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Abstract—Neuromorphic computing uses brain-inspired con-
cepts to accelerate and efficiently execute a wide range of
applications, such as mimicking biological circuits, solving NP-
hard optimization problems and accelerating machine learning at
the edge. In particular, neuromorphic architectures to efficiently
execute Spiking Neural Networks (SNNs) have gained popularity.
SNNs extend artificial neural networks (ANNs) by encoding
information in time as either rates or delays between spiking
events, shared between neurons via their weighted connections.
SNN-based platforms are event-driven, resulting in naturally
sparse, noise-tolerant and power-efficient computation.

In this tutorial, we present the state-of-the-art in scalable
digital and analog spiking neuromorphic system architectures,
and discuss current research trends within the neuromorphic
architecture field at the system level. We further introduce
our SANA-FE tool for Simulation of Advanced Neuromorphic
Architectures for Fast Exploration, which has been developed
as part of a collaboration between the University of Texas at
Austin and Sandia National Laboratories. SANA-FE allows for
modeling and performance-power prediction of different spiking
hardware architectures executing SNN applications to support
rapid, early system-level design-space exploration, hardware-
aware application development and system architecture co-
design. The tutorial includes a hands-on component in which
SANA-FE’s capabilities are demonstrated and used to perform
system design and application mapping case studies.

I. INTRODUCTION

Neuromorphic computing uses brain-inspired concepts to
accelerate and efficiently execute a wide range of applications,
such as mimicking biological circuits [1]–[3], solving NP-
hard optimization problems [4], [5] and accelerating machine
learning at the edge [6]. In particular, neuromorphic architec-
tures to efficiently execute Spiking Neural Networks (SNNs)
have gained popularity. SNNs extend artificial neural networks
(ANNs) by encoding information in time as either rates or
delays between spiking events, shared between neurons via
their weighted connections. SNN-based platforms are event-
driven, resulting in naturally sparse, noise-tolerant and power-
efficient computation.

A range of hardware platforms have been proposed for
efficiently executing SNNs, varying widely in their design
approaches. Both digital and mixed-signal architectures have
been implemented, using novel design elements such as cus-
tom logic to emulate biological neurons and network architec-
tures optimized for spiking communication patterns. Future
architectures will further leverage novel emerging devices to
achieve improvements in power and performance for specific
applications. However, the design-space for these architectures

Fig. 1. Overview of SANA-FE.

is large, and developing the next generation of neuromorphic
systems will require co-design across applications, architec-
tures, circuits and devices.

Architecting new neuromorphic chips involves several de-
sign decisions that can affect power performance. Performance
models can be used to estimate the impact of different ap-
proaches and inform these decisions. SANA-FE (Simulating
Advanced Neuromorphic Architectures for Fast Exploration)
is an open-source tool developed in a collaboration between
The University of Texas at Austin and Sandia National Labora-
tories to rapidly and accurately model and simulate the energy
and performance of different neuromorphic hardware plat-
forms [7], [8]. An overview of SANA-FE is shown in Fig. 1.
The simulator takes a description of a hardware platform and
SNN mapped onto the hardware to model execution of the
SNN and predict power and performance. SANA-FE allows
for modeling and performance-power prediction of different
spiking hardware architectures executing SNN applications
to support rapid, early system-level design-space exploration,
hardware-aware application development and system architec-
ture co-design.

In this tutorial, we present the state-of-the-art in scalable
digital and analog spiking neuromorphic system architectures,
and discuss current research trends within the neuromorphic
architecture field at the system level. We further introduce our
SANA-FE tool and include a hands-on component in which
SANA-FE’s capabilities are demonstrated and used to perform
system design and application mapping case studies.
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The tutorial is organized in two parts as follows: In the first
part, we will provide an overview and introduction to large-
scale spiking architectures and our neuromorphic hardware
simulator SANA-FE. In the second part, we will then switch
to the hands-on component including a (1) walk-through of
SANA-FE installation and setup using Docker, (2) an overview
of SANA-FE’s architecture, SNN and output trace file formats,
and (3) a demo and mapping-space exploration challenge for
Intel’s Loihi platform executing a real-world application.

II. TUTORIAL OVERVIEW

In the following, we describe the two tutorial parts covering
an introduction to neuromorphic computing and our SANA-FE
simulator as well as the hands-on SANA-FE demonstration in
more detail.

A. Large-Scale Spiking Neuromorphic Architectures

Our tutorial starts with an introduction to neuromorphic
computing, including an overview of existing neuromorphic
hardware platforms. We first explore how spiking neural
networks (SNNs) can solve different tasks, and how spike
events can encode information in time and space. We then
describe how custom hardware platforms have been designed
to efficiently execute SNNs, and compare different hardware
architectures including purely digital platforms such as Intel’s
Loihi [9] as well as analog realizations such as BrainScaleS-
2 [10]. We present emerging trends in the neuromorphic field,
including how novel hardware elements may be incorporated
into designs to achieve even better efficiency e.g., analog
circuits and devices that imitate the dynamics of biological
neurons.

Next, we introduce our open-source, architectural-level sim-
ulator for Simulating Advanced Neuromorphic Architectures
for Fast Exploration (SANA-FE). This introduction describes
the various input and output file formats used by SANA-
FE, and includes examples of its architecture and SNN de-
scription file formats. We explain how the simulator kernel
accurately models hardware updates and predicts energy and
performance, in a course-grained time-step based loop.

B. SANA-FE Demonstration

The second section is hands-on and include exercises to
showcase SANA-FE’s capabilities. This includes initial ex-
ercises to extend a simple hardware architecture. Then, we
modify a small SNN and map it to the extended hardware.
Using this architecture and mapped SNN, we show how to
generate various spike, neuron and hardware activity traces.
We conclude with a demonstration of a larger real-world
application, categorizing hand gestures using data from a
neuromorphic sensor [11]. Using the scripting capabilities
of SANA-FE, we show how SANA-FE’s rapid performance
estimates can enable effective exploration and aid with co-
design.

This demonstration uses a Docker environment (available at
[8]) that contains the required binaries and inputs.
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