
Work-in-Progress: ACPO: An AI-Enabled Compiler Framework
Amir H. Ashouri Muhammad Asif Manzoor Minh Vu Raymond Zhang Ziwen Wang

Angel Zhang Bryan Chan Tomasz S. Czajkowski Yaoqing Gao

Huawei Technologies, Heterogeneous Compiler Lab
Toronto, Canada

Abstract—This paper presents ACPO: An AI-Enabled Com-
piler Framework; a novel framework that provides LLVM with
simple and comprehensive tools to enable employing ML models
for different optimization passes. We showcase a couple of use
cases of ACPO by ML-enabling the Loop Unroll (LU) and
Function Inlining (FI) passes and experimental results reveal
that by including both models, ACPO can provide a combined
speedup of 2.4% on Cbench when compared with LLVM’s O3.

Index Terms—Compilers, ML, AI, LLVM, Optimizations

I. INTRODUCTION

Recently, a number of works [1], [2] leverage Machine

Learning (ML) in an ML-guided optimization (MLGO) ap-

proach for which the infrastructure is baked into a single or

multiple passes to streamline the optimization process readily.

Trofin et al. [1] propose MLGO that uses ML to advise

the Inliner pass as to whether or not a call site should be

inlined to minimize the size of the generated code. Contrary to

MLGO, we focus on the hard problem of ML performance
optimization, where the key challenge is the development

of a model architecture and the features used to capture

key performance use cases. ACPO proposes the following

contributions: 1) A framework to provide a comprehensive

set of predefined handcrafted features, libraries, and algorith-

mic methods by enabling compiler engineers with a user-

friendly interface to instantiate ACPOModel classes to replace

LLVM’s existing hard-coded heuristics. 2) ML APIs and the

compiler are seamlessly connected, but at the same time,

they are not interdependent. 3) Showcasing the benefits of

ACPO, we demonstrate two different scenarios with LLVM:

a) Loop Unroll Pass — building both the interface and the ML

model. b) Function Inlining Pass — building the interface and

leveraging an existing ML model [2].

II. PROPOSED METHODOLOGY & RESULTS

Figure 1 presents the high-level design of our infrastruc-

ture.The autotuner is a wrapper around the compiler, and its

hooks in the compiler are used to generate model training

data. The inference flow begins when an ML-enabled pass is

invoked and creates an instance of ACPOModel which then

aggregates appropriate features and specifies the kind of output

required from the ML model. The object then transfers the

features and information about the model being invoked to our

ML framework via a set of remote procedure call APIs. The

APIs provide the ability to send requests, including loading

an appropriate model into the ML framework, executing an

inference call, and returning the result of the inference back to

the compiler. The compiler then applies transformations to the

input program as prescribed in the inference output it receives.

Table I showcases that we gain 4.1 % against MLGO work

when we use FI model, and 2.1%, 1%, and 2.4% compared

with LLVM’s O3 when we use FI, LU, and both models,

*Full version of this work is available at: https://arxiv.org/abs/2312.09982

(a) Training Flow(a) Training Flow

(b) Inference Flow

Fig. 1: ACPO Flow
respectively. Future works will focus on extending ACPO to

optimize other LLVM transformation passes.

TABLE I: Cbench Results (Sz%: Size bloat, Sp: Speedup. cols 1,
3-4 are wrt. O3 and 2, is ACPO-FI against MLGO [1])

Benchmark
ACPO-FI wrt. MLGO ACPO-LU Combined

Sz% Sp Sz% Sp Sz% Sp Sz% Sp

bitcount 1 0.999 1 1.005 1.001 1.003 1 1.001

qsort1 1 0.994 1 1.003 1 0.982 1.91 0.989

bzip2d 1.441 0.991 1.239 1.021 2.224 1.01 3.541 1.014

bzip2e 1.441 1.007 1.189 1.041 2.35 1.001 3.546 1.015

jpeg c 1.288 1.017 1.2 1.005 5.385 0.986 5.086 1.027

jpeg d 1.289 0.923 1.19 1.335 5.4 1.073 4.807 1.026

lame 1.437 1.027 1.137 1.007 4.501 1.03 4.729 1.034

mad 1.217 1.071 1.16 1 4.321 0.99 3.193 0.968

dijkstra 1 0.993 1 0.996 1 0.99 1 1.037

patricia 1 0.98 1.052 0.99 1 0.974 1 1.004

g-script 1.275 1 1.16 1.04 1 1 1.12 1.001

ispell 0.996 1 1.17 1.02 1 1 1 1

rsynth 1 1 1.12 1.04 2.024 1.01 2.024 1.011

strings 1 1.006 1 1 1 1 1 1

pgp d 1.861 0.993 1.12 1 1 0.991 13.144 1

pgp e 1.861 1.017 1.12 1.042 1 1.006 13.144 1.006

rij d 1 0.99 1.39 1.039 3.823 0.966 1 0.966

rij e 1 1.001 1.09 1.035 3.823 0.974 1 0.995

sha 0.999 1.27 1.009 1.132 1 1.174 0.999 1.501

pcm c 1 1 0.996 1.001 1 1.008 1 1.038

pcm d 1 0.997 1 1 1 1.132 1 1.138

CRC32 1 1.094 1 1.066 1 1.042 1 1.112

gsm 1.81 1.076 1.05 1.04 1.815 1.15 1.81 1.117

Geomean 1.152 1.021 1.161 1.041 1.818 1.01 2.442 1.024

REFERENCES

[1] M. Trofin, Y. Qian, E. Brevdo, Z. Lin, K. Choromanski, and D. Li,
“Mlgo: a machine learning guided compiler optimizations framework,”
arXiv preprint arXiv:2101.04808, 2021.

[2] A. H. Ashouri, M. Elhoushi, Y. Hua, X. Wang, M. A. Manzoor, B. Chan,
and Y. Gao, “Mlgoperf: An ml guided inliner to optimize performance,”
arXiv preprint arXiv:2207.08389, 2022.

19

2024 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)

2643-1726/24/$31.00 ©2024 IEEE
DOI 10.1109/CASES60062.2024.00011


