8. Step-wise runtime behavior of the Jetson AGX Xavier GPU for
increasing Conv2D parameter output channels K. PRs shown in red. [38]

2000 4000 6000 8000
samples

10

15

20

M
AP

E
[%

]

VTA Conv2D
Random Selection
PR Sampling+Mapping

Fig. 9. Mean Absolute Percentage Error (MAPE) of single layer execu-
tion time estimation for different training dataset sizes, comparing random
sampling from the complete Conv2D parameter space vs. PR sampling and
mapping. [38]

cores and a domain-specific memory hierarchy. New AI fea-
tures are typically designed and trained by AI experts, and
then optimized for an embedded target using hardware-aware
neural-architecture search (NAS) and mixed deployment, tak-
ing into account the heterogeneity of the provided compute
instances. To account for the influence of memory accesses
between multiple compute instances, the multi-dimensional
data flow between across compute instances as well as the
shape of the data access pattern that the data flow follows
are calculated in order to estimate the amount of data to be
transferred through different memory instances in a given time
interval. Using the Abstract Computer Architecture Descrip-
tion Language (ACADL) [40] we can build timing models
for AI accelerator cores on different abstraction levels. Fine-
grained models are based on scalar operations such as addition
or multiplication, while coarse grained models employ vector
and tensor operations. Given an ACADL model of an AI
accelerator core and a DNN mapping, in the form of a loop
nest containing a sequence of scalar or tensor instructions, we
propagate each instruction through the ACADL model and
track the structural, data, and buffer fill level dependencies in
the Architectural Instruction Dependency Graph (AIDG) [41].
An example ACADL model together with an AIDG for this
model is presented in Fig. 10.

ex: ExecuteStage

latency = 1

ls: ExecuteStage

latency = 1

alu: FunctionalUnit

to_process = {"add", "sub", "mul"}
latency = 2

mau: MemoryAccessUnit

to_process = {"load", "store"}
latency = 1

imau:
InstructionMemoryAccessUnit

to_process = {"fetch_instruction"}
latency = 1 dmem: Memory

data_width = 32
port_width = 1
read_latency = 2
write_latency = 3
address_ranges=[(0x1000, 0x2000)]
data = {}

imem: Memory

data_width = 32
port_width = 2
read_latency = 1
write_latency = 1
address_ranges=[(0x0000, 0x1000)]
data = {}

rf: RegisterFile

data_width = 32
registers={"r0": 42, "r1": 23, "r2": 89}

ifs: InstructionFetchStage

latency = 1
issue_buffer_size = 2

:read()/:write()

:read()/:write():read()/:write():read()

:ready()/:process()
:process_fetch()

:ready()/:process()

:re
ad

y(
)/:

re
ce

iv
e(

)

:re
ad

y(
)/:

re
ce

iv
e(

)

load [0x1000] => r0
load [0x1004] => r1
add r0, r1 => r2
store r2 => [0x1008]

2,5

2,9

3,5

5,10

5,7

10,13

1,30,1

1,2

2,3 3,5

forward buffer dependency structural dependency data dependency

dmemls & mau

ex & aluifs & imauimem

(a) ACADL model of a computer architecture

(b) Example AIDG for four scalar instructions mapped on the computer architecture

Fig. 10. Example computer architecture modeled using ACADL and the cor-
responding AIDG for four instructions mapped onto the ACADL model. [41]

By analyzing the AIDG, we can estimate the end-to-end
latency of a DNN mapped onto an AI accelerator core. While
it is possible to propagate all instructions of all iterations
of a DNN mapping through an ACADL model to construct
an AIDG it is not necessary to get an accurate estimation.
Because DNN layers are implemented as nested loops with
very regular control flow and memory access patterns we only
need to analyze a prolog of at maximum 1% of all iterations in
an AIDG until the latency ∆titeration and the overlap ∆toverlap
of consecutive iterations converge to a fix point where the
latencies only change in a very small range. Using those
two latencies and the latency of prolog ∆tprolog containing
nprolog iterations we can calculate the end-to-end latency of n
iterations in a DNN layer

∆t = ∆tprolog + (n− nprolog) · (∆titeration −∆toverlap).

This enables us to make fast and very accurate performance
estimations for different architectures such as UltraTrail [42]
and Gemmini [43] with a MAPE between 0.0001% and 9.78%,
compared to a cycle-accurate RTL simulation, that take at
maximum 38s to estimate the end-to-end latency of a whole
DNN such as AlexNet.

The AIDG allows us to not only accurately estimate the
performance of an AI accelerator core but also inject call
back functions when a memory is accessed and call a cache
or DRAM timing model or a performance model of another
AI accelerator core. This provides the possibility to combine
various performance estimation methods into a heterogeneous
performance model for multi-instance AI compute platforms
with shared memory.

Fig. 11(a) shows an example AI compute platform com-
posed out of a RISC-V MCU acting as a controller, two
systolic arrays for processing GEMM and convolutional layers,
and a SIMD Unit for pooling and activation layers all con-
nected through a shared cache hierarchy and a shared DRAM.
This AI compute platform allows for processing DNN layers in

30

Sys. Arr. AIDGAIDG PRs

Measurement
Lookup TableAIDGSIMD Unit

DRAM DRAM Timing Simulator

D
ata C

ache H
ierarchy

C
ache A

ccess M
anager

Systolic Array

RISC-V MCU

(a) Architecture Block Diagramm (b) Multi-Instance Performance Estimation

Fig. 11. Combining different performance estimation methods for the
performance estimation of multi-instance AI compute accelerator platforms.

parallel or in a pipelined fashion, where one core continuously
produces an output feature while another core consumes it.

Using multiple ACADL models with an AIDG analyses
together with statistical performance models, measurement
bases approaches and a DRAM timing simulator [44] all
connected through a cache access manager which simulates
cache accesses and latencies (see. Fig. 11(b)) lets us esti-
mate the performance of a whole AI compute platform. First
preliminary results using two systolic arrays with a shared
cache hierarchy show a MAPE between 0.8% and 12.5% when
estimating the performance for a whole DNN mapping.

VI. SUMMARY

We have reviewed optimization and estimation techniques
for deploying DNNs on embedded platforms. Specifically,
we have discussed state-of-the-art methods for quantizing
LLMs and CNNs. For LLMs, the paper describes Activation-
aware Weight Quantization (AWQ) and the TinyChat in-
ference system, which significantly reduce model size and
enhance inference speed across various platforms. For CNNs
we presented pruning techniques and integrated hardware-
aware optimization flows, particularly for FPGA and CPU-
based platforms. Furthermore, we have reviewed several es-
timation techniques for predicting the latency of DNNs on
specific hardware. Specifically we discussed three estima-
tion approaches: ANNETTE is based on a mixed analytic-
stochastic model; Blackthorn is an analytic model based on
step-wise linear functions; and an estimation approach based
on detailed model of the hardware architecture.

Main conclusions from the presented work are:
• Not all weights in a DNN are equally important and

by selective quantization the memory footprint and per-
formance can be greatly improved without sacrificing
too much quality. The described Activation-aware Weight
Quantization approach allows for significant reduction in
model size (up to 4×) and accelerates inference by 3-4×.

• Hardware-aware pruning techniques for CNNs can dras-
tically reduce the computational load and improve in-
ference times on embedded systems. For example, the
integration of channel level, layer level, and hardware-
aware pruning can lead to significant performance gains
with FPGA and RISC-V implementations.

• There are many non-linear relationships between hard-
ware architectures and hardware settings on one hand
and DNN algorithms on the other hand. Some of them
we have reviewed, like the different implementation ef-
ficiencies of different kernels and the case of the Nvidia
Jetson Nano, where increasing the number of active cores
has a minimal effect on latency but significantly increases
energy consumption. These findings underscore the com-
plexity of optimizing DNN performance on embedded
platforms, where small changes in hardware settings and
algorithms can lead to disproportionate effects on energy
and latency.

• Latency estimation tools can greatly speed-up the design
space exploration by providing relatively accurate esti-
mates in very short time. The required latency accuracy
is about 10% or below, which has been shown to be
achievable. There is significant effort to be invested in
model building and banchmarking as preparation for the
actual estimation. But this effort is quickly amortized if
the same broad classes of DNNs and hardware architec-
tures are used in a few application projects.

Overall, the work presented here shows that even high end
DNN algorithms can be efficiently deployed on constrained
embedded devices, given the appropriate methodology and
tools.

REFERENCES

[1] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[2] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[3] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “Gptq: Accurate
post-training quantization for generative pre-trained transformers,” arXiv
preprint arXiv:2210.17323, 2022.

[4] J. Lin, H. Yin, W. Ping, Y. Lu, P. Molchanov, A. Tao, H. Mao, J. Kautz,
M. Shoeybi, and S. Han, “Vila: On pre-training for visual language
models,” in CVPR, 2024.

[5] G. Xiao, J. Lin, M. Seznec, J. Demouth, and S. Han, “Smoothquant:
Accurate and efficient post-training quantization for large language
models,” arXiv preprint arXiv:2211.10438, 2022.

[6] G. Penedo, Q. Malartic, D. Hesslow, R. Cojocaru, A. Cappelli,
H. Alobeidli, B. Pannier, E. Almazrouei, and J. Launay, “The refinedweb
dataset for falcon llm: outperforming curated corpora with web data, and
web data only,” arXiv preprint arXiv:2306.01116, 2023.

[7] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim et al., “Starcoder: may the source
be with you!” arXiv preprint arXiv:2305.06161, 2023.

[8] Y. J. Kim, R. Henry, R. Fahim, and H. H. Awadalla, “Who says elephants
can’t run: Bringing large scale moe models into cloud scale production,”
arXiv preprint arXiv:2211.10017, 2022.

[9] H. Li, Z. Wang, X. Yue, W. Wang, H. Tomiyama, and L. Meng,
“An architecture-level analysis on deep learning models for low-impact
computations,” Artificial Intelligence Review, vol. 56, pp. 1971–2010,
2023.

[10] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “Model Compression and
Acceleration for Deep Neural Networks: The Principles, Progress, and
Challenges,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 126–
136, 2018.

[11] Y. He and S. Han, “ADC: automated deep compression and acceleration
with reinforcement learning,” in European Conference on Computer
Vision (ECCV), Munich, Germany, September 2018.

31

[12] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization
of Neural Networks using DropConnect,” in Proceedings of the 30th
International Conference on Machine Learning, vol. 28, Atlanta, GA,
USA, June 2013, pp. 1058–1066.

[13] T. Chen, B. Ji, T. Ding, B. Fang, G. Wang, Z. Zhu, L. Liang, Y. Shi, S. Yi,
and X. Tu, “Only Train Once: A One-Shot Neural Network Training And
Pruning Framework,” in Advances in Neural Information Processing
Systems NeurIPS, online, December 2021, pp. 19 637–19 651.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, June 2016, pp. 770–778.

[15] H. Li and L. Meng, “Hardware-aware approach to deep neural network
optimization,” Neurocomputing, vol. 559, p. 126808, 2023.

[16] T. Chen, B. Ji, D. Tianyu, B. Fang, G. Wang, Z. Zhu, L. Liang,
Y. Shi, S. Yi, and X. Tu, “Only train once: A one-shot neural network
training and pruning framework,” in Thirty-Fifth Conference on Neural
Information Processing Systems, 2021.

[17] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A survey
of accelerator architectures for deep neural networks,” Engineering,
vol. 6, no. 3, pp. 264–274, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2095809919306356

[18] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, “Pulp-nn:
Accelerating quantized neural networks on parallel ultra-low-power risc-
v processors,” Philosophical Transactions of the Royal Society A, vol.
378, no. 2164, p. 20190155, 2020.

[19] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. van
Baalen, and T. Blankevoort, “A white paper on neural network
quantization,” CoRR, vol. abs/2106.08295, 2021. [Online]. Available:
https://arxiv.org/abs/2106.08295

[20] Q. Li, H. Li, and L. Meng, “A generic deep learning architecture opti-
mization method for edge device based on start-up latency reduction,”
Journal of Real-Time Image Processing, vol. 21, 2024.

[21] H. Li, Z. Wang, X. Yue, W. Wang, H. Tomiyama, and L. Meng, “A
comprehensive analysis of low-impact computations in deep learning
workloads,” in Proceedings of the 2021 on Great Lakes Symposium on
VLSI, New York, USA, June 2021, pp. 385–390.

[22] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and
L. Benini, “GAP-8: A RISC-V SoC for AI at the Edge of the IoT,”
in 2018 IEEE 29th International Conference on Application-specific
Systems, Architectures and Processors (ASAP). IEEE, 2018, pp. 1–
4.

[23] Z. Su, Q. Li, H. Kaneko, H. Li, and L. Meng, “Optimization and deploy-
ment of dnns for risc-v-based edge ai,” in The 2024 IEEE International
Conference on Real-time Computing and Robotics, Ålesund, Norway,
June 2024.

[24] X. Yue, H. Li, and L. Meng, “An ultralightweight object detection
network for empty-dish recycling robots,” IEEE Transactions on In-
strumentation and Measurement, vol. 72, pp. 1–12, 2023.

[25] X. Yue and L. Meng, “Yolo-msa: A multiscale stereoscopic attention
network for empty-dish recycling robots,” IEEE Transactions on Instru-
mentation and Measurement, vol. 72, pp. 1–14, 2023.

[26] Y. Ge, Z. Li, X. Yue, H. Li, Q. Li, and L. Meng, “Iot-based automatic
deep learning model generation and the application on empty-dish
recycling robots,” Internet of Things, vol. 25, p. 101047, 2024.

[27] M. Lechner and A. Jantsch, “Blackthorn: Latency estimation
framework for CNNs on embedded Nvidia platforms,” IEEE Access,
2021. [Online]. Available: http://jantsch.se/AxelJantsch/papers/2021/
MartinLechner-IEEEAccess.pdf

[28] M. Wess, D. Dallinger, D. Schnöll, M. Bittner, M. Götzinger, and
A. Jantsch, “Energy profiling of DNN accelerators,” in Proceedings
of the 26th Euromicro Conference on Digital System Design
(DSD), Durres, Albania, September 2023. [Online]. Available: http:
//jantsch.se/AxelJantsch/papers/2023/MatthiasWess-DSD.pdf

[29] A. Glinserer, M. Lechner, and A. Wendt, “Automated pruning of neural
networks for mobile applications,” in IEEE International Conference on
Industrial Informatics (INDIN), 2021.

[30] I. Shallari, I. Sánchez Leal, S. Krug, A. Jantsch, and M. O’Nils,
“Design space exploration on IoT node: Trade-offs in processing
and communication,” IEEE Access, 2021. [Online]. Available: http:
//jantsch.se/AxelJantsch/papers/2021/IridaShallari-IEEEAccess.pdf

[31] I. S. Leal, E. Saqib, I. Shallari, A. Jantsch, S. Krug, and M. O’Nils,
“Waist tightening of CNNs: A case study on tiny yolov3 for
distributed iot implementations,” in Proceedings of the Real-time And
intelliGent Edge computing workshop (RAGE), San Antonio, Texas,

May 2023. [Online]. Available: http://jantsch.se/AxelJantsch/papers/
2023/IsaacSanchezLeal-RAGE.pdf

[32] E. Saqib, I. S. Leal, I. Shallari, A. Jantsch, S. Krug, and
M. O’Nils, “Optimizing the IoT performance: A case study
on pruning a distributed CNN,” in Proceedings of the IEEE
Sensors Applications Symposium (SAS), 2023. [Online]. Available:
http://jantsch.se/AxelJantsch/papers/2023/EirajSaqib-SAS.pdf

[33] I. S. Leal, I. Shallari, S. Krug, A. Jantsch, and M. O’Nils, “Impact of
input data on intelligence partitioning decisions for IoT smart camera
nodes,” Electronics, vol. 10, no. 16, 2021. [Online]. Available: http:
//jantsch.se/AxelJantsch/papers/2021/IsaacLeal-MDPIElectronics.pdf

[34] S. Holly, A. Wendt, and M. Lechner, “Profiling energy consumption of
deep neural networks on Nvidia Jetson Nano,” in 2020 11th International
Green and Sustainable Computing Workshops (IGSC), 2020, pp. 1–6.

[35] A. Wendt, H. Possegger, M. Bittner, D. Schnöll, M. Wess,
D. Malić, H. Bischof, and A. Jantsch, “A pedestrian detection
case study for a traffic light controller,” in Embedded Machine
Learning for Cyber-Physical, IoT, and Edge Computing - Software
Optimizations and Hardware/Software Codesign, S. Pasricha and
M. Shafique, Eds. Springer, 2023, pp. 75–96. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-031-39932-9 4

[36] M. Wess, M. Ivanov, C. Unger, A. Nookala, A. Wendt, and
A. Jantsch, “ANNETTE: Accurate neural network execution time
estimation with stacked models,” IEEE Access, vol. 9, pp. 3545–3556,
2021. [Online]. Available: http://jantsch.se/AxelJantsch/papers/2021/
MatthiasWess-IEEEAccess.pdf

[37] M. Wess and A. Jantsch, “Confidence for latency estimation of DNN
accelerators: A blackbox approach,” Accepted for publication, 2024.

[38] A. L.-F. Jung, J. Steinmetz, J. Gietz, K. Lübeck, and O. Bringmann,
“It’s all about PR – Smart Benchmarking AI Accelerators using Perfor-
mance Representatives,” in 2024 International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS),
2024.

[39] T. Moreau, T. Chen, L. Vega, J. Roesch, E. Yan, L. Zheng, J. Fromm,
Z. Jiang, L. Ceze, C. Guestrin, and A. Krishnamurthy, “A Hardware-
Software Blueprint for Flexible Deep Learning Specialization,” 2019.

[40] M. M. Müller, A. R. M. Borst, K. Lübeck, A. L.-F. Jung, and O. Bring-
mann, “Using the abstract computer architecture description language to
model ai hardware accelerators,” in MBMV 2024; 27. Workshop, 2024,
pp. 19–30.

[41] K. Lübeck, A. L.-F. Jung, F. Wedlich, M. M. Müller, F. N. Peccia,
F. Thömmes, J. Steinmetz, V. Biermaier, F. Adrian, P. P. Bernardo, and
O. Bringmann, “Automatic generation of fast and accurate performance
models for deep neural network accelerators,” Accepted for publication
in ACM Transactions on Embedded Computing Systems (TECS), 2024.

[42] P. P. Bernardo, C. Gerum, A. Frischknecht, K. Lübeck, and O. Bring-
mann, “UltraTrail: A configurable Ultralow-Power TC-ResNet AI Accel-
erator for Efficient Keyword Spotting,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, pp.
4240–4251, 2020.

[43] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,
D. Grubb, H. Liew, H. Mao, A. Ou, C. Schmidt, S. Steffl, J. Wright,
I. Stoica, J. Ragan-Kelley, K. Asanovic, B. Nikolic, and Y. S. Shao,
“Gemmini: Enabling systematic deep-learning architecture evaluation
via full-stack integration,” in Proceedings of the 58th Annual Design
Automation Conference (DAC), 2021.

[44] L. Steiner, M. Jung, F. S. Prado, K. Bykov, and N. Wehn,
“Dramsys4.0: An open-source simulation framework for in-depth
dram analyses,” International Journal of Parallel Programming,
vol. 50, no. 2, p. 217–242, Mar. 2022. [Online]. Available:
http://dx.doi.org/10.1007/s10766-022-00727-4

32

https://www.sciencedirect.com/science/article/pii/S2095809919306356
https://www.sciencedirect.com/science/article/pii/S2095809919306356
https://arxiv.org/abs/2106.08295
http://jantsch.se/AxelJantsch/papers/2021/MartinLechner- IEEEAccess.pdf
http://jantsch.se/AxelJantsch/papers/2021/MartinLechner- IEEEAccess.pdf
http://jantsch.se/AxelJantsch/papers/2023/MatthiasWess- DSD.pdf
http://jantsch.se/AxelJantsch/papers/2023/MatthiasWess- DSD.pdf
http://jantsch.se/AxelJantsch/papers/2021/IridaShallari- IEEEAccess.pdf
http://jantsch.se/AxelJantsch/papers/2021/IridaShallari- IEEEAccess.pdf
http://jantsch.se/AxelJantsch/papers/2023/IsaacSanchezLeal- RAGE.pdf
http://jantsch.se/AxelJantsch/papers/2023/IsaacSanchezLeal- RAGE.pdf
http://jantsch.se/AxelJantsch/papers/2023/EirajSaqib- SAS.pdf
http://jantsch.se/AxelJantsch/papers/2021/IsaacLeal- MDPIElectronics.pdf
http://jantsch.se/AxelJantsch/papers/2021/IsaacLeal- MDPIElectronics.pdf
https://link.springer.com/chapter/10.1007/978-3-031-39932- 9_4
http://jantsch.se/AxelJantsch/papers/2021/MatthiasWess- IEEEAccess.pdf
http://jantsch.se/AxelJantsch/papers/2021/MatthiasWess- IEEEAccess.pdf
http://dx.doi.org/10.1007/s10766-022-00727-4

