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Abstract—With the increased interest in Quantum Machine
Learning (QML), the integration of classical data into quantum
systems presents unique challenges and opportunities. The class
“Primer on Data in Quantum Machine Learning” delves into
the foundational concepts and advanced techniques of embed-
ding classical data into quantum states, a critical process for
enhancing the performance of quantum algorithms. By exploring
various quantum embedding methods and understanding their
strengths and limitations, participants will gain a comprehensive
understanding of the impact quantum embeddings can have
on machine learning applications. This lesson will cover the
following concepts: Fundamental Concepts of Quantum Machine
Learning, Limits of NISQ devices and Computing in the NISQ
era, Embeddings for QML, and Practical effects of embeddings.
The understanding of these topics should provide a better
understanding of the importance and effect of embeddings on
the overall performance of QML in the NISQ era.

Index Terms—Machine Learning, Quantum Information,
Quantum Computing

I. INTRODUCTION

The development of Near Intermediate Scale Quantum
(NISQ) devices has empowered a new family of hybrid
quantum algorithms that differ from prior approaches by
incorporating principles of machine learning. While early
approaches in quantum computing focused on exploiting su-
perposition and interference to create algorithms that are faster
than their classical counterparts, newer work has focused on
optimization problems and trainable networks. This has led
to the advent of Quantum Machine Learning (QML), a field
that combines quantum computing with machine learning to
create more efficient and powerful computational models. A
critical consideration of algorithms in the current NISQ era is
hardware-aware design. More specifically, NISQ devices have
a limited number of noisy qubits ( 1000 at most). Hybrid
algorithms address the issue by only running a small sub-
routine of the total computation on the quantum processor.

While promising, a major bottleneck in most hybrid al-
gorithms is the embedding of classical data into quantum
states. This process is crucial for enhancing the performance
of quantum algorithms as qubits have different theoretical and
physical properties compared to classical bits. Additionally,
due to the limitations of NISQ devices the need for effi-
cient data encoding is even more pronounced. In the rapidly
evolving field of Quantum Machine Learning (QML), the
integration of classical data into quantum systems presents
unique challenges and opportunities. The effect of quantum

embeddings on the performance of QML algorithms has been
well studied in the literature[7]. We aim to look at the different
families of embeddings and study their impact.

II. QUANTUM MACHINE LEARNING

Quantum Machine Learning can be broadly defined as a
family of quantum algorithms with trainable parameters. Some
of the earliest QML approaches include Quantum principal
component analysis and Quantum Support Vector Machines.
While these focused on quantum versions of classical ML
algorithms, more recent work has focused on creating deep
learning-inspired algorithms such as parameterized quantum
circuits[2]. The general structure of a hybrid QML algorithm
is shown in Figure 1.

While all of these approaches seem promising, there is
an open question in the field regarding provable quantum
advantage, i.e. the speedup of quantum algorithms over clas-
sical algorithms. Recent work [1] has proposed looking at
the merits of QML beyond speedups and with a focus on
the expressiveness of quantum models due to the non-linear
feature space occupied by quantum states.

III. QUANTUM EMBEDDINGS

We can broadly define quantum embeddings as follows —

Definition 1 (Quantum Embedding): A mapping of data or
functions between the classical and quantum domains.

This definition allows us to study quantum embeddings in a
broader context and in relation to the various critical aspects
of quantum computing as a whole.

A. Era based classification

The nature of quantum embeddings has been deeply influ-
enced by the evolution of the era of quantum algorithms. The
era of the algorithms informs the requirements and constraints
of the embeddings used. We can see this when looking at the
pre-Optimization and Optimization algorithm eras —

1) Pre-Optimization Embeddings: The pre-optimization era
was characterized by handcrafted algorithms that placed con-
sideration on hardware limitations and as such used func-
tionally infinite qubits without any noise consideration. This
was reflected in the embeddings being relatively simple and
interpretable. Hence most algorithms utilized Angle encoding,
Amplitude encoding, or Basis State encoding.
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Fig. 1. General Pipeline of a Hybrid QML algorithm. A classical data vector (X) is converted to a quantum state (|X⟩). This state is used as input to a
QML algorithm (parameterized by θ), which is run on a quantum computer. The output of the quantum algorithm is then measured and converted back to a
classical output(Y). The output is then used for classical computation. Finally, a loss function is used to update the parameters (θ) of the quantum algorithm.

2) Optimization Embeddings: The Optimization era in-
cluded various hardware considerations and was influenced
heavily by differential programming. The embeddings are
indicative of this trend and are generally (1). Learned, (2). Ap-
plications specific and (3). Resource efficient. These embed-
ding methods were critical parts of the QML algorithms they
empowered and were often functions of trainable parameters.
Some key examples include Quantum Kernels and Quantum
Metric Learning [5].

B. Dataflow classification
Another method to study embeddings is to look at how

they relate to the broader context of the data flow in a QML
algorithm. Based on this we can classify embeddings into 3
categories —

1) General Vector (GV) Embeddings: These constitute the
broadest category of embeddings and are used in a variety of
QML algorithms. They are generally used to encode classical
data vectors into quantum states. Some examples include
Angle Encoding, Amplitude Encoding, Quantum Kernels [3],
Metric Learning[5], and so on. A critical consideration in
this category is the dimensionality of the data in relation
to the number of qubits, and as such are generally paired
with dimensionality reduction techniques such as deep neural
networks.

2) Sliding Window Embeddings: Sliding window embed-
dings are similar to GV embeddings in structure but the algo-
rithms they are paired with generally slide over larger classical
data. These embeddings are not as limited by dimensionality
as the pipelines compensate by patching or windowing the
data. A key example of such embeddings is the Quanvolutional
Neural Networks[4].

3) Functional Embeddings: Finally, functional embeddings
are a specific class of embeddings that encode classical func-
tions or classical data directly into the dynamics of a quantum
system. The most well-known example of such an approach
is Hamiltonian Embedding[6], both in the data and adiabatic
context.

IV. CONCLUSION

We present here a small part of the study of quantum
embeddings in the context of QML. The field is rapidly

evolving and the embeddings are a critical part of the al-
gorithms they empower. The understanding of the various
embedding methods and their impact on the performance of
QML algorithms is a critical part of the study of QML. We
hope that this primer provides a good starting point for the
study of quantum embeddings and their impact on the field of
QML.

REFERENCES

[1] Amira Abbas et al. “The power of quantum neural
networks”. In: Nature Computational Science 1.6 (June
2021), pp. 403–409. ISSN: 2662-8457. DOI: 10 . 1038 /
s43588-021-00084-1. URL: http://dx.doi.org/10.1038/
s43588-021-00084-1.

[2] Edward Farhi and Hartmut Neven. Classification with
Quantum Neural Networks on Near Term Processors.
2018. arXiv: 1802 . 06002 [quant-ph]. URL: https :
//arxiv.org/abs/1802.06002.
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