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I. ABSTRACT

Full Waveform Inversion (FWI) is a technique used to
visualize and analyze wave propagation through a medium
in order to infer its physical properties. This method relies on
computational models and algorithms to simulate and interpret
the behavior of waves—such as sound, electromagnetic, or
seismic waves—as they travel through different materials. By
analyzing how these waves are reflected, refracted, or absorbed
by the medium, FWI can provide detailed information about
the medium’s internal structure, composition, and physical
properties, such as density, elasticity, or internal defects. The
traditional process typically involves: 1) Wave Simulation:
Using physics-based models to simulate how waves propagate
through a medium. This may involve solving complex differen-
tial equations that describe wave behavior in different contexts.
2) Data Acquisition: Collecting data on wave interactions with
the medium using sensors or other measurement devices. This
could include data on wave speed, direction, amplitude, and
phase changes. 3) Image Reconstruction: Applying computa-
tional techniques, such as inverse problems or tomographic
reconstruction, to create images or maps of the medium
based on the acquired wave data. 4) Analysis: Interpreting the
reconstructed images to deduce the physical properties of the
medium. This can involve identifying features like boundaries,
interfaces, or anomalies within the medium.

A. Application and dataset

FWI has applications in various fields, including medical
imaging (like ultrasound), geophysics (like seismic imaging
for oil exploration), and materials science (for non-destructive
testing and evaluation of materials). However, physics-based
models always meet challenges. Firstly, the expensive inver-
sion operator. An “inversion” operator refers to determining
a medium’s internal properties from measurements of how
waves propagate through it. This process often involves solv-
ing an inverse problem, where the goal is to infer the medium’s
properties (such as density or elasticity) from observed data
(like wave travel times or amplitudes). The high computational
cost will associated with the inversion process. Secondly,
the challenges in accurately resolving the fine details of the
medium’s internal structure. This limitation can arise due
to several factors, including poor data coverage, severe ill-
posedness of the inverse problem, and the use of simplistic reg-
ularization techniques. Facing the challenges of the physics-

based models, machine learning (ML) approaches have been
applied to FWI, which significantly compensates for the high
computational resource demands and lengthy processing times.

In this tutorial, we will first introduce the OpenFWI dataset
[1], which is a collection of large-scale, multi-structural bench-
mark datasets for a machine learning-driven seismic FWI. We
release twelve datasets synthesized from different priors, in-
cluding one 3D dataset. We also provide baseline experimental
results with four deep learning methods: InversionNet [2],
VelocityGAN [3], UPFWI [4] and InversionNet3D [5].

On top of the fundamental datasets and models, three recent
toolkits will be introduced with hands-on experience, including
EdGeo [6] for geophysics data generation on edge devices,
APS-USCT [7]–[9] for reconstructing the human body using
very sparse ultrasonic waves, and QuGeo [10] for geophysics
processing on resource-constrained noisy intermediate-scale
quantum (NISQ) devices.

B. Toolkit 1: EdGeo

Machine learning (ML) comes with inherent challenges.
Unlike physics-driven methods, which can be universally
applied across diverse locations and conditions, ML often per-
forms poorly on unprivileged data. This issue arises because
of the diversity and complexity of subsurface structures in
different locations, as well as dynamic changes in underground
conditions (e.g., petroleum leaks), making unprivileged data a
common occurrence in geoscience. However, most previous
data-driven approaches have designed ML models without
addressing this issue. Consequently, pre-trained ML models
often fail to perform effectively in geoscience applications,
necessitating a process of localization to handle unprivileged
data, which severely limits the effectiveness of ML. This issue
is further exacerbated during model pruning, a crucial step in
geoscience due to environmental complexities.

To tackle these challenges, the EdGeo toolkit [6] employs a
diffusion-based model guided by physics principles to generate
high-fidelity velocity maps. It uses the acoustic wave equation
to produce the corresponding seismic waveform data, which
facilitates the fine-tuning of pruned ML models. The proposed
EdeGo has 2 stages: offline and online. The offline phase uti-
lizes seismic data and the corresponding velocity maps to pre-
train a pruned InversionNet model. The velocity distribution
across different layers is determined based on unprivileged
data or expert experience. The online phase comprises six
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Fig. 1. Overview of the proposed APS-USCT

modules and methods designed to generate velocity maps
and seismic data under specific conditions. Our approach is
specifically designed for real-world applications. It focuses on
real-time processing and adherence to resource constraints,
which ensures effective localization of the ML model. Our
results show significant improvements in SSIM scores and
reductions in MAE and MSE across various pruning ratios.

C. Toolkit 2: APS-USCT

Although efficient, machine learning performance (i.e., im-
age quality) depends heavily on highly dense waveforms,
which necessitate expensive equipment with numerous trans-
ducers (i.e., sources and receivers).

To address this challenge, we propose exploring the fea-
sibility of achieving high-quality reconstructed images by
enhancing the available sparse data through an AI-physics
synergy framework. The framework begins by upscaling sparse
waveforms using an AI approach referred to as APS-wave
[7] (illustrated in Fig 1) to generate dense waveforms. This
process is enabled by constructing a training dataset of dense
waveforms through APS-physics. Next, the generated dense
waveform is processed by the second AI component, called
APS-FWI, which employs InversionNet as its backbone ar-
chitecture, enhanced with SE-Blocks and source encoding.
The SE-Blocks improve the capture of fine details in the
reconstruction of the Speed of Sound (SOS) map, while the
source encoding increases the model’s learning efficiency. In
the framework, the AI module (APS-wave) and the physics
module (APS-physics) collaborate to transform sparse mea-
surements into dense waveforms, thereby increasing sample
density before reconstruction, which enhances data density
while preserving waveform integrity.

We tested APS-USCT on a breast reconstruction dataset,
where it significantly outperformed state-of-the-art techniques.
Compared to the leading approach using dense input wave-
forms, we can achieve a 2.5× reduction in hardware costs
(i.e., fewer transducers) with only a minor SSIM degradation.

D. Toolkit 3: QuGeo

Realizing the potential of quantum computing hinges on
identifying “killer applications”. We introduce QuGeo [10],
an innovative quantum framework to address FWI challenges.

In this tutorial, we will first introduce a physics-informed
dataset using a governing wave equation, upon which we
developed a classical machine learning-based data con-
verter. This converter efficiently scales the data according
to quantum resource constraints. Secondly, we will present
an application-specific Variational Quantum Circuit (VQC),
called QuGeoVQC, which integrates domain-specific knowl-
edge to optimize its design. QuGeoVQC focuses on the design
of a data encoder and VQC computing structure to extract
spatial and temporal features. It also leverages the unique char-
acteristics of the FWI problem to simplify and optimize the
encoder, thereby enhancing performance. Additionally, we will
introduce a novel data batching technique tailored for quantum
computing. This technique allows quantum computers to pro-
cess N batches of data in parallel with only an additional logN
qubits, effectively meeting the high computational demands
of learning-based FWI and advancing QuGeo’s potential in
seismic inversion.

To evaluate the effectiveness, we conducted tests using
OpenFWI. Our results demonstrate that incorporating physics
knowledge into QuGeo not only achieves high prediction
accuracy, as indicated by SSIM values, but also results in an
efficient learning model that utilizes only 576 parameters.
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