
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

HMC-FHE: A Heterogeneous Near Data Processing
Framework for Homomorphic Encryption

Zehao Chen , Zhining Cao, Zhaoyan Shen , and Lei Ju

Abstract—Fully homomorphic encryption (FHE) offers a1

promising solution to ensure data privacy by enabling com-2

putations directly on encrypted data. However, its notorious3

performance degradation severely limits the practical applica-4

tion, due to the explosion of both the ciphertext volume and5

computation. In this article, leveraging the diversity of computing6

power and memory bandwidth requirements of FHE operations,7

we present HMC-FHE, a robust acceleration framework that8

combines both GPU and hybrid memory cube (HMC) processing9

engines to accelerate FHE applications cooperatively. HMC-FHE10

incorporates four key hardware/software co-design techniques:11

1) a fine-grained kernel offloading mechanism to efficiently12

offload FHE operations to relevant processing engines; 2) a13

ciphertext partitioning scheme to minimize data transfer across14

decentralized HMC processing engines; 3) an FHE operation15

pipeline scheme to facilitate pipelined execution between GPU16

and HMC engines; and 4) a kernel tuning scheme to guarantee17

the parallelism of GPU and HMC engines. We demonstrate that18

the GPU-HMC architecture with proper resource management19

serves as a promising acceleration scheme for memory-intensive20

FHE operations. Compared with the state-of-the-art GPU-based21

acceleration scheme, the proposed framework achieves up to22

2.65× performance gains and reduces 1.81× energy consumption23

with the same peak computation capacity.24

Index Terms—Accelerator, homomorphic encryption, near25

memory processing.26

I. INTRODUCTION27

FULLY homomorphic encryption (FHE) is an encryp-28

tion scheme that enables computations to be performed29

directly on encrypted data, where no decryption for30

Manuscript received 10 August 2024; accepted 10 August 2024. This work
was supported in part by the Natural Science Foundation of China under Grant
62372272; in part by the Department of Science and Technology of Shandong
Province under Grant SYS202201; in part by the Quan Cheng Laboratory
under Grant QCLZD202302 and Grant CCF-AFSG RF20220011; in part by
the Taishan Scholars Program under Grant tsqn202211281; in part by the
Key Research and Development Program of Shandong Province under Grant
2023CXPT002; and in part by the Open Project Program of Wuhan National
Laboratory for Optoelectronics under Grant 2022WNLOKF018. This article
was presented at the International Conference on Hardware/Software Codesign
and System Synthesis (CODES + ISSS) 2024 and appeared as part of the
ESWEEK-TCAD Special Issue. This article was recommended by Associate
Editor S. Dailey. (Corresponding author: Lei Ju.)

Zehao Chen is with the School of Cyber Science and Technology, Shandong
University, Qingdao 266237, China, and also with Quan Cheng Laboratory,
Jinan 250012, China.

Zhining Cao is with the School of Computer Science and Technology,
Shandong University, Qingdao 266237, China.

Zhaoyan Shen is with the School of Computer Science and Technology,
Shandong University, Qingdao 266237, China, and also with the Wuhan
National Laboratory for Optoelectronics, Huazhong University of Science and
Technology, Wuhan 430074, China.

Lei Ju is with Quan Cheng Laboratory, Jinan 250012, China (e-mail:
julei@sdu.edu.cn).

Digital Object Identifier 10.1109/TCAD.2024.3447212

intermediate steps during the computation is required. With 31

the ability to perform arithmetic operations without revealing 32

user data privacy, FHE becomes one of the most promising 33

privacy protection techniques and has been gradually deployed 34

in application scenarios, including encrypted databases [1] and 35

machine learning [2]. 36

Nonetheless, the concerning computational speed of FHE 37

remains a major obstacle hindering its rapid advancement. 38

Since the method of constructing the ciphertext space results 39

in a substantial expansion of computation and data scale, 40

the computing speed of ciphertext experiences a drastic 41

degradation of several orders of magnitudes (103 ∼ 106) 42

compared to plaintext [3]. To solve this issue, numerous 43

studies [4], [5], [6], [7], [8], [9], [10], [11] have focused 44

on building domain-specific hardware accelerators to enhance 45

the performance of FHE operations through resource reuse 46

and increased parallelism. Meanwhile, researchers have also 47

explored deploying FHE operations on GPU platforms to 48

support privacy protection applications in various scenarios 49

comprehensively [12], [13], [14], [15]. These efforts have 50

yielded a substantial enhancement in the speed of ciphertext 51

computation, reducing the performance gap by 2∼3 orders of 52

magnitude. 53

In the design of FHE accelerators, due to the memory- 54

intensive nature, the demand for memory capacity and 55

bandwidth far surpasses the computational requisites. For 56

instance, ASIC schemes typically use large on-chip stor- 57

age [7], [16]. Meanwhile, FPGA (or GPU)-based accelerator 58

designs identify on-chip BRAM (or Shared Memory) capac- 59

ity as the performance bottleneck [4], [12]. In this work, 60

we further conduct extensive quantitative analysis on the 61

arithmetic intensity (AI) of each FHE operation on GPU 62

devices. Our analysis results further reinforce the significance 63

of prioritizing the alleviation of bandwidth constraints as the 64

foremost endeavor in accelerating FHE operations. 65

The memory-intensive characteristics of FHE naturally 66

make hybrid memory cube (HMC) a natural choice for FHE 67

acceleration. In particular, the GPU-HMC architecture (as 68

demonstrated in previous work [17], [18], [19], [20], [21]) as 69

shown in Fig. 1 is a promising candidate which is composed 70

of a centralized GPU device and multiple auxiliary HMC 71

processing engines. By encapsulating various computing logic 72

for computing while having the characteristics of high-internal 73

bandwidth, low latency, and low-power consumption, the 74

GPU-HMC architecture offers a balanced tradeoff between 75

computing power and bandwidth resources for individual FHE 76

operations. Nonetheless, relying solely on this architectural 77

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0009-0005-3247-8417
https://orcid.org/0000-0001-9526-6634
https://orcid.org/0000-0001-6186-5399

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 1. Typical GPU-HMC architecture [17], [18].

setup leads to suboptimal overall performance enhancement,78

and several challenges must be effectively addressed with an79

automatic design flow.80

Challenge 1: Different FHE operations exhibit varying com-81

putation and memory intensity. Thus, exquisitely offloading82

FHE operations to their preferred processing engines (GPU or83

HMCs) becomes a primary problem to address.84

Challenge 2: To execute an FHE operation on distributed85

HMC processing engines in a parallel fashion, it is essential to86

reduce the inter-HMC data transfer between parallel executed87

subtasks.88

Challenge 3: It is critical to utilize the parallel compu-89

tation capacity between GPU and HMCs for overall system90

performance, which necessitates sophisticated scheduling to91

achieve inter- and intra-operation parallelism.92

In this article, to overcome the above challenges, we93

propose a design flow framework for GPU-HMC-based FHE94

acceleration, which consists of a series of hardware/software95

co-designs. First, we introduce an offloading mechanism96

for FHE operations, which categorizes the operations into97

reusable basic kernels and determines the affinity for the98

GPU or HMC engines based on the AI. Moreover, we99

propose a ciphertext partitioning scheme by decoupling the100

structure of ciphertext polynomials, which ensures efficient101

global memory bandwidth utilization while achieving paral-102

lelism and load balancing. Then, we undertake a thorough103

analysis of data dependency and propose an interoperation104

pipeline scheme to facilitate parallel execution between GPU105

and HMC engines. Finally, for HE operations outside the106

above-mentioned pipeline stages, we propose a fine-grained107

intraoperation tuning scheme to further balance the workload108

between GPU and HMC engines.109

The contributions of this work are summarized as follows.110

1) To the best of the authors knowledge, this is a pioneer111

work that introduces FHE operation acceleration with112

heterogeneous GPU-HMC architecture. It unveals that113

GPU-HMC architecture is a promising design choice114

for FHE acceleration given the distinct computation and115

memory intensity between FHE operations.116

2) This article proposes a design flow framework which117

automatically performs FHE operation scheduling and118

data allocation on the GPU-HMC architecture. The119

framework synergistically integrates a set of hard-120

ware/software co-design techniques to achieve working121

balancing and high-memory bandwidth utilization.122

3) The experimental results on practical FHE workloads123

show up-to 2.65× speedup and up-to 1.81× energy124

efficiency (EE), compared to the state-of-the-art GPU-125

based accelerator design. Meanwhile, the scalability of126

the proposed GPU-HMC architecture has also been 127

evaluated. 128

The remainder of this article is organized as fol- 129

lows. Section II introduces the background and motivation. 130

Section III gives an overview of HMC-FHE framework. 131

Section IV describe the detail techniques of HMC-FHE. 132

Section V evaluates HMC-FHE. Sections VI and VII discuss 133

the related work and conclusion. 134

II. BACKGROUND AND MOTIVATION 135

In this section, we first introduce the basic of FHE with a 136

typical algorithm CKKS [22]. Next, we briefly introduce the 137

structure of hybrid memory cube (HMC) processing engines. 138

Lastly, we provide the motivation of this work. 139

A. FHE Schemes 140

FHE, exampled by schemes, such as CKKS [22], BFV [23], 141

and BGV [24], enables arbitrary computations on ciphertexts 142

without the need for decryption. This article primarily con- 143

centrates on the CKKS scheme due to its unique capability 144

to handle plaintext inputs comprising arbitrary fixed-point real 145

numbers, which has facilitated its application across a broader 146

range of fields. Note that the proposed techniques and schemes 147

are equally applicable to other FHE schemes, e.g., BFV, and 148

BGV. 149

Ciphertext Structure in CKKS: In the CKKS scheme, each 150

batch of N/2 real numbers is encoded and encrypted as 151

a pair of polynomials with degree N in the ring RQ = 152

ZQ[X]/(XN +1), where Q is a prime number with hundreds or 153

thousands of bits that relate directly to the ciphertext spaces. 154

Each polynomial consists of N coefficients, which are integers 155

modulo by Q. To enable efficient modulo computations of 156

the wide Q and coefficients, the residue number system 157

(RNS) is presented to convert these wide coefficients into 158

L residue polynomials with machine-word-length coefficients. 159

Consequently, the ciphertext can be initially represented as a 160

pair of 2-D matrices with width L and depth N. 161

CKKS Basic Kernel: The CKKS algorithm is built upon 162

a set of basic kernels. All basic kernels are summarized as 163

follows. 164

1) Addition/Subtraction (Add/Sub), which execute element- 165

wise operations to add or subtract two polynomials. 166

2) Tensor Product (TensorP), which conducts element-wise 167

product of two polynomials. 168

3) Number Theory Transformation (NTT and iNTT), which 169

enables the conversion between polynomials represented 170

by coefficients and those represented by point-values, 171

significantly speeding up polynomial multiplication. 172

4) Fast Basic Conversion (Conv), which converts the RNS 173

basis based on B = {p0, p1, . . . , pK−1} and C = 174

{q0, q1, . . . , ql}, 0 ≤ l ≤ L. We refer to the operations 175

occurring during modulus increase or modulus decrease as 176

ConvUp (ConvU) and ConvDown (ConvD), respectively. 177

5) Inner Product (InnerP), which integrates several 178

TensorP kernels along with a single Add kernel to 179

accumulate the results of TensorP. 180

CHEN et al.: HMC-FHE: A HETEROGENEOUS NEAR DATA PROCESSING FRAMEWORK 3

TABLE I
DIFFERENT CKKS OPERATIONS

6) Automorph (AMorph), which performs the permutation181

operation on the polynomial using an index r.182

CKKS Compound Kernel: The aforementioned basic kernels183

are typically amalgamated into more complex compound184

kernels, as outlined below.185

1) ModUp and ModDown adjust the precision of the186

ciphertext modulus. ModUp enhances precision to187

accommodate more sophisticated CKKS operations,188

whereas ModDown lowers precision to control noise189

expansion. Both ModUp and ModDown encompass190

iNTT, ConvU (for ModUp)/ConvD (for ModDown), and191

NTT kernels.192

2) KeySwitch facilitates the efficient and secure transition193

of ciphertexts encrypted at varying levels. This mech-194

anism is crucial in CKKS for operations like CCMult,195

Rotate. Specifically, it consists of ModUp, InnerP, and196

ModDown kernels.197

3) Rescale is designed to constrain noise within a specified198

range. It is composed of iNTT, NTT, and Sub kernels.199

4) Bootstrapping mitigates the accumulated error through-200

out the computational process and resets the ciphertext’s201

noise level, thereby enabling continued operations on the202

ciphertext. This operation encompasses all basic kernels.203

CKKS APIs: By reorganizing these kernels based on spe-204

cific rules, CKKS provides a series of APIs for external205

applications to implement homomorphic computation. Table I206

details the functional description and composition of kernels207

for these APIs.208

B. Hybrid Memory Cube209

Fig. 1 illustrates a heterogeneous GPU-HMC architecture210

with four HMCs, and each HMC adopts a 3-D-stacking211

architecture within a single package, layering multiple memory212

dies atop a logic die through the utilization of through-silicon213

via (TSV) technology. Each memory die is subdivided into214

several partitions, which are vertically aligned to form vaults,215

analogous to conventional memory channels. To enhance par-216

allel processing across the vaults in the HMC, a dedicated vault217

controller is assigned to each vault. The logic inside an HMC218

typically incorporates one or more streaming multiprocessors219

(SMs) [25] or bespoke processing units [26], tailored to boost220

performance across a variety of applications. Data inside an221

HMC can be directly transferred to its logic layer via the222

TSV technology, allowing for short-path data transfer and, in223

combination with the parallel structure of vaults, achieving224

Fig. 2. Roofline model of different CKKS APIs on NVIDIA RTX Geforce
3090.

high-internal bandwidth and low-access latency, whereas since 225

the number of processing units in the HMC logic layer is 226

relatively limited, it offers reduced computational capacity 227

compared to GPUs, making it generally suitable for memory- 228

intensive workloads. 229

Moreover, HMC exhibits impressive scalability. Multiple 230

HMC devices can be interconnected using I/O links on a 231

silicon interposer, enabling parallel operations, or they can be 232

connected to GPUs to facilitate joint processing efforts. As 233

illustrated in Fig. 1, packet-based protocols are utilized for 234

communications between HMCs or between HMCs and GPUs, 235

supporting the bidirectional flow of commands and data. It 236

should be noted that the latency for data transfer between 237

HMC devices via I/O links is over three times higher than 238

the latency for local access by the processing units within the 239

logic layer. 240

C. Motivation 241

In this section, we first provide two observations of CKKS 242

kernels with some preliminary experiments. Then, we discuss 243

the advantages of a GPU-HMC heterogeneous architecture in 244

enhancing the performance of FHE operations. 245

1) Observation 1—CKKS APIs Exhibit a Greater Demand 246

for Memory Bandwidth Compared to Computational 247

Requirements: The arithmetic logic of the CKKS scheme 248

is based on the polynomial field of ciphertext, so it 249

inherits the memory-intensive characteristic of poly- 250

nomial computations. This highlights the reality that 251

greater computational power is not the primary impetus 252

for accelerating FHE schemes. Instead, the predominant 253

constraint that curtails the performance is the efficiency 254

of data movement. To further quantify the impact of 255

bandwidth on performance and to gain insight into the 256

memory/compute characteristics of FHE operations, we 257

build a roofline model [27] using the NVIDIA GeForce 258

RTX 3090 as an illustrative instance to show the primary 259

bottleneck in FHE operations. We adopt FHE encryption 260

parameters as in [13] (e.g., N = 216, L = 45) for the 261

illustrative example. As shown in Fig. 2, the horizontal 262

roof represents the peak computation capacity (i.e., 35.6 263

TFLOPS) while the diagonal roof expresses the memory 264

bandwidth (i.e., 936 GB/s) of the target hardware plat- 265

form. The x-axis represents AI, which is a ratio of 266

computation to memory access during the execution 267

progress of CKKS operations. Overlaying the CKKS 268

APIs on this model reveals a significant insight: all 269

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 3. SM and memory utilization during different CKKS kernels runtime.

CKKS APIs exhibit significantly low AI. In particular,270

these operations are situated below the diagonal roof271

and are far from fully exploiting the peak computational272

power of the hardware platform. This finding suggests273

that the efficiency of data movement is constraining the274

performance of these APIs, and simply deploying them275

to more powerful hardware devices may result in little276

boost in the overall performance.277

2) Observation 2—Different CKKS Basic Kernels Show278

Varying Memory Bandwidth and Computational279

Requirements: Our evaluation results also reveal that280

although all CKKS APIs exhibit memory-intensive281

characteristics, the underlying basic kernels within282

CKKS APIs prioritize computing power and bandwidth283

requirements differently. We ran all CKKS kernels on284

an NVIDIA Geforce 3090 platform and accessed their285

resource utilization using the Nsight Compute [28]286

tool. The SM and Memory utilization results shown287

in Fig. 3 demonstrate while nearly all kernels exhibit288

memory-intensive behavior, certain kernels (e.g., NTT,289

Conv) also impose substantial demands on computation290

resources. This suggests that there might be kernels more291

suited for execution on the GPU engines. To further292

investigate the aforementioned issues, we choose two293

of the most representative CKKS APIs (i.e., PCMult: a)294

plaintext-ciphertext multiplication, comprising TensorP295

and b) CCMult: Ciphertext–ciphertext multiplication,296

comprising a series of CKKS basic kernels) and297

run them on GPU and HMC processing engines298

(for details, see Section V), respectively. Fig. 4(a)299

illustrates the execution latency of these two APIs on300

different platforms, whereas Fig. 4(b) provides the time301

consumption of different stages during the execution of302

CCMult on GPU and HMC sides. The results shown in303

Fig. 4(a) and (b) reveal two critical phenomena:304

a) Different CKKS APIs exhibit distinct preferences305

for HMC sides. Specifically, PCMult tends HMC306

side, while CCMult demonstrates a preference for307

the GPU side.308

b) Even within a single CKKS API, the various stages309

of its internal execution process display differing310

affinities for HMC side. This phenomenon primar-311

ily stems from the fact that CCMult encompasses312

all CKKS kernels outlined in Section II-A except313

for AMorph, and these kernels possess varied314

affinities with the HMC side.315

(a) (b)

Fig. 4. Different affinity tendencies of different CKKS operations, refer to
Section V for detailed settings. (a) CKKS operation. (b) Breakdown analysis.

Fig. 5. Overview of HMC-FHE.

These two observations reveal the importance of bandwidth 316

in the efficiency of CKKS operations. Additionally, they high- 317

light another crucial point: blindly offloading FHE operations 318

to HMC processing engines is not always advantageous. This 319

is because certain FHE kernels still require a delicate balance 320

between computational and bandwidth requirements. In this 321

study, we aim to develop a kernel-level scheduling framework 322

leveraging the GPU-HMC heterogeneous architecture to effi- 323

ciently accelerate FHE operations. 324

III. HMC-FHE FRAMEWORK 325

Fig. 5 provides an overview of the proposed HMC-FHE 326

design. A typical GPU-HMC architecture is adopted as the 327

accelerator hardware [17], [18]. This architecture integrates 328

three distinct types of devices, each with specialized capabili- 329

ties: 1) GPU, serving as the primary processing engine, focuses 330

on computation-intensive tasks; 2) HMC, serving as a sec- 331

ondary processing engine and the global memory for the GPU, 332

focuses on memory-intensive tasks; and 3) CPU, serving as an 333

auxiliary processing device, receives applications and work- 334

loads and plays a pivotal role in overseeing task scheduling 335

CHEN et al.: HMC-FHE: A HETEROGENEOUS NEAR DATA PROCESSING FRAMEWORK 5

and resource management between GPU and HMC engines.336

To eliminate redundant data transfers between GPU and HMC337

devices, the HMC devices are directly connected to the GPU338

side via their memory links on a silicon interposer, replacing339

the traditional GPU global memory interface. Additionally, the340

interaction and data communication among these three devices341

is facilitated through the packet-based protocol (as mentioned342

in Section II-B), which is managed by the HMC devices,343

ensuring reliable and efficient data transfer within the system.344

To accelerate an FHE application, we propose the HMC-345

FHE framework to automatically map and schedule the346

FHE operations on the GPU-HMC architecture, comprising347

four crucial components: 1) a fine-grained kernel offloading348

scheme; 2) a ciphertext partitioning scheme; 3) a kernel349

execution pipeline scheme; and 4) a kernel tuning scheme.350

These components collaborate to address three challenges as351

mentioned in Section I.352

The fine-grained kernel offloading scheme is utilized to353

distribute various CKKS basic kernels to GPU or HMC354

engines based on their resource affinity. To enhance the355

parallelism of CKKS basic kernels assigned to HMC engines,356

we propose a ciphertext partitioning scheme aimed at achiev-357

ing data parallelism across multiple HMC devices, which358

is achieved by mapping each ciphertext to multiple HMC359

devices. The kernel execution pipeline scheme leverages the360

loose data dependencies within the data flow graph (DFG) of361

those compound CKKS operations and allows their composed362

kernels to be executed between GPU and HMC engines in a363

pipeline fashion. Finally, to fully harness the capabilities of364

both the GPU and HMC engines, a kernel tuning module is365

employed to dynamically reallocate kernels between the GPU366

and HMC engines based on runtime status. This ensures the367

maximization of system parallelism.368

IV. HMC-FHE COMPONENT DESIGN369

In this section, we will provide the design details of the370

proposed four key functional components of HMC-FHE.371

A. FHE Kernel Offloading Model372

Based on the analysis of FHE operations as shown in373

Section II-C, we propose a fine-grained FHE kernel offloading374

model to offload these underlying CKKS basic kernels smartly375

between GPU and HMC processing engines. The fundamental376

principle lies in the AI value of a kernel, which notably377

impacts its ideal processing location: kernels with lower AI378

tend to favor the HMC processing engine, as they require379

less computational power. Conversely, kernels with higher AI,380

signaling a greater demand for computational resources, are381

more effectively to be offloaded to the GPU. This concept382

is further illustrated in Fig. 6, showcasing a roofline model383

example utilizing an NVIDIA GPU with multiple HMC cubes384

(for details, see Section V-A). Fig. 6 show that kernels with385

AI values below the Critical AI (CAI, defined as the ratio386

of the HMC peak computation capacity to GPU bandwidth)387

can effectively utilize the computing resources available at the388

HMC processing engine. However, when the AI of a kernel389

Fig. 6. Roofline model based on the GPU-HMC architecture adopted in this
article.

surpasses the CAI, executing it on the GPU processing engine 390

becomes more beneficial. 391

However, obtaining the AI of various CKKS kernels with 392

different parameters in advance presents a challenge. To 393

address this, we formulate a linear programming model for 394

these CKKS kernels to quantify their computation and memory 395

access ratio. This linear programming model comprises three 396

key metrics, namely, global memory AI (MAI, the value 397

is denoted as m), shared memory AI (SMAI, the value is 398

denoted as s), and the ratio of shared memory instruction 399

(SMI), count to the total instruction (TI) count (SMI: TI ratio, 400

the value is denoted as r). MAI describes the computation- 401

to-data access ratio when data resides in memory from an 402

instructional perspective, while SMAI represents the same 403

ratio when data resides in the cache. Both metrics function 404

akin to AI, with lower values indicating reduced computational 405

demands. Additionally, SMI:TI delineates the ratio of instruc- 406

tions accessing cached data to TIs, serving as a weighting 407

mechanism to gauge the interplay between MAI, SMAI, and 408

AI. A higher value suggests that SMAI exerts a stronger 409

influence on AI. Note that all metrics are static and can be 410

readily obtainable through source code parsing. Consequently, 411

the host can seamlessly execute the kernel offloading process 412

in real-time with negligible overhead 413

Affinity =
{

HMC, if x1−rxm + c1xrxs < CAI
GPU, otherwise.

(1) 414

Hence, the kernel offloading model is as shown in (1), where 415

c1 is a constant, representing the linear factors of the mapping 416

of SMAI to CAI. xm, xs, xr represent the MAI, SMAI, SMI:TI 417

Ratio of kernel x, respectively. Accordingly, if the output of the 418

model is less than CAI, it indicates that the current kernel is 419

memory-intensive, implying a higher priority for its bandwidth 420

requirement. Consequently, the kernel will be offloaded to the 421

HMC side. Otherwise, the kernel will be offloaded to the 422

GPU side. Table II illustrates the outcomes of various metrics 423

and the affinity of different CKKS kernels within the context 424

described in Section II-A. 425

B. Bandwidth-Aware Ciphertext Partitioning 426

To leverage the parallelism offered by the multiple HMCs, 427

those basic kernels offloaded to the HMC can be processed in 428

two ways: one approach is assigning a series of basic kernels to 429

different HMC engines by a proper schedule mechanism. Each 430

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE II
METRICS AND THE AFFINITY RESULTS UNDER THE SETTINGS

MENTIONED IN SECTION V-A. LEGEND: I) MAI AND SMAI (MEMORY

TO COMPUTE RATIO = 0 ≤ L < 1 ≤ M < 5 ≤ H) AND II) RATIO (SHARED

INS. TO INS. = 0 ≤ L < 0.1 ≤ M < 0.5 ≤ H)

Fig. 7. Overview of Ciphertext partitioning scheme and assume that the
number of HMC devices is 4. The ciphertext is composed of L polynomials
and each polynomial contains N coefficients. The coefficients from the same
position of the L polynomials are denoted as residue.

HMC engine manages a complete ciphertext independently,431

treating each HMC as an autonomous entity. Alternatively,432

one can accelerate a single basic kernel using multiple HMCs,433

with each HMC handling a portion of a single ciphertext.434

In this setup, all HMC engines function collectively as a435

unified entity. The former is heavily dependent on the DFG of436

applications. If there are data dependencies between basic ker-437

nels, some HMC processing engines may remain idle, leading438

to inefficient resource utilization. The latter allows multiple439

HMC engines to collaboratively execute a CKKS basic kernel,440

effectively guaranteeing resource utilization regardless of the441

DFG of applications. In this article, our focus lies on this latter442

method.443

As mentioned in Section II-B, it was noted that the transfer444

latency between HMC devices exceeds three times that of445

local access within an HMC. Hence, the ciphertext partitioning446

scheme must be carefully designed to ensure its performance447

gain. We introduce a bandwidth-aware ciphertext partitioning448

(BaCP) scheme, which fulfills the following three criteria by449

maintaining the coherence of parallel and data access patterns450

within the CKKS basic kernel: 1) ensuring the parallel pro-451

cessing capabilities of multiple HMC engines; 2) attaining load452

balance across the multiple HMC engines; and 3) minimizing453

data transfer between HMC devices.454

As shown on the left side of Fig. 7, the original dense455

ciphertext is organized as an N ∗ L matrix. This structure can456

be understood as comprising either L polynomials (each of457

degree N) or N residues (each of degree L). In the BaCP458

scheme, the ciphertext is first decomposed into four parts, with459

each part containing (N/4) residues (assuming there are four460

HMC devices). Subsequently, each part is evenly distributed461

across different HMC devices, as illustrated on the right side 462

of Fig. 7. For instance, considering HMC one, it manages 463

residues indexed 1st, 4th, 8th, . . . , (N − 3)th. 464

This partitioning scheme brings two advantages. 465

1) Parallelism and Load Balancing: The CKKS basic 466

kernel, initially processed by a single HMC engine, 467

is transformed into four parallel subkernels of equal 468

scale and function. These four subkernels can then 469

be concurrently processed by four HMCs, facilitating 470

parallel execution. 471

2) Decoupling of Ciphertext Structure and Access Patterns: 472

By decoupling the inherent structure of L polynomials, 473

our approach enables the alignment of data access pat- 474

terns and parallel patterns within CKKS basic kernels, 475

fostering collaboration between them. Consider the sce- 476

nario where the HMC side processes the InnerP kernel, 477

which involves data movement across L polynomials and 478

conducts multiply-accumulation (MAC) operations. The 479

BaCP scheme redefines it as four smaller subkernels, 480

each handling inputs of size (N/4) ∗ L. Each subker- 481

nel then executes (N/4) independent MAC operations 482

aimed at (N/4) ∗ L residues. Within this setup, every 483

MAC operation utilizes elements from the same residue, 484

ensuring that all data access occurs locally within the 485

vaults of a single HMC device. 486

The BaCP scheme aligns well with CKKS kernels offloaded 487

to the HMC engines, except for AMorph. For kernels, such as 488

Add, Sub, and TensorP, which involve element-wise operations 489

like multiplication or addition, the BaCP scheme avoids 490

conflicts between parallel modes and data access patterns. 491

However, AMorph, due to its data access pattern being the 492

opposite of InnerP, necessitates some level of data transfer 493

between HMCs under the BaCP scheme. Nonetheless, consid- 494

ering the infrequent calls of AMorph and the relatively minimal 495

data transfer compared to InnerP, the overall efficiency of the 496

BaCP scheme is minimally impacted. 497

C. Kernel Execution Pipeline 498

While the offloading mechanism and ciphertext partitioning 499

scheme improve the execution efficiency of CKKS kernels, the 500

inherent data dependencies among these kernels necessitate 501

their execution on the GPU and HMC engines in a serial man- 502

ner. This introduces idle periods that reduce system parallelism 503

and throughput. Taking the CCMult API as an example, which 504

comprises four sequential CKKS operations (TensorP → 505

ModUp → InnerP → ModDown), the kernel offloading model 506

assigns TensorP and InnerP to the HMC engines (as indicated 507

in Table II). Consequently, the processing engines within both 508

the GPU and HMC engines will alternate between idle states, 509

as depicted in Fig. 8(a). To tackle this issue, our objective is 510

to identify loose data dependencies from interkernel within 511

the DFG and adjust the execution sequence of certain kernels 512

accordingly. This allows for the asynchronous execution and 513

pipeline processing of different CKKS kernels across the GPU 514

and HMC sides, thereby reducing the idle period of the system. 515

Our main focus lies on CKKS compound operations, par- 516

ticularly on compound kernels (e.g., Bootstrapping) or CKKS 517

CHEN et al.: HMC-FHE: A HETEROGENEOUS NEAR DATA PROCESSING FRAMEWORK 7

(a)

(b)

(c)

Fig. 8. Pipelined execution inside GPU-HMC architecture. ModUP
(ModDown) consists of NTT, INTT, and ConvU (ConvD). The parameter dnum
= 4. (a) Execution flow of a CCMult. (b) Loose data dependency 1. (c) Loose
data dependency 2.

APIs (e.g., CCMult, Rotate) that incorporate the KeySwitch518

kernel. These compound operations, including KeySwitch, are519

primarily focused on for the following reasons.520

1) They are the most time-consuming operations. A sig-521

nificant proportion of time in applications is consumed522

by a large number of KeySwitch calls, constituting over523

90% of the time cost of applications [4], [29].524

2) According to the kernel offloading model, these com-525

pound operations uniquely exhibit the characteristic526

of alternating between the GPU and HMC sides. In527

contrast, basic kernels like Add and Sub do not support528

pipelining across both sides. After a comprehensive529

analysis of the DFG for the mentioned operations, we530

identify two primary types of loose data dependencies.531

To illustrate these differences, we utilize the CCMult532

API as a case study:533

a) Loose Data Dependency 1: For the data depen-534

dency within KeySwitch (ModUp → InnerP →535

ModDown), we employ the General KeySwitch536

scheme [30] to divide the ModUp → InnerP537

sequence into dnum smaller stages. At this point,538

the output of each ModUp serves as the input for539

the corresponding InnerP, and the dnum ModUp540

→ InnerP stages operate in complete parallelism.541

Consequently, we can utilize a pipelining approach542

to alternately execute ModUp and InnerP on the543

GPU and HMC engines, thereby implicitly con-544

cealing resource idleness. Subsequently, the data545

flow of CCMult transitions from the configuration546

depicted in Fig. 8(a) to that illustrated in Fig. 8(b).547

b) Loose Data Dependency 2: Another instance of548

loose data dependence occurs at the intersection549

of the TensorP kernel and the KeySwitch kernel.550

Specifically, TensorP computes four element-wise551

multiplications and generates three outputs, one552

of which serves as the input to KeySwitch.553

This implies that we can rearrange the execu-554

tion sequence between TensorP and KeySwitch,555

allowing TensorP to first compute the KeySwitch556

input. Subsequently, the data dependency between557

TensorP and KeySwitch is eliminated, enabling558

their parallel execution at runtime. After restruc- 559

turing the data flow, the data flow of CCMult 560

transitions from the configuration depicted in 561

Fig. 8(b) to that illustrated in Fig. 8(c), further 562

enhancing system efficiency. 563

Note that the aforementioned loose data dependencies are 564

general and can be extended to other operations that include 565

KeySwitch. Therefore, the two pipeline schemes described also 566

apply to Rotate and Bootstrapping. 567

D. Kernel Tuning 568

The kernel execution pipeline scheme primarily guarantees 569

parallel processing capability in the system for specific kernels. 570

However, in other scenarios, such as when the GPU engine 571

executes ModDown or the HMC engine handles basic kernels 572

like Add or Sub, the processing engines on the opposite side 573

remain idle. 574

To address this issue, we propose a kernel tuning scheme 575

aimed at optimizing resource utilization throughout the entire 576

runtime. This scheme entails extracting subkernels from the 577

active GPU or HMC engines and reallocating them to idle 578

HMC or GPU engines. This ensures a more balanced and 579

efficient utilization of resources across the architecture. It 580

is important to note that this approach deviates from the 581

kernel offloading model, but the enhanced utilization of system 582

resources yields performance gains. 583

To ensure the efficiency of kernel execution, our kernel 584

tuning scheme adheres to two design principles: 1) ensuring 585

load balancing between the GPU and HMC engines and 586

2) minimizing the data transfer overhead between multiple 587

HMC devices, particularly when extracting subkernels from 588

the GPU engine and assigning them to the HMC engines. Next, 589

we provide a detailed explanation of the kernel tuning scheme 590

from both the GPU and HMC perspectives. 591

Kernels in HMC. For basic kernels offloaded to the HMC 592

engines (e.g., Add, Sub), since they lack specific layout con- 593

straints for ciphertext elements (as discussed in Section IV-B), 594

it is feasible to extract subkernels and reoffload them to 595

the GPU engine. Taking the tuning process of the Add 596

kernel illustrated in Fig. 9(a) as an example, its ciphertext is 597

partitioned into two parts, with the GPU and HMC engines 598

handling one portion each, respectively. Moreover, to ensure 599

load balance, the ratio of data scale processed by the GPU and 600

HMC engines adheres to 601

GPUworkload

HMCworkload
= RooflineG(θ(x))

RooflineH(θ(x))
(2) 602

where θ(x) = x1−rxm + c1xrxs (as discussed in Section IV-A), 603

represents the AI of kernel x. RooflineG(θ(x)) and 604

RooflineN(θ(x)) denote the available peak performance of 605

kernel x on the roofline models of GPU and HMC, 606

respectively. Therefore, the ratio of data scale (i.e., 607

GPUworkload/HMCworkload) processed by both sides aligns 608

with the ratio of their performance for associated kernels. 609

Kernels in GPU: For ModDown, the situation is consider- 610

ably more complex. This complexity arises primarily because 611

the NTT and iNTT kernels within ModDown necessitate data 612

permutation across coefficients of each polynomial, whereas 613

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

(a) (b) (c)

Fig. 9. Kernel tuning scheme. (a) and (c) describes the kernel tuning details between GPU and HMC engines; (b) illustrates the execution progress of an
8-input NTT, where different colors represent elements located in different HMC devices.

the ciphertext partitioning scheme does not allocate a complete614

polynomial to an HMC device. Consequently, when these615

kernels are offloaded to the HMC engines, it initiates extensive616

data exchanges between HMC devices, thereby diminishing617

the data movement efficiency of the system. To address this618

issue, the kernel tuning scheme adopts a 2-phase NTT method619

based on the relationship between the data access pattern620

within the NTT and the BaCP scheme.621

Fig. 9(b) outlines the execution details of an 8-input NTT,622

wherein the computation process is segmented into three623

stages, each comprising a series of butterfly operations [31].624

Suppose this kernel is reallocated to HMC engines, with the625

polynomial interleaved across the four HMC devices following626

the BaCP approach. In Stage 0, input x undergoes butterfly627

operations with input x + 4 (1 ≤ x ≤ 4, stride = 4), where628

the inputs for each butterfly operation originate from the same629

HMC device. However, in Stage 1 or 2, the stride for the630

butterfly operations is 2 or 1, respectively, necessitating data631

exchanges between HMC devices.632

We can extend this scenario to larger NTT inputs. For any633

given N, any HMC device can execute the 0 ∼ log2 (N/4)−1634

stages of NTT without data transfer between HMC devices.635

This observation motivates us to split the NTT kernel into636

two phases and allocate phase 1 to the HMC engines.637

Consequently, the HMC engines can perform a portion of the638

NTT calculation under the BaCP scheme.639

As depicted in Fig. 9(c), the GPU and HMC engines640

sequentially execute a 2-phase NTT for a single polyno-641

mial. For L polynomials within a ciphertext, which can be642

processed in parallel, the GPU and HMC effectively utilize643

system resources without idleness through pipeline execution.644

Additionally, to sustain load balance, the number of stages in645

phase 1 and phase 2 also conforms to (2).646

Note that this approach can be readily applied to the INTT647

stage with minimal modifications. Since the INTT kernel is648

essentially the inverse of the NTT, the processing sequence649

between the GPU and HMC is simply inverted. In other words,650

the HMC handles phase 2 of INTT, while the GPU undertakes651

phase 1 of INTT.652

V. EVALUATION653

In this section, we will provide a comprehensive overview654

of the experimental setup, workloads employed, evaluation655

results, and comparison with other implementations.656

TABLE III
PLATFORM SPECIFICATIONS

A. Environment Setup 657

Experimental Setup: We implement the prototype of HMC- 658

FHE by integrating the latest GPGPU-Sim v4.0 [32] with the 659

HMC simulator CasHMC [33]. Table III provides the details 660

of the platform specifications. We configure the GPU side 661

with 40 SM cores and each HMC processing engine with 662

four SM cores (< 30 W, completely satisfying the thermal 663

feasibility [34]) underneath a 3-D memory stack. We configure 664

the platform with four HMC cubes and each cube of the 665

HMC is embedded in a memory partition, which is directly 666

connected to the weakened SMs located in the logic layer 667

through an interconnection network. The external transmission 668

latency of the memory partition is configured using the link 669

model in BookSim [35]. In addition, we use the AccelWattch 670

model [36] to evaluate EE under different schemes, where the 671

energy parameters follow [37]. The diagram of the integrated 672

architecture of GPU and HMC is as in Fig. 1. 673

Simulator Validation: The GPU-HMC architecture, essential 674

to our simulations, has been extensively used in prior research, 675

setting a reliable precedent for its use in academic studies. 676

This guarantees that our architectural assumptions are based 677

on tested and proven models. Our simulations are carried 678

out using GPGPU-Sim and CasHMC, both of which are 679

tools well-recognized within the research community for their 680

accuracy and reliability. Moreover, previous research [32] has 681

shown that GPGPU-Sim offers over 85% accuracy in its 682

simulation results. This high level of precision significantly 683

boosts the credibility of our simulation outcomes, indicating 684

that they are a credible reflection of real-world performance. 685

CHEN et al.: HMC-FHE: A HETEROGENEOUS NEAR DATA PROCESSING FRAMEWORK 9

(a)
(b)

Fig. 10. (a) Throughput improvement and energy saving. (b) Performance improvement for different CKKS basic kernels.

Baseline: We compare this design with a conventional GPU686

architecture that has 56 SM cores as the baseline. Note that our687

comparison is based on a fairground of similar computational688

power and bandwidth resources (i.e., both of them have the689

same peak computing power and external interconnection690

bandwidth) We also evaluate this framework with more SM691

cores, see the details in Section V-D.692

Benchmark: Six neural network models, CNN [4],693

LeNet [38] with dataset MNIST, St-GCN [2] with dataset694

NTU-RGB+D, AlexNet [38], VGG-16 [38], and ResNet-695

20 [16] with dataset CIFAR-10, that are typically adopted in696

privacy protection machine learning are used for performance697

evaluation. Among them, the CNN, LeNet, and AlexNet mod-698

els are used for evaluating the cases without bootstrapping,699

and the other models are used for evaluating the cases with700

bootstrapping. As a result of the distinct multiplicative depth701

requirements (i.e., without/with bootstrapping) for these two702

types of models, we employ two separate sets of CKKS param-703

eters denoted as (N = 216, L = 45) and (N = 214, L = 20),704

respectively. The security level λ > 98.705

Implementation: For the implementation of CKKS, we706

adopt ckks-gpu-core [13] (the state-of-the-art GPU imple-707

mentation of the CKKS scheme). We adapt parts of the708

implementation to enable its execution on HMC-FHE. During709

the runtime phase, ciphertexts along with associated constant710

parameters (e.g., twiddle factors in (I)NTT, RNS modulus gen-711

erated by the CRT) involved in CKKS operations are generated712

in host memory and then efficiently distributed to multiple713

HMC devices using BaCP methodology. To effectively manage714

the substantial number of evaluation keys (evks) during model715

execution tasks, particularly when invoking Bootstrap, we716

devise a memory pool system. This system oversees memory717

allocations tailored to HMC, mitigating the risk of memory718

overflow. Under this framework, all evks are initially stored719

on the host side for ease of management and access. When720

these keys are needed for computation, the system copies an721

instance of Evk from the host side, formats it into a format722

BaCP suitable for parallel data processing, and sends it to723

multiple HMC devices.724

B. Overall Performance725

To assess the efficacy of the acceleration framework, we726

perform a comprehensive evaluation of end-to-end inference727

performance using the benchmarks mentioned above. The728

obtained results are subsequently compared with the baseline729

(i.e., GPU platform), with instructions per cycle (IPC) and EE 730

being the primary metrics of comparison. 731

Fig. 10(a) provides the performance speedup and energy 732

savings achieved across all workloads. Regarding inference 733

latency, the HMC processing engines effectively alleviate 734

the “memory wall” bottleneck within the CKKS kernels. 735

Consequently, CNN, LeNet, St-GCN, AlexNet, VGG-16, and 736

ResNet-20 exhibit performance improvements of 2.19×, 2.65×, 737

2.22×, 2.38×, 2.53×, 2.22× compared to the baseline, 738

respectively. Moreover, due to the reduced power overhead of 739

data movement, our acceleration framework decreases energy 740

consumption across different benchmarks by 59.95%, 80.34%, 741

60.22%, 65.22%, 73.32%, and 60.34%, respectively. Moreover, 742

since all workloads show similar performance gains, HMC-FHE 743

can be well-compatible with different CKKS parameters. 744

To provide additional evidence of the acceleration benefits 745

conferred by HMC-FHE across various CKKS kernels, we 746

monitored the execution progress of the ResNet-20 models. We 747

recorded the average execution time of different kernels and 748

evaluated their corresponding EE from a fundamental kernel 749

perspective. As shown in Fig. 10(b), as expected, the kernels 750

(Add, TensorP, InnerP, AMorph) exhibit substantial speedup, 751

with improvements of 2.93×, 2.79×, 2.18×, and 2.38×, 752

respectively. Conversely, the kernels (INTT, NTT, ConvU, 753

ConvD) demonstrate comparatively modest speed increases of 754

4.53%, 12.39%, 14.46%, and 9.68%, respectively. This is as 755

expected. As shown in Table II, the kernels (Add, TensorP, 756

InnerP, AMorph) are offloaded to HMC processing engines. 757

Hence, they can benefit from the larger internal bandwidth, 758

and lower latency provided by the HMC devices, resulting 759

in significant performance improvement. On the contrary, the 760

kernels (INTT, NTT, ConvU, ConvD) are performed in the 761

GPU engine, the incompatible memory resource usage makes 762

the acceleration effect of these kernels less obvious. Note 763

that although various basic kernels experience different levels 764

of speedup, their individual performance does not directly 765

influence the overall application speedup at a global level. 766

With the pipelined design and kernel tuning scheme, the 767

two types of kernels running on GPU and HMC sides are 768

executed in a parallel fashion, which to some extent conceals 769

a significant portion of time overhead. 770

C. Breakdown Analysis 771

To evaluate the benefit of each technique toward overall 772

performance improvement, we form combinations of different 773

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 11. Breakdown analysis of different schemes across all workloads.

(a) (b)

Fig. 12. (a) Resource utilization under ResNet-20. (b) Breakdown analysis of CKKS compound operations.

schemes to elucidate the advantages of these combined tech-774

niques both at the application and primitive levels. The specific775

combinations of schemes are outlined below.776

1) Baseline: GPU only implementation.777

2) Serial: Only implement the kernel offloading778

(Section IV-A) and the Ciphertext partition scheme779

(Section IV-A), with all CKKS primitives serially780

executed on HMC-FHE.781

3) Pipe: Supplement the FHE operation scheduler782

(Section IV-C) to support pipelined execution based783

on Serial, but without implementing the kernel tuning784

scheme (Section IV-D).785

4) HMC-FHE: Integrating all the technical schemes.786

1) Application-Level: Fig. 11 presents the end-to-end787

inference performance of all six models with different788

technique combinations. By solely employing the Serial789

scheme, we observe an enhancement in the inference790

performance of these NN models compared to the Baseline by791

1.38×, 1.72×, 1.41×, 1.35×, 1.98×, and 1.42×, respectively.792

This improvement is primarily credited to the advantages793

facilitated by HMC devices. Furthermore, the varied gains794

observed across models stem from the differing proportions795

of FHE operations conducted during their execution. For796

instance, VGG-16 is predominantly characterized by Add and797

TensorP kernels, with relatively fewer calls to KeySwitch.798

As a result, the Serial solution can fully exploit the799

benefits of HMC in this scenario. In comparison to the800

Serial solution, Pipe yielded an enhancement in inference801

performance by 1.44×, 1.33×, 1.43×, 1.51×, 1.13×, and802

1.44×, respectively. This improvement primarily arises from803

the optimization of KeySwitch operations, which augments804

system parallelism while fully utilizing the architecture’s805

overall resources. Lastly, HMC-FHE incorporates the Kernel806

tuning scheme atop Pipe, further refining the overall resource807

utilization of the architecture and extending parallel processing 808

between the GPU and HMC sides to all phases of model 809

inference. Consequently, HMC-FHE achieved a performance 810

improvement of 1.10×, 1.16×, 1.10×, 1.17×, 1.13×, and 811

1.09× compared to Pipe. 812

To illustrate the variations in resource utilization across 813

different technology combinations, using ResNet-20 as an 814

example, Fig. 12(a) displays the average resource utilization 815

(i.e., SM, Memory) during the execution process under both 816

the Serial and HMC-FHE schemes. By employing kernel 817

pipeline execution and kernel tuning, parallelism is optimized 818

on GPU and HMC, reducing idle stalls. Consequently, the 819

SM (weighted average of SM utilization on both GPU and 820

HMC sides) and memory utilization in the HMC-FHE scheme 821

exhibit a significant increase compared to the Serial scheme. 822

2) Compound Operations-Level: Fig. 12(b) depicts the 823

performance improvement of all compound CKKS APIs 824

in the aforementioned models under different technology 825

combinations. Similar to the application-level scenario, the 826

Serial scheme exhibits varying acceleration effects for differ- 827

ent CKKS compound operations, yielding improvements of 828

1.42×, 1.40×, 1.19×, and 1.38×, respectively. Furthermore, 829

with the additional deployment of kernel pipeline execution, 830

the performance of these compound operations is further 831

enhanced by 1.39 ×, 1.39 ×, 1.00 ×, and 1.33 ×, respectively. 832

In this context, since the Rescale does not integrate the 833

KeySwitch kernel internally, the kernel pipeline scheme is 834

ineffective for it. Finally, with the Kernel tuning scheme, the 835

performance sees 1.10×, 1.07×, 1.21×, and 1.11× speedup. 836

D. Scalability 837

One of the advantages of HMC-FHE is its exceptional scala- 838

bility. As mentioned above, the ciphertext partitioning scheme 839

CHEN et al.: HMC-FHE: A HETEROGENEOUS NEAR DATA PROCESSING FRAMEWORK 11

Fig. 13. Scalability evaluation for variable number of HMC devices.

effectively minimizes remote access between multiple HMC840

cubes while ensuring load balancing. Consequently, the HMC-841

FHE framework facilitates enhancing the overall parallelism842

of the architecture by scaling up the number of HMC devices843

without augmenting the complexity of interactions between844

HMC devices and GPU devices, or among HMC devices845

themselves. To quantify this characteristic, we reconfigured the846

number of HMC devices (e.g., 4, 6, 8, 10) in the architecture847

to assess the impact of changes in the number of HMCs on848

the overall acceleration performance of the architecture.849

The results shown in Fig. 13 reveal that when there are850

ample computational resources on both GPU and HMC ends,851

HMC-FHE exhibits nearly linear performance improvement852

across all workloads, particularly evident in the cases of853

HMC*4 and HMC*8. For the remaining two cases, the854

performance enhancement is slightly lower than the proportion855

of changes in the number of HMC devices. This discrepancy856

arises mainly because when the number of HMCs is not a857

power of two, the strides within each stage of the NTT and858

iNTT kernels cannot consistently remain congruent with the859

number of HMCs, thus introducing some additional remote860

accesses between HMCs. In summary, the aforementioned861

results underscore the robust scalability of HMC-FHE.862

E. Comparison With NVIDIA Tesla V100863

To further demonstrate the superiority of HMC-FHE, we864

used it as a baseline and compared it against the actual GPU865

device, NVIDIA Tesla V100. We replicated the six workloads866

mentioned in Section V-A on the V100, with experimental867

setups consistent with previous tests, and the results are shown868

in Fig. 14. First, it was observed that across all workloads,869

the performance of the NVIDIA Tesla V100 consistently870

lagged behind HMC-FHE. In various workloads, its inference871

latency achieved only 0.69×, 0.57×, 0.69×, 0.64×, and 0.60×872

that of HMC-FHE. Additionally, the NVIDIA Tesla V100873

also demonstrated disadvantages in energy consumption, with874

0.59×, 0.67×, 0.60×, 0.62×, and 0.65× that of HMC-FHE.875

It is noteworthy that, unlike the comparison in Section V-B876

between the baseline and HMC-FHE where computational877

power and bandwidth were aligned, the NVIDIA Tesla V100,878

despite having higher-peak computational power and greater879

bandwidth, still did not achieve an advantage in inference880

latency. This further validates our point: due to the different881

computational and memory access characteristics of various882

FHE kernels, merely increasing resources does not lead to883

Fig. 14. Performance comparison between the HMC-FHE with four HMC
devices and NVIDIA Tesla V100.

a Pareto-optimal performance solution. Appropriate kernel 884

scheduling and resource allocation are far more crucial. 885

F. Comparison With Other Platforms 886

We also conducted comparative experiments to assess the 887

full-system performance of HMC-FHE against other state-of- 888

the-art accelerator prototypes, including FPGA and ASIC. To 889

better reflect the performance of GPUs, we have set the origi- 890

nal baseline to the NVIDIA Tesla V100. It is important to note 891

that the computational power and bandwidth resources of the 892

V100 are slightly greater than those of the HMC-FHE (with 893

four HMC devices) architecture. To ensure a fair performance 894

comparison, we standardized the CKKS encryption parameters 895

to N = 216, L = 45 across the aforementioned accelerator 896

prototypes. 897

1) Latency: As shown in Table IV, utilizing an HMC-FHE 898

system with four HMC devices outperforms Poseidon [29], 899

and F1 [5] accelerators in terms of inference latency. However, 900

compared to BTS [7] accelerators equipped with large-capacity 901

SRAM, the inference performance of HMC-FHE is 58% lower. 902

Nonetheless, as previously mentioned, HMC-FHE exhibits 903

superior scalability, and better performance can be achieved 904

by doubling the number of HMC devices. 905

2) SRAM Usage: Concerning SRAM usage, Table IV 906

illustrates that HMC-FHE consumes the least amount of 907

SRAM. Conversely, ASIC-based acceleration designs have 908

reached an impressive usage of 512MB of SRAM, empha- 909

sizing their significant demand for SRAM resources. This 910

comparison underscores the advantage of HMC-FHE in 911

resource efficiency, especially in environments with con- 912

strained SRAM resources or under heavy workloads (e.g., 913

encryption parameters). 914

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE IV
COMPARISON OF PERFORMANCE BETWEEN HMC-FHE AND OTHER

PRIOR WORKS FOR RESNET-20 INFERENCE

3) Energy Consumption: For energy consumption, the915

results shown in Table IV clearly demonstrate that ASIC916

solutions exhibit the lowest. Our proposed approach sig-917

nificantly improves upon the power efficiency compared to918

GPU deployments (as in Section V-E) and achieves energy919

consumption levels similar to those of FPGAs.920

VI. RELATED WORK921

ASIC: ASIC-based FHE accelerators, such as ARK [8],922

F1 [5], BTS [7], and CraterLake [16], significantly enhance923

the performance of FHE operations. Benefiting from the924

flexible resource usage and relatively more freedom in the925

design phase, these schemes maximize parallelism and data926

movement efficiency during the execution of FHE operations927

by customizing specialized processing units and using high-928

capacity SRAM.929

FPGA: As a customizing-computing device, the FHE accel-930

erator [4], [9], [10], [11], [29], [39] using FPGA adopts931

the idea of pipeline to optimize the execution process.932

HEAX [10] is a typical FPGA-accelerator in this field,933

introducing a pipeline-parallel architecture that maximizes par-934

allelism from ciphertext to modular arithmetic logic. Building935

on this, FxHENN [4] integrates software/hardware co-design936

to achieve efficient resource management.937

GPU: Due to its abundant parallel resources, GPU,938

as a general-purpose commercial device, is a promising939

scheme to accelerate FHE operations [12], [13], [14], [15].940

TensorFHE [12] taps into the computing power of Tensor Core941

to accelerate the computational process of CKKS with fine-942

grained batch processing measures. From the perspective of943

compute-memory balance, 100× [13] avoids the extra memory944

access cost by means of operation fusion to speed up the945

operations.946

PIM: Some works also adopt Processing-in-Memory to947

accelerate FHE operations [40], [41]. MemFHE [40] designs948

a configurable pipeline to accelerate FHE operations by949

mining the features of PIM in-situ computation and extensive950

parallelism. Similarly, CryptoPIM [41] optimizes memory-951

intensive FHE computing tasks around the excess internal952

bandwidth provided by the PIM architecture by building953

custom processing units and special memory requirements.954

These works focus on deploying FHE operations using only955

NDP devices, orthogonal to our work.956

VII. CONCLUSION957

In this article, we present HMC-FHE, an acceleration frame-958

work based on the heterogeneous GPU-HMC architecture959

to provide resource management and performance accel- 960

eration for FHE applications. HMC-FHE aims to achieve 961

fine-grained optimization of FHE kernels with diverse fea- 962

tures and offer optimal global task/resource scheduling to 963

fully exploit the benefits of the GPU-HMC architecture. 964

Various evaluation results show that compared with the SOTA 965

GPU-based acceleration schemes, HMC-FHE achieves up to 966

2.65× performance improvement and reduces 1.81× energy 967

consumption. 968

REFERENCES 969

[1] J. Lin et al, “INSPIRE: In-storage private information retrieval via 970

protocol and architecture co-design,” in Proc. ISCA, 2022, pp. 102–115. 971

[2] R. Ran, N. Xu, W. Wang, G. Quan, J. Yin, and W. Wen, 972

“CryptoGCN: Fast and scalable homomorphically encrypted graph 973

convolutional network inference,” in Proc. Adv. NeurIPS, vol. 35, 2022, 974

pp. 37676–37689. 975

[3] B. Reagen et al., “Cheetah: Optimizing and accelerating homomorphic 976

encryption for private inference,” in Proc. IEEE Int. Symp. High- 977

Perform. Comput. Archit. (HPCA), 2021, pp. 26–39. 978

[4] Y. Zhu, X. Wang, L. Ju, and S. Guo, “FxHENN: FPGA-based acceler- 979

ation framework for homomorphic encrypted CNN inference,” in Proc. 980

HPCA, 2023, pp. 896–907. 981

[5] N. Samardzic et al., “F1: A fast and programmable accelerator for fully 982

homomorphic encryption,” in Proc. 54th Annu. IEEE/ACM Int. Symp. 983

Microarchit., 2021, pp. 238–252. 984

[6] N. Zhang et al., “NTTU: An area-efficient low-power NTT-uncoupled 985

architecture for NTT-based multiplication,” IEEE Trans. Comput., vol. 986

69, no. 4, pp. 520–533, Apr. 2020. 987

[7] S. Kim et al., “BTS: An accelerator for bootstrappable fully homomor- 988

phic encryption,” in Proc. 49th Annu. Int. Symp. Comput. Archit., 2022, 989

pp. 711–725. 990

[8] J. Kim et al., “ARK: Fully homomorphic encryption accelerator with 991

runtime data generation and inter-operation key reuse,” in Proc. MICRO, 992

2022, pp. 1237–1254. 993

[9] Y. Yang, H. Zhang, S. Fan, H. Lu, M. Zhang, and X. Li, “Poseidon: 994

Practical homomorphic encryption accelerator,” in Proc. IEEE Int. Symp. 995

High-Perform. Comput. Archit. (HPCA), 2023, pp. 870–881. 996

[10] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “HEAX: An archi- 997

tecture for computing on encrypted data,” in Proc. ASPLOS, 2020, 998

pp. 1295–1309. 999

[11] S. Sinha Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede, 1000

“FPGA-based high-performance parallel architecture for homomorphic 1001

computing on encrypted data,” in Proc. HPCA, 2019, pp. 387–398. 1002

[12] S. Fan, Z. Wang, W. Xu, R. Hou, D. Meng, and M. Zhang, “TensorFHE: 1003

Achieving practical computation on encrypted data using GPGPU,” 1004

in Proc. 29th IEEE Int. Symp. High-Perform. Comput. Archit., 2023, 1005

pp. 922–934. 1006

[13] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x faster 1007

bootstrapping in fully homomorphic encryption through memory-centric 1008

optimization with GPUs,” IACR Trans. Cryptogr. Hardw. Embed. Syst., 1009

no. 4, pp. 114–148, 2021. 1010

[14] L. de Castro et al., “Does fully homomorphic encryption need com- 1011

pute acceleration?” Cryptol. ePrint Arch., IACR, Bellevue, WA, USA, 1012

Rep. 2021/1636, 2021. 1013

[15] W. Jung et al, “Accelerating fully homomorphic encryption through 1014

architecture-centric analysis and optimization,” IEEE Access, vol. 9, 1015

pp. 98772–98789, 2021. 1016

[16] N. Samardzic et al., “CraterLake: A hardware accelerator for efficient 1017

unbounded computation on encrypted data,” in Proc. 49th Annu. Int. 1018

Symp. Comput. Archit., 2022, pp. 173–187. 1019

[17] N. Goswami, R. Shankar, M. Joshi, and T. Li, “Exploring GPGPU 1020

workloads: Characterization methodology, analysis and microarchitec- 1021

ture evaluation implications,” in Proc. IISWC, 2010, pp. 1–10. 1022

[18] H. Jin et al., “Accelerating graph convolutional networks through 1023

a PIM-accelerated approach,” IEEE Trans. Comput., vol. 72, no. 9, 1024

pp. 2628–2640, Sep. 2023. 1025

[19] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “GraphPIM: 1026

Enabling instruction-level PIM offloading in graph computing frame- 1027

works,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit. 1028

(HPCA), 2017, pp. 457–468. 1029

CHEN et al.: HMC-FHE: A HETEROGENEOUS NEAR DATA PROCESSING FRAMEWORK 13

[20] J. Chen, Z. Zhong, K. Sun, C. Ma, R. Mao, and Y. Wang, “Lift:1030

Exploiting hybrid stacked memory for energy-efficient processing of1031

graph convolutional networks,” in Proc. 60th ACM/IEEE Design Autom.1032

Conf. (DAC), 2023, pp. 1–6.1033

[21] J. Chen et al, “GCIM: Toward efficient processing of graph convolutional1034

networks in 3-D-stacked memory,” IEEE Trans. Comput.-Aided Design1035

Integr. Circuits Syst., vol. 41, no. 11, pp. 3579–3590, Nov. 2022.1036

[22] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption1037

for arithmetic of approximate numbers,” in Proc. Int. Conf. Theory Appl.1038

Cryptol. Inf. Secur., 2017, pp. 409–437.1039

[23] J. Fan and F. Vercauteren, “Somewhat practical fully homomor-1040

phic encryption,” Cryptol. ePrint Arch., IACR, Bellevue, WA, USA,1041

Rep. 2012/144, 2012.1042

[24] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully1043

homomorphic encryption without bootstrapping,” ACM Trans. Comput.1044

Theory, vol. 6, no. 3, pp. 1–36, 2014.1045

[25] K. Hsieh et al., “Transparent offloading and mapping (TOM): Enabling1046

programmer-transparent near-data processing in GPU systems,” ACM1047

SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 204–216, 2016.1048

[26] X. Zhang, S. L. Song, C. Xie, J. Wang, W. Zhang, and X. Fu,1049

“Enabling highly efficient capsule networks processing through a PIM-1050

based architecture design,” in Proc. IEEE Int. Symp. High Perform.1051

Comput. Archit. (HPCA), 2020, pp. 542–555.1052

[27] S. Williams, A. Waterman, and D. A. Patterson, “Roofline: An insightful1053

visual performance model for multicore architectures,” Commun. ACM,1054

vol. 52, no. 4, pp. 65–76, 2009.1055

[28] “NVIDIA Nsight.” 2018. [Online]. Available: https://developer.nvidia.1056

com/nsight-compute1057

[29] Y. Yang, H. Zhang, S. Fan, H. Lu, M. Zhang, and X. Li, “Poseidon:1058

Practical homomorphic encryption accelerator,” in Proc. IEEE Int. Symp.1059

High-Perform. Comput. Archit. (HPCA), 2023, pp. 870–881.1060

[30] K. Han and D. Ki, “Better bootstrapping for approximate homomorphic1061

encryption,” in Proc. Cryptogr. Track RSA Conf., 2020, pp. 364–390.1062

[31] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation 1063

of complex Fourier series,” Math. Comput., vol. 19, no. 90, pp. 297–301, 1064

1965. 1065

[32] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim: 1066

An extensible simulation framework for validated GPU modeling,” in 1067

Proc. ACM/IEEE 47th Annu. Int. Symp. Comput. Archit. (ISCA), 2020, 1068

pp. 473–486. 1069

[33] D.-I. Jeon and K.-S. Chung, “CasHMC: A cycle-accurate simulator 1070

for hybrid memory cube,” IEEE Comput. Archit. Lett., vol. 16, no. 1, 1071

pp. 10–13, Jan.–Jun. 2016. 1072

[34] Y. Shen, L. Schreuders, A. Pathania, and A. D. Pimentel, “Thermal 1073

management for 3-D-stacked systems via unified core-memory power 1074

regulation,” ACM Trans. Embed. Comput. Syst., vol. 22, no. 5s, pp. 1–26, 1075

Sep. 2023. 1076

[35] N. Jiang, G. Michelogiannakis, D. Becker, and B. Towles, BookSim 2.0 1077

User’s Guide, Standford Univ., Stanford, CA, USA, 2010, p. q1. 1078

[36] V. Kandiah et al., “AccelWattch: A power modeling framework for 1079

modern GPUs,” in Proc. 54th MICRO, 2021, pp. 738–753. 1080

[37] S. H. Pugsley et al., “NDC: Analyzing the impact of 3-D- 1081

stacked memory+logic devices on MapReduce workloads,” in Proc. 1082

IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), 2014, 1083

pp. 190–200. 1084

[38] Y. Cai, Q. Zhang, R. Ning, C. Xin, and H. Wu, “Hunter: HE-friendly 1085

structured pruning for efficient privacy-preserving deep learning,” in 1086

Proc. AsiaCCS, 2022, pp. 931–945. 1087

[39] M. Jiang et al., “FHE-CGRA: Enable efficient acceleration of fully 1088

homomorphic encryption on CGRAs,” in presented at DAC, 2024. 1089

[40] S. Gupta, R. Cammarota, and T. Š. Rosing, “MemFHE: End-to-end 1090

computing with fully homomorphic encryption in memory,” ACM Trans. 1091

Embed. Comput. Syst., vol. 23, no. 2, pp. 1–23, 2024. 1092

[41] H. Nejatollahi, S. Gupta, M. Imani, T. S. Rosing, R. Cammarota, 1093

and N. Dutt, “CryptoPIM: In-memory acceleration for lattice-based 1094

cryptographic hardware,” in Proc. DAC, 2020, pp. 1–6. 1095

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

