2024 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)

Special Session: End-To-End Carbon Footprint
Assessment and Modeling of Deep Learning

Ahmad Faiz

Lei Jiang

Fan Chen

Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
{afaiz, jiang60, fc7}@iu.edu

Abstract—Large language models (LLMs) have been widely
adopted across various applications. However, their intensive
computation and energy use have raised concerns about environ-
mental sustainability. Our open-source tool, LLMCarbon, is the
first comprehensive model for estimating the carbon footprint of
LLMs before training. This paper reviews the LLMCarbon model,
details its hardware efficiency model, presents a case study on
training carbon footprints, and discusses recent research inspired
by LLMCarbon and future directions.

Index Terms—Large Language Models, Sustainability

I. INTRODUCTION

Recent advancements in deep learning, epitomized by the
proliferation of large language models (LLMs) [1]-[19],
have garnered significant attention from both industry and
academia, leading to widespread adoption across various do-
mains. However, their intensive compute and corresponding
energy consumption have raised concerns about their negative
impact on environmental sustainability. Therefore, it is im-
perative to assess their carbon footprint before commencing
the resource-intensive training process. Specifically, the carbon
footprint of an LLM comprises of two main components:
the operational footprint (CO2,,¢,) from runtime hardware
energy consumption and the embodied footprint (CO2..,p)
from hardware manufacturing, transportation, and disposal.
Predicting CO2,,,., requires considering LLM model param-
eters, hardware efficiency, and data center energy efficiency.
Calculating CO2.,,,p involves chip area and Carbon Per unit
Area (CPA), based on semiconductor fabrication parameters
such as yield, manufacturing energy consumption, chemi-
cal emissions, and raw material sourcing. The total carbon
footprint (CO2.,) is the sum of CO2,,., and CO2¢p,p.
Additionally, a comprehensive assessment should include test
loss, training duration, and inference latency to fully evaluate
LLM performance and environmental impact.

There has long been a lack of comprehensive LLM carbon
footprint estimators. Existing tools either report operational
emissions post-training [20], or are designed for convolutional
neural network [21]. Our open-source tool, LLMCarbon [22],
is the first end-to-end carbon footprint projection model for
both dense and sparse LLMs, and it has garnered significant
attention since its release. This paper first reviews the LLM-
Carbon model, then explains the critical hardware efficiency
model within LLMCarbon. We also present a case study on
scaling training carbon footprints and discuss recent work
inspired by LLMCarbon and future research directions.

2832-6474/24/$31.00 ©2024 IEEE
DOI 10.1109/CODES-1SSS60120.2024.00011

LLM architecture ____ hardware

configuration configuration

=3 T o,
2| iparameter model: data, tensor,
g | ERRIRIEEL RN bipe.. & expert
5 parameter # ——> * parallelism
;? . I FL\I6P o
c | nheura hardware||embodied
8 scillmg mglt/jel S efficiency|| carbon
& testloss FLOPs |l model model
‘g i \II/ h (;]/ b\lld' d

y operationa ardware embodie
: carbon model 2 efficiency CO2eq
e v
3 operational CO2eq—>/total CO2eq

Fig. 1. Overview of LLMCarbon [22]. It calculates the total carbon footprint
by processing LLM configuration parameters, hardware configurations, and
data center specifications through specialized modules.

II. OVERVIEW OF LLMCARBON

As shown in Figure 1, the inputs to LLMCarbon encompass
the LLM algorithmic model architecture, hardware configu-
ration, and data center specifications. These inputs undergo
processing through a series of modules to generate the final
LLM carbon footprint output, as detailed below.

First, the parameter model calculates the total parameter
count from the LLM configuration or directly accepts its
value as input. LLMCarbon uses the Chinchilla Neural Scaling
Law [7] to estimate test loss across models, sizes, and datasets.
The FLOP model calculates the total floating-point operations
(FLOPs) required using the parameter count and dataset size.
For sparse MoE models, the base dense model’s parameters
are used for FLOP calculation. Based on the parameter count,
LLMCarbon determines the required number of compute de-
vices and optimal parallelism configurations [23], [24] .

Second, LLMCarbon incorporates a hardware efficiency
model to estimate LLM processing efficiency, which depends
on tensor, pipeline, data, and expert parallelism. The number
of devices n required for optimal efficiency is calculated from
the parallelization degrees as n =t - p-d where ¢, p, d are the
tensor, pipeline, and data parallel degrees. Optimal parallel
settings are derived from [23] for dense models and from [24]
for sparse mixture-of-experts (MoE) models. LLMCarbon uses
a regression model to estimate efficiency based on the number
of compute devices, parallel settings, and total parameters.

Finally, incorporating data center details, hardware effi-
ciency, and FLOP count, LLMCarbon computes the total
operational carbon footprint. The embodied carbon footprint
is calculated by summing the emissions of individual chip

components. The total carbon footprint is the sum of oper-
ational and embodied footprints. LLMCarbon results differ
from Google’s published LLM carbon footprints by < 8.2%.

III. HARDWARE EFFICIENCY MODEL IN LLMCARBON

In this section, we elaborate on the critical hardware effi-
ciency model in LLMCarbon, providing results in addition to
those presented in [22].

A. Hardware Efficiency vs. Model Parallelism Size

Figure 2(a) illustrates hardware efficiency with increasing
tensor parallel size in a single multi-GPU server. Within a
single multi-GPU server node, hardware efficiency is primarily
determined by the size of matrix multiplications (GEMMs)
and the communication cost over high-bandwidth GPU inter-
connects. To avoid the high cost of all-reduce communication
across inter-server links, the tensor model parallel size is
increased to z when using a z device server [23]. For single-
node models, the data parallel size is set to 32. Tensor
model parallelism splits the matrix multiplications of the MLP
and self-attention, requiring two all-reduce communications
per layer for each forward and backward pass. As tensor
parallelism increases, the size of GEMMs is reduced, lowering
compute efficiency while increasing all-reduce costs between
tensor parallel replicas.

Figure 2(b) shows hardware efficiency scaling super-linearly
with increasing parameter size using larger pipeline parallel
sizes. More specifically, further scaling of model sizes across
multi-GPU nodes is achieved using pipeline parallelism. With
the tensor parallel degree fixed at z, scaling involves adjusting
the pipeline degree and the number of GPUs. Larger model
sizes improve GPU compute utilization due to larger GEMMs
without significantly increasing communication costs. Pipeline
parallelism requires point-to-point communication between
GPUs on two servers, which can bottleneck performance.
Combining tensor and pipeline parallelism facilitates parallel
communication between the same tensor ranks, significantly
reducing cross-node communication costs.

B. Hardware Efficiency vs. Number of Compute Devices

Figure 2(c) illustrates the scaling of compute devices as
a function of total model parameters using an A100 80GB
GPU. Efficiency for other GPU types is scaled by their rela-
tive performance factors compared to the A100 benchmarks.
LLMCarbon adopts settings from [23] to estimate the number
of compute devices, n, required for optimal throughput, where
n for optimal efficiency (eff,,) is calculated as n = ¢ - p - d.
If the number of compute devices deviates from 7, hardware
efficiency decreases. The efficiency with re devices (eff,..) can
be calculated using Equation 1, where vy ~ <o are fitting
constants, eff,, represents the highest achievable efficiency, and
n denotes the number of devices required to achieve eff,,.

'eﬁn
“eff, + 72

re <n

Yo -
re —
M -

I3 31]

6]

e
re>n

9 7 N £s2 o ~e
;45.0 7 AN > /
U'so
o H od
Saas / \ 8 . 4
g A \ e 74
Easol o/ \ Easl/
i 4.0 o \ °T A
2 s \ Taa
T 43.5 \ ‘
. . . ° N N N N Ny
% K R P & & F
Parameter # (B) Parameter # (B)
(a) Tensor Parallel (b) Pipeline Parallel
30001 e 60
2500 o
g a0
> 3
2000 s 30
[/ s _\
1500—7% 20 S
100014 0 e
P — s s s - o
S & & &S S & & S S

Parameter # (B) Parameter # (B)

(d) Data Parallel

Fig. 2. Hardware efficiency model in LLMCarbon. (a) Efficiency scaling
with increasing tensor size within a single multi-GPU server; (b) Efficiency
scaling between inter-server nodes with pipeline parallelism using point-to-
point communication; (c) Estimated GPUs required for optimal throughput
with increasing model size; (d) Data parallel size based on total compute
devices and model parallel size.

For a new LLM, the optimal parallel degrees are derived
from the estimated number of compute devices and model
parallel size. The final data parallel size for each model parallel
replica is calculated as d = %p. Figure 2(d) illustrates the
calculated data parallel size when scaling large models that
require cross-node communications. Increasing d to match n
may not be feasible for all models, as the training memory
footprint could exceed the capacity of a single accelerator.
In such cases, the number of devices used will be less than
the estimated optimal number, resulting in decreased hardware
efficiency, which can be estimated using Equation 1.

(c) Compute Devices

C. Carbon Footprint Throughout the LLM Lifecycle

Various Hardware Components. LLMCarbon estimates
the total training time for LLM processing by considering GPU
efficiency, the number of devices, and total FLOPs required.
A hardware unit comprises various components, including
CPUs, LLM computing devices, memory modules, SSDs, and
other peripherals. The total energy consumed during training
is calculated by multiplying each component’s peak power
usage by the training duration and summing these values.
This approach estimates the energy directly consumed by LLM
processing, excluding any data center overhead.

Data Center Configuration. LLMCarbon incorporates aux-
iliary energy overhead of a data center by multiplying the
total hardware energy consumption by the data center’s Power
Usage Effectiveness (PUE) [25], which is the ratio of the
total energy consumption of the data center to the energy
consumed solely by LLM computing hardware. The final
operational carbon emission is determined by multiplying the
data center’s energy consumption by its carbon intensity, a
comprehensive metric that evaluates the environmental impact
of the data center’s energy use by considering the proportion
of renewable, carbon-free energy utilized.

I Embodied =) Storage}

[0 Training

I Inference
[Experiment

B

S O &P
O O & &
& &S

Carbon footprint (tCO2eq)
S

o
T

> O N o S O \d
Q) O o Q' o Q)
S8 SIS

T5

Q

N
O ¥
&S

XLM Switch

Fig. 3. Total carbon footprint of dense and sparse MoE LLM models trained
on various computing devices.

Total Carbon Footprint. LLMCarbon adopts the lifecy-
cle ratio—covering training, inference, experimentation, and
storage—from [20]. Figure 3 presents the carbon footprint of
three LLMs trained with various hardware devices, with hard-
ware efficiency ranging from 39% to 19.7%. As shown, the
embodied carbon from hardware manufacturing significantly
contributes to 24% to 35% of the overall carbon footprint.
Moreover, the embodied carbon is relatively consistent across
models, primarily due to components like SSDs and DRAM.
In contrast, operational carbon can vary significantly between
devices for the same model. Notably, the operational car-
bon footprint of LLMs is reduced by 71% and 41% when
using ML-specific accelerators like the H100 and TPUv4
respectively. Additionally, optimal parallel settings identified
by LLMCarbon result in a significant reduction of 16% to 39%
in operational carbon emissions for the three LLMs. As the gap
between operational and embodied carbon emissions widens
in the near future [20], using power-efficient ML-specific
hardware along with optimal parallel settings to achieve high
hardware efficiency offers a practical approach to mitigate the
operational carbon overhead in an LLM’s lifecycle.

IV. CASE STUDY: CARBON FOOTPRINT SCALING

In this section, we conduct a case study using LLMCarbon
to estimate the test loss and total training carbon footprint for
mainstream LLM models, as shown in Figure 4. We provide
a detailed explanation of these experiments, which serve as
both a critical goal and a practical application. This enables
industry LLM providers and average users to estimate the
carbon footprint of LLMs before training, allowing them to
make informed trade-offs and adjust their choices accordingly.

LLM Models and Configuration. LLMCarbon studies the
test loss versus training carbon footprint for existing dense
and sparse MoE LLM models. The dense models include
T5 [1], GPT3 [2], XLM [3], Noor [4], PaLM [5], Gopher [6],
Chinchilla [7], LaMDA [8], Jurassic-1 [9], MT-NLG [10],
Bloom [11], YaLM [12], and GLM [13]. The sparse mod-
els considered are GShard [14], Switch [15], GLaM [16],
FBMOoE [17], ST-MoE [18], and PR-MoE [19]. We assume
that these LLMs, each with parameter size P, are trained on
the same dataset size D, on the same hardware infrastructure
with V100 GPUs (node size of 8 GPUs), and in the same
data center with a PUE of 1.1 and a carbon intensity of

1 XLM,
2.2
PR-MoE
1 Noor,
&2-1 FB-MoE GLM
o | -[%’MDA Ju asc’)Si(I':wer
o Yol MTNLG
2.0+ prg
|Gshard, ST-MoE
LM,
1.9 Switch GLaR}?
100 10 102 103 10 105

training carbon tCO2eq

Fig. 4. Training carbon footprint scaling of dense and sparse MoE models
with their corresponding estimated test loss.

0.431C0O2.,/KWh. Optimal parallel settings and the number
of compute devices are assumed for training the listed models.

Test Loss Estimation. To compute the expected test loss,
LLMCarbon uses Chinchilla neural scaling laws [7], with
fitting constants a=0.34, ($=0.28, A=406.4, B=410.7, and
E=1.69 for Equation 2. The scaling law indicates that the
test loss L consists of an irreducible term E and a reducible
term that diminishes with the scaling of parameters P and
dataset size D. For a MoE LLM with size P, the expected
test loss mirrors that of a dense counterpart with parameter
size P/8 [19] Consequently, for MoE LLMs, the parameter
size P is effectively reduced to P/8 in Equation 2.

A B
L(P,D):E+W+E (2

Hardware Configuration. The number of compute devices
used to train the new LLMs is given by n = t.p.d where
t,p,d are the optimal sizes of tensor, pipeline, and data
parallel respectively. LLMCarbon employs polynomial regres-
sion models, as detailed in Section III, to estimate hardware
efficiency based on the total parameter size, which determines
the degrees of model and data parallelism. For models that fit
on a single GPU server node, hardware efficiency using tensor
parallelism is estimated from 2(a). For models exceeding a sin-
gle GPU server’s capacity, hardware efficiency using pipeline
parallelism is derived from Figure 2(b). The total number of
V100 GPUs required is determined from Figure 2(c), and the
final data parallel ranks are calculated as d = %

Insights. Neural Scaling Law [7] indicates that an LLM
with more parameters trained on more tokens can achieve a
lower test loss. However, this improvement requires increased
computational resources, leading to a larger carbon footprint.
The choice between dense and sparse MoE LLMs significantly
impacts the trade-off between test loss and training carbon
footprint. MoE LLMs are more efficient, as their Pareto front
lies closer to the origin in the test loss-carbon footprint plane,

TABLE I
EMBODIED CARBON COMPARISON BETWEEN [22] AND [27].

[[Min. 20th percentile Median 80th percentile Max. |

LLMCarbon [22] 0.63
STEC-CS [27] | 0.61 0.62 0.64 0.66 0.67
Difference (%) [3.17% 1.59% 1.59% 4.76% 6.35%

meaning they can achieve lower test loss with the same
carbon footprint compared to dense models. This superior
performance of MoE LLMs is due to their architecture, which
allows for more efficient parameter utilization and reduced test
loss with the same operational footprint.

V. DISCUSSION AND FUTURE WORK

In this section, we discuss several subsequent works [26]—
[28] since the release of LLMCarbon and explore potential
research directions inspired by these studies. Integrating these
insights moving forward can enhance the accuracy and inclu-
sively of LLM carbon footprint modeling and management.

Improve Hardware Modeling. LLMCarbon’s estimation
of the operational carbon footprint relies on training data
from high-end hardware used in LLM training. The model’s
hardware efficiency is based on data from power-intensive
GPUs. However, LLMCarbon’s throughput and training time
estimations do not account for hardware efficiency during
the loading of model weights and preliminary computations.
Recent work, OpenCarbonEval [26] introduces a dynamic
throughput modeling approach to more accurately capture
hardware fluctuations during the training process.

Embodied Carbon Modeling. LLMCarbon employs a
bottom-up modeling approach to calculate total embodied
carbon by assessing the footprint of chips within specific
hardware units, using data from annual life-cycle analysis
reports provided by hardware manufacturers, detailing carbon
emissions for various product classes (e.g., 16nm TSMC
CPU). In contrast, recent work [27] highlights the variabil-
ity in energy consumption during hardware manufacturing,
influenced by factors such as location and season. A Spatial-
Temporal Embodied Carbon Model (STEC) is proposed to
capture energy consumption data at granular levels, including
day, season, and year. Table I illustrates the differences in
embodied emissions for the Meta XLLM between STEC and
LLMCarbon. STEC measures the minimum, 20th percentile,
median, 80th percentile, and maximum embodied carbon
emissions for hardware manufacturing by optimizing location
and time period. The 1.59% difference between STEC and
LLMCarbon is due to limited spatial-temporal options in high-
end LLM training hardware manufacturing.

Beyond Sustainability. While LLMCarbon focuses on the
energy costs and potential environmental impacts of LLMs,
recent work [28] examines the cost and energy usage from a
collective control perspective. This study includes a qualita-
tive analysis of the ethical implications and future directions
towards equitable access to LLMs.

ACKNOWLEDGMENT

This work was supported in part by NSF CCF-2105972 and
NSF CAREER AWARD CNS-2143120.

[1]

[2]
[3]

[4]

[5]
[6]
[7]
[8]
[9]
[10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]
[18]

[19]

[20]

[21]

[22]

(23]

[24]

(25]

[26]

[27]

(28]

REFERENCES

C. Raffel et al., “Exploring the limits of transfer learning with a unified
text-to-text transformer,” Journal of Machine Learning Research, vol. 21,
no. 140, pp. 1-67, 2020.

T. Brown et al., “Language models are few-shot learners,” in Advances in
Neural Information Processing Systems, vol. 33, pp. 1877-1901, 2020.
A. Conneau et al., “Unsupervised cross-lingual representation learning
at scale,” in Annual Meeting of the Association for Computational
Linguistics, pp. 8440-8451, July 2020.

I. Lakim et al., “A holistic assessment of the carbon footprint of noor,
a very large Arabic language model,” in Proceedings of BigScience
Episode #5 — Workshop on Challenges & Perspectives in Creating Large
Language Models, pp. 84-94, May 2022.

A. Chowdhery et al., “Palm: Scaling language modeling with pathways,”
arXiv:2204.02311, 2022.

J. W. Rae et al., “Scaling language models: Methods, analysis & insights
from training gopher,” arXiv:2112.11446, 2021.

J. Hoffmann et al., “Training compute-optimal large language models,”
arXiv:2203.15556, 2022.

R. Thoppilan et al., “Lamda: Language models for dialog applications,”
arXiv:2201.08239, 2022.

O. Lieber et al., “Jurassic-1: Technical details and evaluation,” White
Paper. AI21 Labs, vol. 1, 2021.

S. Smith et al., “Using deepspeed and megatron to train megatron-turing
nlg 530b, a large-scale generative language model,” arXiv:2201.11990,
2022.

T. L. Scao et al., “Bloom: A 176b-parameter open-access multilingual
language model,” arXiv:2211.05100, 2022.

Yandex, “Yalm 100b.” https://github.com/yandex/YaLM-100B, 2022.
A. Zeng et al., “GLM-130b: An open bilingual pre-trained model,” in
International Conference on Learning Representations, 2023.

D. Lepikhin et al., “Gshard: Scaling giant models with conditional
computation and automatic sharding,” in International Conference on
Learning Representations, 2021.

W. Fedus et al., “Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity,” The Journal of Machine
Learning Research, vol. 23, no. 1, pp. 5232-5270, 2022.

N. Du et al, “Glam: Efficient scaling of language models with
mixture-of-experts,” in International Conference on Machine Learning,
pp. 5547-5569, PMLR, 2022.

M. Artetxe et al., “Efficient large scale language modeling with mixtures
of experts,” arXiv:2112.10684, 2021.

B. Zoph et al., “St-moe: Designing stable and transferable sparse expert
models,” arXiv:2202.08906, 2022.

S. Rajbhandari et al., “Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale,” in Interna-
tional Conference on Machine Learning, pp. 18332-18346, 2022.

C.-J. Wu et al., “Sustainable ai: Environmental implications, challenges
and opportunities,” Proceedings of Machine Learning and Systems,
vol. 4, pp. 795-813, 2022.

A. Lacoste et al., “Quantifying the carbon emissions of machine
learning,” arXiv:1910.09700, 2019.

A. Faiz et al., “Llmcarbon: Modeling the end-to-end carbon footprint
of large language models,” in International Conference on Learning
Representations, 2024.

D. Narayanan et al., “Efficient large-scale language model training on
gpu clusters using megatron-lm,” in ACM International Conference for
High Performance Computing, Networking, Storage and Analysis, 2021.
X. Chen et al., “Pipeline moe: A flexible moe implementation with
pipeline parallelism,” arXiv:2304.11414, 2023.

P. Henderson et al., “Towards the systematic reporting of the energy and
carbon footprints of machine learning,” Journal of Machine Learning
Research, 2020.

Z. Yu, “Opencarboneval: A unified carbon emission estimation frame-
work in large-scale ai models,” arXiv:2405.12843, 2024.

X. Zhang et al., “Spatial-temporal embodied carbon models for the
embodied carbon accounting of computer systems,” in International
Conference on Future and Sustainable Energy Systems, 2024.

V. Sathish, “Llempower: Understanding disparities in the control and
access of large language models,” arXiv:2404.09356, 2024.

