
Efficient Neural Networks: from SW optimization
to specialized HW accelerators

Marcello Traiola, Angeliki Kritikakou, Silviu-Ioan Filip, Olivier Sentieys
Univ Rennes, CNRS, Inria, IRISA - UMR 6074, F-35000 Rennes, France

Abstract—Artificial Neural Networks (ANNs) appear to be one
of the technological revolutions of recent human history. The
capability of such systems does not come at a low cost, which
led researchers to develop more and more efficient techniques to
implement them. Optimization approaches have been developed,
such as pruning and quantization, leading to reduced memory
and computation requirements. Furthermore, such approaches
are adapted to the specific hardware platform features to further
increase efficiency. To improve it further, the HW programma-
bility can be traded off in favor of more specialized custom HW
ANN accelerators. In this education abstract, we illustrate how
optimizing operations execution at different levels, from SW to
HW, can improve the efficiency of ANN execution.

Index Terms—HLS, Machine learning, hardware accelerators,
FPGA

I. INTRODUCTION

Artificial Neural Networks (ANNs) are one of the most

intensively and widely used predictive models in the field of

Machine Learning (ML) [1]. ANNs have proven outstanding

results for many complex tasks and applications, such as

object recognition in images/videos, natural language pro-

cessing, satellite image recognition, robotics, aerospace, smart

healthcare, and autonomous driving.

As ANNs have enormous algorithmic complexity, highly

flexible and powerful software frameworks (e.g., Pytorch,

Tensorflow) have been developed to increase productivity.

Unfortunately, programming flexibility and high-level abstrac-

tion come at the cost of energy efficiency, especially when

hardware characteristics are not taken into account. As illus-

trated in [2], dealing with the simple problem of multiplying

two 4096-by-4096 matrices through a Python implementation

wastes much of the performance available on modern com-

puters. Indeed, Python uses additional operations to simplify

programming and enhance productivity. Simply using a C

implementation drastically reduces the number of operations,

yielding an execution time 47 times faster, according to [2].

Further tailoring the code to exploit specific hardware platform

features makes it run even faster. For instance, parallelizing the

code to run on all the available processing cores, exploiting the

processor’s memory hierarchy, vectorizing the code, and using

special instructions (e.g., Intel’s Advanced Vector Extensions,

or AVX) makes the final code perform more than 60,000 times

faster than the original Python code [2].

Software frameworks exist that optimize the code and

tailor it to the hardware features of existing platforms. For

instance, TensorFlow Lite Converter converts a model into a

memory-efficient format for use on memory-constrained CPU

devices. Major software frameworks support code compilation

to Graphics Processing Units (GPUs) kernels for accelerating

ANN algorithms, leveraging, for example, the massively par-

allel nature of matrix multiplication. However, such highly

programmable platforms often introduce overheads that are

not always useful for ANN computations.

The key to further improving energy efficiency, while main-

taining performance, is the design of hardware components

that are specialized for ANN computations. As shown in

the analysis of [3], the energy efficiency of chips increased

as the amount of programming flexibility decreased. The

analysis considered several chips, such as general-purpose

microprocessors, software programmable DSPs, and dedicated

signal processing designs with very limited programmability.

Energy efficiency differences of four orders of magnitude were

observed between the most flexible solutions and the most

dedicated ones. As a result, by trading off programmability,

specialized hardware can be used to save a lot of energy.

In this education abstract, we first discuss hardware-aware

optimization approaches to tailor ANNs to specific device

hardware features and then efficient methods for designing

specialized hardware components for ANNs.

II. HARDWARE-AWARE OPTIMIZATION

Various optimization techniques, such as pruning and quan-

tization, have been utilized to reduce energy consumption.

Pruning and quantization are complementary techniques that

can be applied together to achieve greater energy efficiency

and memory savings. Although these techniques reduce the

memory footprint and computation requirements, they may

lead to a potential loss in the model’s accuracy.

Pruning consists of intelligently sparsifying a dense ANN,

which can be achieved through fine-grained and coarse-

grained pruning. Fine-grained pruning usually removes con-

nections [4], as it is inspired by the observation that removing

weights with small magnitude, e.g., close to zero, marginally

affects the ANN accuracy [5]. Coarse-grained pruning usu-

ally removes regular structures within convolutional layers

(e.g., filters and channels) [6], thus significantly reducing the

model’s size and the number of operations [5].

Quantization reduces the memory footprint required for the

ANN’s parameters and activations by reducing the bits used

for the representation of the arithmetic values. Floating-point

with 32 bits (FP32) is the most commonly used format for

training AI models. To improve energy efficiency, the format

can be selected based on the hardware computation units of

15

2024 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)

2643-1726/24/$31.00 ©2024 IEEE
DOI 10.1109/CASES60062.2024.00009

the target architecture, e.g., the Turing GPU architecture from

NVIDIA supports 1-bit, 4-bit, 8-bit and 16-bit arithmetic op-

erations. It can be even optimized for ASIC or FPGA designs,

leading to the most efficient hardware-accelerated solutions.

Several quantization techniques exist to better fit modern

ANN architectures [7]. Various libraries provide quantization

functionalities, e.g., Qkeras, TensorFlow lite, LarQ, AIMET,

Brevitas, TorchQuant, PyTorch quantization module etc.

Compilers, such as Tensorflow XLA and TVM, have been

proposed to alleviate the burden of manually optimizing the

ANN models for each hardware platform. These compilers

highly optimize the transformation between model definition

and specific code implementation, targeting the model spec-

ification and hardware architecture, leading to more efficient

code for a given model and target device.

III. HW ACCELERATION OF BASIC ANN OPERATIONS

Basic tasks of ANNs, such as convolutions, are easy to

accelerate. Indeed, they can be implemented by using the well-

known GEMM (General Matrix Multiply) operation. Specifi-

cally, through the Image to Column, or Im2col, operation, data

are arranged so that the convolution output can be achieved by

GEMM. In SW, highly optimized libraries for CPU or GPU

speed up GEMM execution in different ways, such as reorder-

ing the loops, improving data locality (better cache usage),

and tiling (looping on small enough submatrices to fit in the

cache). Moreover, deeply specialized hardware accelerators

can push the limits further to execute GEMM/CONV more

efficiently. However, this may also require increased effort

from the programmer/designer. Indeed, deep knowledge of

the hardware is required to propose energy-efficient models.

Number representations and precisions are key techniques,

as well as memory access since execution is often memory-

bound.

Once data are fetched from the main memory, it is very

important to reuse it as much as possible, given the high

cost of moving data and the performance bottleneck that

memory access introduces. Let us consider a Convolution

Kernel having C input channels, K output channels, batch size

N , filter dimensions R ∗ S and output activations dimension

T ∗ U . Different data-reuse opportunities are available, such as

(i) input reuse: different filters are applied to the same input;

each input is reused K times; (ii) filter (weight) reuse: when

processing a batch of size N, all inputs are applied to the same

filter, and each filter weight is reused N times; (iii) conv. reuse:

filters slide across different positions of the same input; each

weight is reused ≈ T ∗ U times, and each input is reused

≈ R ∗ S times.

Accelerators use multiple Processing Elements (PEs), in-

cluding some logic and local memory registers, to enable

data reuse. Different approaches can be adopted, such as

(i) temporal reuse: using cache memories/registers so the same

data is used more than once over time by the same PE;

(ii) spatial reuse: using systolic/multicast architectures where

the same data is used by more than one PE at different spatial

locations of the hw; (iii) hybrid temporal and spatial Reuse:

both cache memories/registers and multiple PEs are used.

On top of that, accelerator architectures can be sequential or

pipelined to further boost the performance.

Commercially available ANN accelerators combine ma-

trices of PEs in different architectures and mainly aim at

parallelizing the second and third inner loops of matrix multi-

plication. For instance, the Nvidia NVDLA architecture uses

Adder trees with weight (sub)line multicasting, while Google

TPU utilizes systolic Multiply-And-Accumulate (MAC) with

systolic multicast. Such accelerators are engineered to be very

efficient in executing basic ANN operations while allowing

the programmer some programming flexibility.

IV. SPECIALIZED ANN HW ACCELERATORS

As also mentioned in Section I, more specialized accelera-

tors, with very low programmability, can lead to very efficient

ANN implementations. This is the case of Streaming Dataflow
architectures, which enable highly customized datapath and

custom arithmetic precision for both weights and activations.

While matrices of processing elements (as described in Sec-

tion III) are customized for typical ANN operations (e.g.,

GEMM) and aim to offer also programmability/flexibility,

streaming dataflow architectures are customized/adapted for

specific ANN topologies to provide higher efficiency, lower

latency, and higher throughput. This is possible thanks to the

extensive pipelining and the absence of intermediate buffering

between consecutive NN layers. Given the low programma-

bility/flexibility of such solutions, streaming dataflow archi-

tectures are usually deployed on FPGA devices, where more

flexibility can be achieved through reconfiguration. If hard-

ware resources are enough, a circuit producing one inference

per clock cycle can be deployed. However, given the large

dimension of ANNs, a trade-off between available resources

and throughput is usually necessary. High-level frameworks

and compilers, such as FINN [8] and HLS4ML [9], provide an

end-to-end flow to create such streaming dataflow accelerators,

from high-level definition (e.g., in Pytorch, Tensorflow, or

Keras) to Hardware Description Language (HDL) code ready

to synthesize and deploy on a hardware target.

REFERENCES

[1] Y. LeCun et al., “Deep learning,” Nature, vol. 22, no. 3, pp. 436–44, May
2015.

[2] C. E. Leiserson et al., “There’s plenty of room at the Top: What will
drive computer performance after Moore’s law?” Science, vol. 368, no.
6495, p. eaam9744, Jun. 2020.

[3] N. Zhang et al., “The Cost of Flexibility in Systems on a Chip Design
for Signal Processing Applications.”

[4] N. Lee et al., “SNIP: single-shot network pruning based on connection
sensitivity,” CoRR, vol. abs/1810.02340, 2018.

[5] K. Balaskas et al., “Hardware-aware dnn compression via diverse pruning
and mixed-precision quantization,” IEEE TETC, p. 1–14, 2024.

[6] Y. Wang et al., “Non-structured DNN weight pruning considered harm-
ful,” CoRR, vol. abs/1907.02124, 2019.

[7] M. Nagel et al., “A white paper on neural network quantization,” 2021.
[8] Y. Umuroglu et al., “FINN: A Framework for Fast, Scalable Binarized

Neural Network Inference,” in FPGA, Feb 2017, pp. 65–74.
[9] J. Duarte et al., “Fast Inference of Deep Neural Networks for Real-Time

Particle Physics Applications,” FPGA, pp. 305–335, Feb 2019.

16

