
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

AttentionRC: A Novel Approach to Improve
Locality Sensitive Hashing Attention on

Dual-Addressing Memory
Chun-Lin Chu , Graduate Student Member, IEEE, Yun-Chih Chen , Member, IEEE, Wei Cheng,

Ing-Chao Lin , Senior Member, IEEE, and Yuan-Hao Chang , Fellow, IEEE

Abstract—Attention is a crucial component of the Transformer1

architecture and a key factor in its success. However, it suffers2

from quadratic growth in time and space complexity as input3

sequence length increases. One popular approach to address4

this issue is the Reformer model, which uses locality-sensitive5

hashing (LSH) attention to reduce computational complexity.6

LSH attention hashes similar tokens in the input sequence7

to the same bucket and attends tokens only within the same8

bucket. Meanwhile, a new emerging nonvolatile memory (NVM)9

architecture, row column NVM (RC-NVM), has been proposed10

to support row- and column-oriented addressing (i.e., dual11

addressing). In this work, we present AttentionRC, which takes12

advantage of RC-NVM to further improve the efficiency of13

LSH attention. We first propose an LSH-friendly data mapping14

strategy that improves memory write and read cycles by 60.9%15

and 4.9%, respectively. Then, we propose a sort-free RC-aware16

bucket access and a swap strategy that utilizes dual-addressing17

to reduce 38% of the data access cycles in attention. Finally,18

by taking advantage of dual-addressing, we propose transpose-19

free attention to eliminate the transpose operations that were20

previously required by the attention, resulting in a 51% reduction21

in the matrix multiplication time.22

Index Terms—Attention, dual-addressing memory, locality23

sensitive Hashing attention, row-column nonvolatile memory24

(RC-NVM), reformer.25

I. INTRODUCTION26

THE ATTENTION models have demonstrated remarkable27

performance across various domains [1], [2], [3]. Their28

Manuscript received 12 August 2024; accepted 12 August 2024. This work
was supported in part by the National Science and Technology Council,
Taiwan (R.O.C) under Grant NSTC 109-2628-E-006-012-MY3, Grant
110-2221-E-006-084-MY3, Grant 113-2923-E-006-009, Grant 113-2221-E-
006-215, Grant 113-2223-E-001-001, Grant 111-2221-E-001-013-MY3, Grant
113-2927-I-001-502, and Grant 111-2923-E-002-014-MY3; and in part by the
Academia Sinica under Grant AS-IA-111-M01. This article was presented
at the International Conference on Hardware/Software Codesign and System
Synthesis (CODES + ISSS) 2024 and appeared as part of the ESWEEK-TCAD
Special Issue. This article was recommended by Associate Editor S. Dailey.
(Corresponding authors: Ing-Chao Lin; Yuan-Hao Chang.)

Chun-Lin Chu and Ing-Chao Lin are with the Department of Computer
Science and Information Engineering, National Cheng Kung University,
Tainan 701, Taiwan (e-mail: iclin@mail.ncku.edu.tw).

Yun-Chih Chen is with the Chair of Design Automation for Embedded
Systems, Technical University of Dortmund, 44227 Dortmund, Germany
(e-mail: yunchih.chen@tu-dortmund.de).

Wei Cheng is with the Department of Electrical and Computer Engineering,
Duke University, Durham, NC 27708 USA (e-mail: wei.cheng@duke.edu).

Yuan-Hao Chang is with the Institute of Information Science, Academia
Sinica, Taipei 115, Taiwan (e-mail: johnson@iis.sinica.edu.tw).

Digital Object Identifier 10.1109/TCAD.2024.3447217

key innovation is the ability to capture long-range depen- 29

dencies and effectively manage input sequences of varying 30

lengths. However, this requires significant matrix multiplica- 31

tion between embedding matrices, which contributes heavily 32

to the computational load in Transformer models. 33

Nonvolatile memory (NVM) is a promising alternative to 34

DRAM due to its key advantages, including larger memory 35

capacity, lower costs, near-DRAM access latencies, and mini- 36

mal dynamic power consumption. These features make NVM 37

ideal for applications requiring efficient memory access and 38

storage. Additionally, advances in NVM manufacturing tech- 39

nology have led to more powerful storage and memory 40

devices. In summary, NVM offers greater memory capacity, 41

lower costs, and similar access speeds to DRAM, making it a 42

preferred choice for handling large data volumes and reducing 43

power consumption. 44

At the algorithm level, the attention mechanism suffers from 45

a limitation, known as the quadratic growth [4], [5], [6], [7], 46

[8], [9], in both time and space complexity. Assuming that 47

the length of the input sequence equals N, the computational 48

complexity for attending every token in the sequence grows 49

at O(N2). The quadratic growth issue limits its capacity 50

to handle long sequences since the required computation 51

becomes prohibitively expensive as the length of the input 52

sequence grows. 53

To address the quadratic growth issue in the attention mech- 54

anism, the Reformer [10] model has emerged as a promising 55

solution. It outperforms other attention-like models [4], [6], [9] 56

through two key factors: 1) its efficiency in handling long 57

sequences and 2) its memory-saving strategy based on 58

the reversible residual network [11]. The Reformer model 59

demonstrates excellent results on various natural language 60

processing tasks, showcasing its capability to process longer 61

sequences with faster computation and less memory usage. 62

As shown in Fig. 1, Reformer employs LSH attention, 63

which groups tokens with similar characteristics into distinct 64

buckets by using the hash functions. Subsequently, the 65

attention mechanism is applied exclusively within each bucket, 66

significantly reducing the required computations. This approach 67

yields a substantial improvement in computational efficiency, 68

allowing it to handle longer sequences with less computation. 69

With the advancement of memory architecture, a new NVM 70

device, called row-column NVM (RC-NVM) [12], was cre- 71

ated. Unlike conventional memory technologies that support 72

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0009-0009-6308-8998
https://orcid.org/0000-0002-2665-9490
https://orcid.org/0000-0003-1994-7512
https://orcid.org/0000-0002-1282-2111

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 1. Attention mechanism (left). The LSH attention mechanism (right).

only row or column access, RC-NVM allows efficient memory73

access to both rows and columns concurrently. This charac-74

teristic not only allows more flexible and efficient memory75

access patterns but also enables new computing paradigms for76

various application scenarios [13].77

As mentioned earlier, LSH attention is the core component78

of the Reformer model [10] and is the main reason that the79

Reformer model performs so well in long sequence tasks.80

However, there are still computational challenges that need to81

be addressed.82

Challenge 1: Despite considerably reducing the complexity83

of the attention mechanism, LSH attention is still subject84

to heavy penalties when dealing with long input sequences85

and high-dimensional embeddings. A significant amount of86

overhead is introduced in terms of data reading and writing,87

thus necessitating careful consideration and solution.88

Challenge 2: LSH attention employs multiple rounds of89

hashing to mitigate the issue of similar tokens being hashed90

to different buckets. While this improves the overall model91

accuracy, it comes at the cost of increased timing and memory92

access overhead. Balancing the tradeoff between accuracy and93

computational efficiency is the primary consideration.94

Challenge 3: LSH attention groups tokens with similar95

characteristics into distinct buckets and applies the attention96

mechanism within each bucket. Despite the efforts of grouping97

tokens into buckets, the computation of the attention mecha-98

nism within each bucket still requires a large amount of matrix99

multiplication and transpose operations.100

In this work, we present AttentionRC, a novel approach that101

leverages the dual-addressing ability of RC-NVM to tackle102

the challenges posed by the LSH attention mechanism. Our103

contributions can be summarized as follows.104

For Challenge 1: In AttentionRC, we introduce a new data105

mapping strategy that utilizes the subarray-level parallelism106

(SALP) [14] in RC-NVM. SALP enables parallel access to107

multiple subarrays within a memory bank, ideal for data108

with fixed access patterns. This parallelism natively supports109

the data parallelism in the LSH attention algorithm. Thus,110

we propose an LSH-friendly data mapping strategy that dis-111

tributes high-dimensional embedding data across subarrays,112

accelerating LSH computations. This strategy boosts memory113

access efficiency by up to 60.9% for write operations and114

Fig. 2. Random rotation of hash functions.

4.9% for read operations, showing its effectiveness in var- 115

ious embedding-based computational scenarios beyond LSH 116

attention. 117

For Challenge 2: As the number of hash rounds increases, 118

more embeddings are read from memory during LSH attention. 119

Leveraging RC-NVM’s dual-addressing, we propose a sort- 120

free RC-aware bucket access strategy and a swap strategy to 121

eliminate sorting time in the LSH process, thereby improving 122

bucket memory access efficiency. Our RC-aware bucket access 123

strategy accelerates LSH, reduces sorting time, and achieves a 124

38% decrease in bucket access time. Additionally, this strategy 125

is adaptable to other hash-based computations beyond LSH. 126

For Challenge 3: Leveraging RC-NVM’s dual-addressing 127

capability, we introduce transpose-free attention to eliminate 128

transpose operations in LSH attention. Traditional memory 129

systems require the matrix transpositions for proper align- 130

ment during matrix multiplications. In contrast, RC-NVM 131

accesses both row and column addresses directly, removing 132

this overhead. This dual-addressing also speeds up matrix 133

multiplications, leading to a 51% improvement in LSH 134

attention computation with AttentionRC, making it highly 135

applicable to models using attention mechanisms. 136

II. BACKGROUND AND MOTIVATION 137

A. Locality-Sensitive Hashing Attention 138

Reformer [10] adopted an LSH [15] attention that signif- 139

icantly reduces computational complexity by grouping input 140

tokens into distinct buckets. 141

First, input sequences are converted into tokens (i.e., X and 142

Y) and projected onto the embedding vector space, as shown 143

in the upper half of Fig. 2. Second, projected embeddings are 144

hashed independently using a random rotation hashing func- 145

tion. The random rotation hashing function is implemented 146

by a random matrix (θ0, θ1, and θ2, respectively, in Fig. 2) 147

that preserves distances and angles between embeddings, 148

making them suitable for the rotation operation. Then, the 149

input embeddings are transformed by multiplying with these 150

matrices. This process enhances the discriminative power of 151

the hash functions by increasing the probability of mapping 152

similar embeddings to the same buckets. 153

For instance, tokens X and Y are two relatively distant 154

vectors, as shown in the upper half of Fig. 2, and are hashed 155

into different buckets by using the random rotation matrices 156

θ0 and θ1. Occasionally, they are hashed into the same bucket 157

CHU et al.: AttentionRC: A NOVEL APPROACH TO IMPROVE LOCALITY SENSITIVE HASHING ATTENTION 3

by the random rotation matrix θ2. After multiple rounds of158

hashing operations, embeddings that are hashed into the same159

bucket are believed to be highly correlated since they are160

adjacent to each other in the embedding vector space. Finally,161

embeddings that are hashed to the same buckets will be sorted162

in ascending order to facilitate the memory retrieval process163

when attention is performed among different buckets.164

As shown in the left part of Fig. 1, attending all the165

query and key embedding pairs in the attention mechanism is166

computationally expensive; therefore, the LSH attention in the167

right part of Fig. 1 maps embeddings to corresponding hash168

buckets and subsequently performs attention among them. By169

doing so, the attention computation can be reduced by simply170

attending to the hashed buckets. LSH attention greatly sim-171

plifies the computation of the attention mechanism; however,172

it might result in worse model accuracy if strongly correlated173

embeddings are hashed into different buckets, thus reducing174

the quality of the similarity matrix among the hashed buckets.175

In order to retain the model accuracy in Reformer [10],176

multiple hash functions are presented such that two strongly177

correlated embeddings are more likely to be hashed into the178

same buckets. As shown in the lower half of Fig. 2, tokens P179

and Q are close in the projected vector space, ideally meaning180

they should be hashed into the same bucket. However, in the181

initial hash round, P goes to bucket 2 and Q to bucket 3. In182

the second and third rounds, both end up in the same bucket.183

The results from each round are combined by taking their184

union, so a token in different buckets across rounds will be185

in all those buckets when combined. This ensures tokens with186

similar characteristics, which may have been split in a single187

round, have more chances to be juxtaposed in later rounds.188

This mechanism highlights the importance of multiple hash189

rounds as they increase the probability of achieving the desired190

outcome of similar tokens being mapped to the same bucket.191

Even though LSH adopts a highly efficient hashing mecha-192

nism, multiple hash functions require a larger number of hash193

tables stored in memory to keep track of hashed buckets. The194

tradeoff between the number of hash functions and memory195

usage is discussed in Reformer reproducibility [16] and is196

crucial to the LSH attention performance.197

B. RC-NVM198

A novel memory technology called RC-NVM [12] has199

been proposed in order to overcome the constraints of the200

traditional memory devices. RC-NVM uses NVM cells based201

on highly reliable TaOx ReRAM [17]. This ReRAM shows202

excellent durability, maintaining stable resistance over multiple203

switching cycles and data retention, with stability in both204

high- and low-resistance states for over 3000 h at 150 ◦C205

and a predicted retention period of more than ten years at206

85 ◦C. Additionally, memory wear is minimal, with resistance207

remaining almost constant over prolonged periods at high208

temperatures. Fig. 3 shows the architecture of RC-NVM. It uti-209

lizes a crossbar architecture [18], [19] to organize its memory210

hierarchy into channels, ranks, chips, banks, subarrays, and211

mats. One of the key advantages of RC-NVM is its dual-212

addressing ability, which is enabled by the placement of extra213

Fig. 3. RC-NVM architecture.

elements at different hardware levels. Specifically, the write 214

driver (WD) and sense amplifier (SA) are placed on both sides 215

of an RC-NVM Mat, allowing the memory cell to be driven or 216

sensed from either row or column direction. This enables data 217

to be accessed from both row-oriented and column-oriented 218

address spaces. The use of RC-NVM offers more flexible and 219

versatile data access capabilities and better power efficiency, 220

compared to the traditional DRAM. 221

The RC-NVM supports SALP [14], which is a technique 222

that allows for parallelization across different subarrays, 223

enabling more efficient memory access and manage- 224

ment. Specifically, SALP can improve the read and write 225

performance of RC-NVM by enabling simultaneous activation 226

of multiple subarrays, allowing for higher throughput and 227

lower latency. Overall, the use of SALP in the RC-NVM [12] 228

represents an important step toward improving the efficiency 229

and scalability of NVM-based systems. 230

To improve the efficiency of data transfer between memory 231

and processor, RC-NVM employs a cache mechanism with a 232

block size of 64 bytes, which is equivalent to 8 Mats. When 233

a cache miss occurs, the corresponding cache block will be 234

transferred from memory to the corresponding buffer, either 235

row buffer or column buffer, depending on the type of address 236

space used to access the data. Subsequent accesses to the same 237

cache block can then be serviced from the buffer, reducing the 238

latency of accessing data from memory. 239

C. Motivation of LSH Attention With RC-NVM 240

The motivation to combine LSH attention and RC-NVM 241

can be summarized as follows. 242

1) LSH Memory Overhead: The LSH design aims to 243

address the growing time consumption associated with increas- 244

ing sequence length, enabling attention-like models to handle 245

longer sequences. However, as illustrated in Table I. The rise 246

in embedding read-write time with longer sequences highlights 247

the challenge of excessive access time. This observation 248

underscores the need for an innovative data mapping strategy 249

specifically tailored for LSH. While applying LSH directly on 250

RC-NVM is a consideration, it proves insufficient to mitigate 251

the challenges posed by larger sequence lengths. Consequently, 252

an additional data mapping strategy is essential to leverage the 253

hardware characteristics of RC-NVM effectively and enhance 254

LSH, particularly in terms of access efficiency. 255

2) Additional Preprocessing Before Attention: Increasing 256

hashing rounds boosts LSH attention performance but also 257

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE I
CYCLE TIME OF EMBEDDING ACCESS

TABLE II
CYCLE TIME OF SORTING IN DIFFERENT HASH ROUNDS

Fig. 4. Access pattern in RC-NVM.

raises memory and sorting costs. Unlike the original atten-258

tion mechanism, sorting the buckets becomes necessary with259

LSH attention, and this sorting overhead increases with the260

number of hash rounds. With eight hash rounds, LSH atten-261

tion approaches full attention [10], necessitating sorting the262

buckets 8×. Table II presents time consumption experiments263

at different hash rounds, demonstrating a linear relationship264

between the hash rounds and sorting time. In order to mitigate265

the computational burden associated with more hash rounds,266

we explore leveraging RC-NVM’s dual-addressing capability267

to reduce operations.268

3) Token Access in Bucket: The Reformer employs LSH269

to hash input sequences into buckets, enabling the attention270

mechanism to focus on the tokens within the same bucket.271

While RC-NVM enhances LSH operations, the potential chal-272

lenge lies in the extended token access time, especially when273

scanning for the tokens in the same bucket. For instance,274

when the LSH operation reads all tokens labeled as bucket275

0 for attention computation in Fig. 4, 64 tokens are stored276

in an RC-NVM subarray across 8 × 8 Mats, each storing277

a bucket ID. Retrieving tokens with a specific bucket ID278

requires a full memory scan. For instance, fetching tokens279

labeled as bucket 0 involves accessing rows 0–2 and 4–7,280

skipping only row 3. However, RC-NVM allows for retrieving281

these tokens with access to just columns 1, 4, 5, and 7. This282

flexibility reduces access time compared to the traditional283

DRAM. Simple operations like swapping may further optimize284

bucket access during memory retrieval. Thus, we aim to285

enhance LSH for bucket data retrieval in this context.286

4) Attention Operation: After retrieving tokens hashed to287

the same bucket, we still need to perform time-consuming288

Fig. 5. AttentionRC overview.

attention operations, which include transpose operations and 289

matrix multiplications. Both operations can be efficiently 290

accelerated by utilizing RC-NVM’s dual-addressing capabil- 291

ity. Traditionally, attention involves time-consuming transpose 292

operations on the key embeddings to get KT and then com- 293

putes “Q multiplied by KT” as shown in Fig. 1. Although 294

RC-NVM’s dual-addressing capability inherently suits the 295

matrix multiplications, we still find the need for transpose 296

operations in handling key embeddings. We view this as an 297

opportunity for further improvement in our approach. 298

III. ATTENTIONRC 299

In this section, we present AttentionRC, which lever- 300

ages RC-NVM to address the challenges in LSH attention. 301

Illustrated in Fig. 5, we propose 1) an LSH-friendly data 302

mapping strategy to address Challenge 1 and propose 2) a sort- 303

free RC-aware bucket access strategy to address Challenge 2. 304

For Challenge 3, we present 3) a transpose-free strategy to 305

accelerate attention computation. Throughout this section, we 306

will further discuss the technical details and benefits of our 307

approach. 308

A. LSH-Friendly Data Mapping in AttentionRC 309

To efficiently access large embeddings in memory, we 310

propose an LSH-friendly data mapping strategy (for Challenge 311

1) that consists of two steps. First, each token is stored in an 312

RC-NVM Mat, which is (1/8) size of a cache block. Since 313

the cache block size equals 8 Mats, we use an 8 × 8 block 314

as the minimum unit for token storage, as shown in Fig. 4. 315

As the input sequence length increases, the number of Mats 316

allocated within a subarray also increases. For example, if the 317

input sequence length is 4096, we expand it to several 64 × 64 318

Mats. 319

The second step is the mapping of dimensions across 320

subarrays. Each subarray stores the data for one dimension of 321

the tokens. In RC-NVM, there are eight banks in a rank, and 322

each bank contains eight subarrays. This means the maximum 323

size of subarrays in an RC-NVM rank is 64, so we use 64 as 324

the baseline. 325

For instance, if the dimension exceeds 64, e.g., 128, we 326

split it into two blocks of 64 each. We further describe our 327

mapping strategy in Fig. 6. Specifically, we take the 4096 × 64 328

CHU et al.: AttentionRC: A NOVEL APPROACH TO IMPROVE LOCALITY SENSITIVE HASHING ATTENTION 5

(a) (b)

Fig. 6. (a) Embedding. (b) Data mapping in AttentionRC.

embeddings (i.e., 4096 embeddings, each with 64 dimensions)329

as an example. We store the 4096 tokens of the input sequence330

in RC-NVM subarrays as a 64 × 64 block and then distribute331

the 64-D data to 64 subarrays. In other words, we store332

the 4096 × 64 embeddings using 64 subarrays, where each333

subarray uses a 64 × 64 block to store the data.334

We observed that SALP [14] is ideal for applications335

with uniform data access patterns across subarrays. In LSH336

Attention, each input token is mapped to the same dimensional337

space, requiring all dimensions to be read from memory for338

each token. This setup leverages the SALP’s parallelism by339

reading 64 dimensions per access, thereby reducing the data340

retrieval and writing time.341

Our LSH-friendly data mapping strategy offers several342

benefits. Increasing hash rounds to improve accuracy typically343

raises memory costs, as the LSH operation reads tokens from344

memory based on the hash results, accessing only certain345

dimensions. Our strategy, which enables the parallel data346

access, is expected to lower these costs even with multiple347

hash rounds.348

Moreover, LSH operation usually sorts buckets to store349

tokens contiguously for easy retrieval. However, with350

dual-addressing memory, sorting is unnecessary, saving pre-351

processing time before the attention operation. Additionally,352

we can efficiently retrieve tokens from the same bucket353

simultaneously, utilizing RC-NVM’s characteristics.354

B. Sort-Free Bucket Access in AttentionRC355

As for Challenge 2, AttentionRC utilizes RC-NVM to356

reduce sorting time in LSH attention while enhancing the357

bucket access efficiency. However, this approach has some358

challenges. Without sorting the resulting buckets, the memory359

does not know the exact positions of tokens within the same360

bucket. For example, with a sequence length of 4096 and361

tokens hashed into 64 buckets, our LSH-friendly data mapping362

strategy stores the sequence in 64 × 64 blocks. We need to363

maintain a 64-entry list in memory to track the row and column364

of tokens in these blocks. This list allows us to access the365

tokens within the same bucket according to their positions.366

Algorithm 1 RC-Aware Bucket Access
Input: bucket_id
Input: pos = {(rowi, coli), . . . , (rowj, colj)} ← tokens’ posi-

tions in bucket_id
Output: bucket_access

1: procedure BUCKET_ACCESS(bucket_id, positions)
2: Initialize accessed_tokens ← not accessed
3: Initialize bucket_access
4: for pos in positions do
5: if pos is not accessed then
6: num_row ← pos.row_access()
7: row_index ← accessed tokens indices
8: num_col ← pos.column_access()
9: col_index ← accessed tokens indices

10: if num_row ≥ num_col then
11: Append bucket_access ← “RR position”
12: accessed_tokens[row_index] ← accessed
13: else
14: Append bucket_access ← “CR position”
15: accessed_tokens[col_index] ← accessed
16: end if
17: end if
18: end for
19: end procedure

However, the tokens within the same bucket may still be 367

scattered, making access time consuming due to discontinuity. 368

This is where the dual-addressing feature of RC-NVM comes 369

into play. 370

We present a sort-free RC-aware strategy for the bucket 371

access that utilizes the dual-addressing ability of RC-NVM 372

to reduce the memory access time to tokens that are hashed 373

into the same bucket. This strategy assumes that our proposed 374

mapping strategy presented in the previous section is adopted. 375

As shown in Algorithm 1, the RC-aware bucket access 376

strategy takes two inputs: 1) the bucket_id, which determines 377

the specific bucket to be processed and 2) the positions 378

of all tokens within that bucket. In lines 2 and 3, this 379

algorithm begins with two initial lists: 1) “accessed_tokens” 380

and 2) “bucket_access.” The former is used to store whether a 381

token in the bucket has been accessed or not, while the latter 382

is used to store the access way to access the bucket. In lines 4 383

and 5, the algorithm then iterates through the token positions 384

in the bucket that have not been accessed yet. From lines 6 to 385

9, the algorithm calculates the number of tokens belonging to 386

bucket_id that can be accessed in terms of row and column, 387

while simultaneously recording the indices of the accessed 388

tokens in row_index and col_index within the position list. 389

From lines 10 to 15, the algorithm determines which access 390

pattern (row or column) is more efficient based on which 391

pattern accesses more tokens and then adds the access way and 392

the position to the bucket_access list. Finally, the algorithm 393

updates the accessed_tokens list for the accessed tokens to 394

prevent them from being accessed again in future iterations. 395

The concept of a Sort-free RC-aware bucket access strategy 396

is further illustrated in Fig. 7, which depicts an 8 × 8 matrix 397

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 7. RC-aware bucket access.

(i.e., eight rows and eight columns in total) representing a398

total of 64 tokens. Each token is hashed into a specific bucket;399

for instance, when we want to access all the tokens in bucket400

0, there are ten tokens we need to access. According to our401

Algorithm 1, (0, 0), which means the position of the token402

is in the zeroth row and the zeroth column, will be the first403

position in the procedure. As we store the data in RC-NVM,404

we have two patterns (i.e., row and column accesses) to access405

the data. Suppose that we use row read (0, 0), which will fetch406

eight values (i.e., the 64 bytes of data from the zeroth column407

to the seventh column into the cache).408

Conversely, column read (0, 0) fetches data from the zeroth409

row to the seventh row. Obviously, row read (0, 0) only410

accesses three tokens that belong to bucket 0, whereas column411

read accesses five tokens. This example illustrates the main412

idea of our sort-free RC-aware data access strategy, which413

is, to find the most efficient memory access pattern (row or414

column direction) based on the buckets being selected.415

C. Further Improvement of Bucket Access in AttentionRC416

While we have successfully accelerated bucket access by417

leveraging the advantages of dual addressing, as depicted in418

Fig. 7, certain challenges persist. Specifically, when opting419

for column access at the position (0, 0), we observe the420

retrieval of eight tokens into the cache block. However, upon421

closer examination, only five of these tokens belong to our422

target bucket (bucket 0), leaving the remaining three tokens423

unwanted. This phenomenon prompts us to consider further424

optimization opportunities.425

We introduce a swap strategy aimed at further optimizing426

the performance of bucket access by exchanging a small subset427

of tokens.428

As shown in Algorithm 2, the process begins with an 8× 8429

block of the RCNVM mat. The algorithm takes two inputs:430

bucket_access, determined by Algorithm 1, representing the431

most efficient memory access pattern, and the positions of all432

tokens within that bucket. In line 2, a list called swap_list433

is initialized to store tokens in this 8 × 8 block that need434

swapping. Line 3 filters out singular tokens within the same435

bucket, as they cannot benefit from swapping. From lines 4 to436

5 compute the access ratio for each bucket in the block and437

identify the least efficient one. The bucket with the minimum438

ratio, calculated by dividing the total number of tokens by the439

Algorithm 2 Swap Strategy
Input: 8x8 block mat of bucket_access
Input: pos = {(rowi, coli), . . . , (rowj, colj)} ← bucket’s

positions
Output: new_bucket_access

1: procedure SWAP(block, pos)
2: Initialize swap_list ← tokens to be swapped
3: Filter buckets which only have one token
4: Calculate the ratio of every bucket access in the block
5: Find the smallest ratio
6: swap_token, target_token ← smallest ratio bucket
7: rc_swap_temp ← bucket_id
8: for bucket_id in rc_swap_temp do
9: if valid_swap then

10: Append swap_candidate ← pos of bucket_id
11: end if
12: end for
13: if There are multiple candidates in swap_candidate

then
14: Decide which swap is the best and remove others
15: Append swap_list ← swap_candidate
16: else
17: Append swap_list ← swap_candidate
18: end if
19: end procedure
20: Perform the swap operation
21: new_bucket_access ← Algorithm 1

total accesses required, indicates the need for improvement. 440

In line 6, the algorithm determines two variables based on the 441

least efficient bucket. First, it identifies the swap_token, which 442

represents the token to be swapped within this bucket, and 443

second, it determines the target_token, another token within 444

the same bucket chosen as the target for swapping. This 445

implies that the token designated for swapping will be moved 446

to the access block associated with this target_token. In line 447

7, the algorithm determines the tokens present in the access 448

block of the target_token. Given the row- and column-oriented 449

access pattern in the RCNVM, the algorithm collects the 450

bucket_id of tokens encountered target_token, stores them in 451

the rc_swap_temp, and treats them as candidates for swapping. 452

From lines 8 to 12, the algorithm validates each potential swap. 453

In line 9, valid swaps are added to swap_candidate, while 454

invalid ones are filtered out. The conditions and reasons for a 455

swap being considered invalid are then outlined. 456

Invalid Swap Condition 1: This candidate is already in 457

swap_list. Clearly, if this candidate is already in the 458

swap_list, it indicates that it is already scheduled for 459

swapping, and swapping it again provides no performance 460

benefit. 461

Invalid Swap Condition 2: This candidate is not present 462

in bucket_access. If this candidate does not appear in 463

bucket_access, it indicates that it does not need additional 464

access, as it has already been captured by another access. 465

Swapping it may introduce unnecessary access, resulting in a 466

negative impact on performance. 467

CHU et al.: AttentionRC: A NOVEL APPROACH TO IMPROVE LOCALITY SENSITIVE HASHING ATTENTION 7

Fig. 8. Process of swap strategy.

Invalid Swap Condition 3: The candidate is present in468

bucket_access, but the corresponding access has captured469

two or more tokens from the same bucket. If this candidate470

exists in bucket_access, but the corresponding access includes471

two or more tokens from the same bucket, swapping is not472

allowed. This is because swapping in this scenario could lead473

not only to Invalid Swap Condition 2 but also potentially474

impact subsequent tokens from the same bucket accessed475

later, resulting in a degradation of access performance for that476

bucket.477

After the algorithm determines the swap_candidate. In478

lines 13 to 18, if there are two or more candidates in479

swap_candidate, a final arbitration is conducted to decide480

which candidate to swap based on the associated benefits.481

In line 20, the algorithm decides which tokens to swap, and482

the actual exchange operation is performed. In line 21, after483

the exchange, Algorithm 1 is executed once again to obtain484

the new and further improved new_bucket_access, completing485

the entire algorithm.486

The concept of a swap strategy is further illustrated in487

Fig. 8, which depicts an 8 × 8 block mat, same as in488

Fig. 7, representing a total of 64 tokens. When seeking further489

improvement through swapping, the initialization involves490

running Algorithm 1 to obtain the bucket access list for the491

given block. Subsequently, the first step in Fig. 8 corresponds492

to lines 4 to 6 of Algorithm 2, the algorithm calculates access493

efficiency to identify buckets that require further improvement.494

In the example, buckets 36 and 59 are identified. The second495

step corresponds to line 7 of Algorithm 2, where the algorithm496

identifies tokens in both the row and column directions that497

can be swapped. The third step corresponds to lines 8 to 12 of498

Algorithm 2, where the algorithm filters out tokens that cannot499

be swapped based on the invalid swap conditions, resulting in500

the swap candidate list. Finally, the fourth step corresponds to501

lines 13 to 18 of Algorithm 2. For bucket 36 in the example,502

the swap candidate list contains tokens that belong to buckets503

55 and 56. However, considering that swapping the latter might504

also improve the access efficiency of bucket 56, the decision505

is made to swap the token that belongs to 56. In contrast, for506

bucket 59 in the example, as there is only one candidate in the507

swap candidate list, no further decision making is necessary.508

D. Transpose-Free Attention509

For Challenge 3, AttentionRC aims to completely remove510

transpose operations and accelerate the matrix multiplication.511

Algorithm 3 Attention Operation in AttentionRC
Input: bucket_id
Input: Q, K, V ∈ R

seq_length×d ← tokens in bucket_id
Input: d � Embedding dimension
Output: A � Attention matrix

1: procedure BUCKET_ATTENTION(bucket_id, Q, K, V, d)
2: QK ← Q × K � Directly perform dot-product
3: S_QK ← QK × 1√

d
4: softmax_QK ← S_OK.softmax()
5: A ← softmax_QK × V � Column access V matrix
6: end procedure

Fig. 9. Transpose-free attention.

After the bucket access pattern is identified, AttentionRC 512

performs attention among tokens hashed into the same bucket. 513

One operation in attention is the matrix multiplication, and 514

we believe that RC-NVM can be beneficial in this process. 515

Aside from the previously mentioned advantages, RC-NVM 516

is particularly suited for attention because it often involves 517

computing the product of a query matrix Q and a transposed 518

key matrix K to obtain attention scores. Both the matrix mul- 519

tiplication and transpose operations require column direction 520

memory access. 521

The transpose operation can be a bottleneck for either row- 522

major or column-major memory layouts, as it requires extra 523

memory access to swap the rows and columns. However, with 524

the dual-addressing feature of RC-NVM, we can avoid the 525

transpose operation and directly multiply Q and K using any 526

memory layout we prefer. Therefore, RC-NVM can not only 527

accelerate matrix multiplication but also reduce the memory 528

accesses required for the matrix transpose in attention, result- 529

ing in more efficient and effective attention in AttentionRC 530

than in LSH attention. 531

As shown in Algorithm 3, the input of this algorithm con- 532

sists of three parts. First, we have bucket_id, which indicates 533

the specific bucket where the attention operation is being 534

performed. Second, we have the matrices query Q, key K, 535

and value V . The size of these matrices is determined by 536

the number of tokens included in the bucket multiplied by 537

the dimension of each token. Finally, we have the dimension 538

of embedding in bucket_id. In line 2, the algorithm directly 539

performs dot-product between Q and K without the need for 540

a transpose operation on K due to the dual-addressing feature 541

of RC-NVM. In lines 3 and 4, the algorithm performs the 542

scaled and softmax operation in the same way as the original 543

attention. In line 5, the algorithm performs the final step of the 544

attention operation, which involves multiplying the softmax of 545

QK with V . With the column access capability of RC-NVM, 546

we can utilize the column access in the V matrix, resulting in 547

reduced matrix multiplication time, compared to the traditional 548

memory. Finally, the algorithm returns the attention matrix A. 549

As shown in Fig. 9, the upper part is the original atten- 550

tion and the lower part is the transpose-free attention. We 551

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

can observe two key distinctions in the modified attention552

mechanism compared to the original one. The initial attention553

mechanism necessitates a transpose operation for the key554

matrix, as the query and key matrices share the same dimen-555

sions. In contrast, by leveraging the advantages of RC-NVM,556

we can circumvent the requirement for the transpose operation557

and directly perform the matrix multiplication. Furthermore,558

the inherent suitability of RC-NVM for the matrix multipli-559

cation amplifies this enhancement, enabling us to exploit the560

strengths of RC-NVM’s optimized characteristics.561

Moreover, our strategy enables us to optimize the storage562

and retrieval of the value matrix through the column access563

methodology, thereby contributing to further acceleration.564

Consequently, our approach not only streamlines the tradi-565

tional attention mechanism but also leverages the distinctive566

attributes of RC-NVM to enhance the overall efficiency of the567

process. This innovative fusion of the attention mechanism568

and RC-NVM optimization holds the potential to significantly569

amplify the performance of the entire model. This is particu-570

larly valuable in scenarios involving large-scale computations571

and memory-intensive operations.572

E. AttentionRC Discussion573

In this section, we discuss the overhead associated with574

AttentionRC. While RC-NVM can enhance LSH attention575

performance and streamline its steps, some overhead may576

arise. By removing sorting steps, we propose an RC-aware577

bucket access strategy and a swap strategy to minimize578

the bucket access time, which requires additional time and579

memory for executing Algorithms 1 and 2, unlike LSH atten-580

tion. We conducted experiments to determine if this additional581

time is tolerable. The results will be presented in the next582

section.583

IV. EXPERIMENTAL EVALUATION584

In this section, we first discuss the experimental setup,585

including the experimental procedures and datasets used in our586

experiments. Then, we will evaluate the experimental results.587

A. Experimental Setup588

1) Experimental Procedure: Our experimental procedure589

consists of three parts: 1) LSH attention; 2) memory trace590

generation; and 3) experimental result evaluation. First, we591

apply the LSH attention algorithm from Reformer, which is592

implemented by PyTorch [20] in our experiment. We use593

eight hash rounds. This choice is based on findings from the594

Reformer model, which indicate that the accuracy becomes595

perfect when evaluated with eight hash rounds. Next, we use596

a custom simulator written in Python to generate memory597

trace files for the entire execution process. This simulator is598

capable of simulating the LSH attention computation with or599

without the support of dual-addressing ability from RC-NVM.600

Table III demonstrates the row-/column-oriented address map-601

pings in RC-NVM. The only difference between these two602

access patterns is the order of row and column bits in the 32-bit603

address. Our custom simulator breaks down LSH attention604

computation into three stages: 1) embedding access; 2) LSH605

TABLE III
ADDRESS MAPPINGS FOR ROW-ORIENTED AND

COLUMN-ORIENTED ACCESSES

TABLE IV
CONFIGURATION OF SIMULATED SYSTEMS

execution; and 3) attention computation. For each stage, if 606

there is a memory access, a memory trace is generated per the 607

address mappings in Table III. In AttentionRC, we consider 608

four types of memory access due to dual addressing: 1) row 609

read; 2) row write; 3) column read; and 4) column write. 610

In contrast, the original LSH attention model includes only 611

row read and row write. These traces are recorded in a trace 612

file, sequentially documenting all the memory traces produced 613

during the simulation. Finally, we evaluate the performance 614

by feeding the trace files to the RC-NVM simulator to obtain 615

the overall execution time. 616

2) Datasets: We conduct our experiments on five 617

datasets: 1) enwiki8 [21]; 2) BookCorpus [22]; 3) Internet 618

movie database (IMDB) [23]; 4) GutenBerg [24]; and 619

5) OpenWebText [25]. enwiki8 [21] dataset consists of the 620

first 100 million bytes of text from the english wikipedia. 621

BookCorpus [22] is a large dataset consisting of over 622

11 000 books from a wide range of genres and topics. 623

IMDB [23] is a collection of movie reviews from the IMDB, 624

containing labeled sentiment (positive/negative) for each 625

review. GutenBerg contains a large collection of books, 626

including classic literature, historical texts, and other public 627

domain works. OpenWebText [25] is a dataset created by 628

scraping and preprocessing publicly available Web text, 629

resulting in a large corpus of diverse Web content. To 630

evaluate the performance of AttentionRC, we feed these five 631

datasets into LSH attention with varying sequence lengths and 632

dimensions as input. By varying these parameters, we aim to 633

investigate the effectiveness and scalability of our proposed 634

strategy on handling different input sizes. 635

3) System Configuration: The system configuration is 636

listed in Table IV. In the simulated DRAM, we have two 637

channels, four ranks per channel, and eight banks per rank. 638

As for the simulated RC-NVM system, RC-NVM has two 639

channels, four ranks per channel, eight banks per rank, and 640

eight subarrays per bank. Each subarray comprises 1024 641

rows and 1024 columns, where RC-NVM supports both row- 642

oriented and column-oriented memory accesses. The total 643

capacity of the memory system is 4 GB and the well-known 644

FR-FCFS [26] is used as a basic scheduling policy. 645

CHU et al.: AttentionRC: A NOVEL APPROACH TO IMPROVE LOCALITY SENSITIVE HASHING ATTENTION 9

Fig. 10. Cycle number comparison of accessing Embeddings w/ and w/o
LSH-friendly data mapping strategy. (a) Embedding write. (b) Embedding
read.

4) RC-NVM Latency Overhead: Extra peripheral circuitry646

needed in RC-NVM also induces latency overhead mainly647

from wire routing. Since more multiplexing transistors are648

added to the critical path, the read and write latency increases.649

The latency overhead of multiplexers, however, is trivial650

because the majority of access latency comes from the cell651

access and wiring delay. To quantify the latency overhead,652

RC-NVM [12] runs SPICE simulations, and the latency over-653

head for RC-NVM is moderate. When the number of WL/BL654

is 512 and 1024, the timing overhead is just about 15% and655

10%, respectively.656

B. Experimental Results657

In this section, we use the five investigated datasets and658

apply LSH attention with varying sequence lengths and dimen-659

sions to evaluate performance improvement. The section is660

divided into four parts.661

1) We discuss the improvement offered by the proposed662

LSH-friendly data mapping strategy in RC-NVM.663

2) We analyze the time spent on preprocessing before664

attention computation and the overhead introduced by665

our strategy.666

3) We evaluate the impact of the proposed RC-aware bucket667

access strategy.668

4) We will analyze the amount of memory access time in669

attention operation that can be saved by the proposed670

AttentionRC, compared to LSH attention.671

1) LSH-Friendly Data Mapping Strategy: Fig. 10 com-672

pares the number of cycles of data accesses on DRAM and673

on RC-NVM with/without our proposed LSH-friendly data674

mapping strategy by using a sequence length of 4096 with675

input embeddings of 64, 128, 256, 512, and 1024 dimensions.676

Specifically, Fig. 10 compares the read and write performance677

of memory accesses between our proposed strategy and a con-678

ventional strategy that does not consider the SALP properties.679

Our proposed strategy disperses the token embeddings680

into different subarrays based on their dimensions, while681

the conventional strategy stores all the token embeddings in682

the same subarray. Our results show that as the dimension683

increases, the performance improvement in our proposed684

mapping strategy becomes more significant, with a maximum685

write improvement of up to 60.9% and a read improvement686

of 4.9%. This is due to the increased parallelism in SALP687

as the dimension increases, resulting in fewer cycles needed.688

TABLE V
BANK ENERGY CONSUMPTION COMPARISON OF ACCESSING

EMBEDDINGS W/ AND W/O LSH-FRIENDLY DATA MAPPING STRATEGY

These findings indicate that our proposed LSH-friendly data 689

mapping strategy is well-suited for NLP tasks, where higher 690

dimensions represent more features per token, leading to better 691

model accuracy. 692

The improvement in write operations is more significant 693

than in read operations due to the characteristics of NVM [27]. 694

Writing to NVM cells involves applying a voltage or current 695

to modify the cell state, incurring overheads like program- 696

ming time, making write operations slower. In contrast, read 697

operations are faster and simpler, involving only sensing the 698

charge or resistance levels without modifying the cell states. 699

This discrepancy in performance improvements when using 700

SALP in our strategy stems from the slower nature of write 701

operations compared to the relatively faster read operations. 702

As shown in Table V, our LSH-friendly data mapping 703

strategy maps embedding data to subarrays across various 704

banks. In our experiments with a sequence length of 4096 705

and dimensions of 64, 128, 256, 512, and 1024, we observe a 706

subtle improvement in energy consumption as the dimension 707

increases. The energy consumption is primarily determined by 708

execution time and memory accesses. Our strategy leverages 709

SALP, which parallelizes access to multiple subarrays, reduc- 710

ing memory access and execution time. Higher dimensions 711

increase parallelism, further lowering energy consumption. 712

This experiment shows our approach reduces data access time 713

and enhances energy efficiency. 714

2) Sort-Free RC-Aware Bucket Access: Fig. 11 compares 715

the cycle numbers with and without sort-free RC-aware bucket 716

access under different hash rounds. Five datasets with a 717

sequence length of 4096 and 64 dimensions are used. The 718

number of hash rounds varies between 1, 2, 4, 8, and 16. It can 719

be seen that the cycle number reduction ratio ranges between 720

84.3% and 93.7%. Even with an increased number of hash 721

rounds, the proposed sort-free RC-aware bucket access still 722

has a high reduction ratio. In our pursuit to eliminate sorting 723

time entirely, the experiments have revealed that, despite the 724

removal of sorting steps, there remains a need for additional 725

time within AttentionRC. This requirement arises from the 726

adoption of the proposed strategy, which seeks to reduce 727

access time for each bucket. Consequently, although certain 728

algorithms deemed unnecessary in LSH attention are omitted, 729

they become indispensable in the context of AttentionRC. 730

Fig. 12 compares the cycle number in the five datasets 731

with and without the sort-free RC-aware bucket access under 732

different sequence lengths. Specifically, it compares the time 733

required to extract all tokens from all buckets using sequence 734

lengths of 4096, 8192, 16 384, 32 768, and 65 536 with 64 735

dimensions when tokens are hashed to 64 buckets. We choose 736

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 11. Cycle Comparison w/ and w/o Sort-free RC-aware Bucket access strategy under different hash rounds. (a) Enwiki8. (b) BookCorpus. (c) IMDB.
(d) GutenBerg. (e) OpenWebText.

Fig. 12. Cycle Comparison w/ and w/o Sort-free RC-aware bucket access strategy under different sequence lengths. (a) Enwiki8. (b) BookCorpus. (c) IMDB.
(d) GutenBerg. (e) OpenWebText.

(a) (b) (c) (d) (e)

Fig. 13. Cycle Comparison w/ and w/o swap strategy under different sequence lengths. (a) Enwiki8. (b) BookCorpus. (c) IMDB. (d) GutenBerg.
(e) OpenWebText.

to alter the sequence length rather than the dimension because737

LSH attention was originally proposed to handle larger738

sequence lengths with nonquadratic complexity. Therefore, it739

is more meaningful to perform comparisons with different740

sequence lengths. It can be seen that our sort-free strategy741

achieves significant cycle number reductions up to around 33%742

for different sequence lengths.743

3) Further Improvement of Bucket Access: Fig. 13 con-744

ducts with sequence lengths of 32 768, 65 536, and 131 072.745

In the context of setting the sequence length, an additional746

sequence length 131 072 was introduced. This decision was747

motivated by the observed trend in modern language models,748

where the sequence length is progressively increasing.749

As the sequence length increases, the reduction in access750

count becomes more pronounced. This phenomenon can be751

attributed to the approach taken in the swap strategy, where the752

bucket table is divided into individual blocks of 8 × 8 matri-753

ces for improvement through token swapping. Consequently,754

as the sequence length increases, resulting in more blocks755

being separated and more token exchanges, the magnitude of756

improvement also increases accordingly.757

Fig. 13 not only compares the results with the previous758

outcomes but also includes the improvements achieved through759

our applied swap strategy. The effectiveness of our swap760

strategy becomes more pronounced as the sequence length 761

grows. Specifically, for the sequence length of 131 072, the 762

application of the swap strategy results in an approximate 763

enhancement of 5%. The reduction in cycle numbers exhibits 764

a more significant impact compared to the scenario with a 765

sequence length of 65 536. This observation indicates the 766

suitability of our approach for contemporary language models 767

with larger sequence lengths. 768

4) Overhead of Further Improvement: Fig. 14 illustrates 769

the additional time required for improving the bucket access 770

with the swap strategy at different sequence lengths. The x- 771

axis represents the five datasets, while the y-axis denotes the 772

cycle numbers expended. The observed increase in overhead 773

after applying the swap strategy is due to the extra execution 774

of Algorithm 2. However, the notable point is that even with 775

this additional time, the overhead remains significantly smaller 776

than the original sorting time. Fig. 14 clearly demonstrates 777

that our approach leads to a considerable enhancement in 778

bucket access efficiency, incurring only a modest increase 779

in required time. Importantly, this overhead is far less than 780

the time consumed by the sorting operation, reinforcing the 781

effectiveness of our strategy. 782

5) Transpose-Free Attention: Table VI compares the num- 783

ber of cycles required in the five datasets with and without 784

CHU et al.: AttentionRC: A NOVEL APPROACH TO IMPROVE LOCALITY SENSITIVE HASHING ATTENTION 11

(a) (b) (c) (d) (e)

Fig. 14. Cycle Comparison of Overhead w/ and w/o swap strategy under different sequence lengths. (a) 4096. (b) 8192. (c) 16 384. (d) 32 768. (e) 65 536.

TABLE VI
CYCLE COMPARISON BETWEEN TRANSPOSE-FREE ATTENTION

AND THE ORIGINAL ATTENTION

TABLE VII
TOTAL CYCLE COMPARISON

transpose-free attention for performing attention on 64 buckets785

with sequence lengths of 4096, 8192, 16 384, 32 768, and786

65 536.787

The results indicate that we can achieve up to a 51%788

reduction in attention time with varying sequence lengths.789

This is primarily due to two key factors. First, as outlined790

in Section III-A, the dual-addressing capability of RC-NVM791

eliminates the need for transpose operations during the atten-792

tion process. In contrast, traditional memory would require793

numerous transpose operations proportional to the number794

of buckets, especially as sequence length—and consequently,795

the number of tokens per bucket—increases. Second, this796

dual-addressing ability also enhances the matrix multiplica-797

tion efficiency, particularly for operations involving extensive798

column access, further improving performance. These factors799

enable AttentionRC to outperform the original LSH attention800

by reducing the time needed for attention operations.801

6) AttentionRC on Transformer-Based Models: As shown802

in Table VII, we compute cycles between the original LSH803

attention and AttentionRC within the five datasets, which804

involves a sequence length of 4096, 64 dimensions, and805

eight hash rounds. Reformer [10] was introduced to reduce the806

computational burden of the Transformer using LSH attention.807

According to Reformer, with eight hash rounds, it achieves808

about 40% less computation time for attention compared to the809

standard Transformer. Our experiments show that AttentionRC810

further reduces computation time by 50% compared to LSH811

attention. As attention mechanisms account for much of 812

the computation time in Transformer models during both 813

training and inference. By optimizing the attention mechanism, 814

AttentionRC significantly enhances Transformer performance 815

and is applicable to other Transformer-based models. This 816

improvement underscores the potential of AttentionRC to 817

set a new standard for efficient and scalable Transformer 818

architectures. 819

V. CONCLUSION 820

We present a novel approach called AttentionRC to improve 821

various aspects of LSH attention, including an LSH-friendly 822

data mapping strategy, bucket access, and matrix multiplica- 823

tion. First, our LSH-friendly data mapping strategy leverages 824

SALP for parallel data read/write, significantly reducing 825

memory operation time. This strategy extends beyond LSH 826

attention and is applicable to other models involving embed- 827

dings and optimizing memory access across various scenarios. 828

Second, we propose an RC-aware bucket access strategy 829

combined with a swap strategy that uses the dual-addressing 830

feature of RC-NVM for faster token access in the same bucket 831

than conventional memory. This strategy benefits situations 832

where the data is preprocessed through hashing or bucketing, 833

showcasing its versatility beyond LSH-based computations. 834

Third, we propose transpose-free attention to eliminate trans- 835

pose operations in attention computation, achieving substantial 836

efficiency improvement in the matrix multiplication. This 837

method is well-suited for integration into a broad range 838

of models involving attention computations In conclusion, 839

AttentionRC shows promising results in enhancing LSH atten- 840

tion performance and demonstrates the potential advantages 841

of utilizing RC-NVM across various models. However, our 842

approach is currently evaluated in a simulated environment, 843

as RC-NVM technology is still in the simulation phase. 844

Real-world applications may present challenges and costs. 845

Future research will explore the feasibility and complexity 846

of deploying our approach in real systems, addressing issues, 847

such as manufacturing costs, hardware design complexity, 848

temperature stability, and durability. This aims to facilitate the 849

practical adoption of our approach. 850

REFERENCES 851

[1] A. Vaswani et al., “Attention is all you need,” in Proc. 31st Conf. Neural 852

Inf. Process. Syst., 2017, pp. 1–11. 853

[2] A. Galassi, M. Lippi, and P. Torroni, “Attention in natural language 854

processing,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 10, 855

pp. 4291–4308, Oct. 2021. 856

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

[3] K. Han et al., “A survey on vision transformer,” IEEE Trans. Pattern857

Anal. Mach. Intell., vol. 45, no. 1, pp. 87–110, Jan. 2023.858

[4] Z. Dai et al., “Transformer-XL: Attentive language models beyond a859

fixed-length context,” 2019, arXiv:1901.02860.860

[5] R. Child et al., “Generating long sequences with sparse transformers,”861

2019, arXiv:1904.10509.862

[6] J. Qiu et al., “Blockwise self-attention for long document understand-863

ing,” 2019, arXiv:1911.02972.864

[7] S. Wang et al., “Linformer: Self-attention with linear complexity,” 2020,865

arXiv:2006.04768.866

[8] M. Zaheer et al., “Big bird: Transformers for longer sequences,” 2021,867

arXiv:2007.14062.868

[9] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-869

document transformer,” 2020, arXiv:2004.05150.870

[10] N. Kitaev et al., “Reformer: The efficient transformer,” 2020,871

arXiv:2001.04451.872

[11] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, “The reversible873

residual network: Backpropagation without storing activations,” 2017,874

arXiv:1707.04585.875

[12] S. Li et al., “RC-NVM: Dual-addressing non-volatile memory architec-876

ture supporting both row and column memory accesses,” IEEE Trans.877

Comput., vol. 68, no. 2, pp. 239–254, Feb. 2019.878

[13] W. Cheng et al., “GraphRC: Accelerating graph processing on dual-879

addressing memory with vertex merging,” in Proc. ICCAD, 2022,880

pp. 1–9.881

[14] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for exploiting882

subarray-level parallelism (SALP) in DRAM,” in Proc. 39th Annu. Int.883

Symp. Comput. Archit. (ISCA), 2012, pp. 368–379.884

[15] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt,885

“Practical and optimal LSH for angular distance,” in Proc. 29th Annu.886

Conf. Neural Inf. Process. Syst., 2015, pp. 1–21.887

[16] A. Arutiunia et al., “Reproducibility challenge: Reformer,” in Proc. 33rd888

Conf. Neural Inf. Process. Syst. (NeurIPS), 2021, pp. 1–10.889

[17] Z. Wei et al., “Highly reliable TaOx ReRAM and direct evidence 890

of redox reaction mechanism,” in Proc. IEEE Int. Electron Devices 891

Meeting, 2008, pp. 1–4. 892

[18] H.-Y. Cheng et al., “Future computing platform design: A cross-layer 893

design approach,” in Proc. Design, Automa. Test Europe Conf. Exhib. 894

(DATE), 2021, pp. 312–317. 895

[19] Y.-W. Kang, C.-F. Wu, Y.-H. Chang, T.-W. Kuo, and S.-Y. Ho, 896

“On minimizing analog variation errors to resolve the scalability 897

issue of ReRAM-based crossbar accelerators,” IEEE Trans. Comput.- 898

Aided Design Integr. Circuits Syst., vol. 39, no. 11, pp. 3856–3867, 899

Nov. 2020. 900

[20] A. Paszk et al., “PyTorch: An imperative style, high-performance deep 901

learning library,” in Proc. 33rd Adv. Neural Inf. Process. Syst., vol. 32, 902

2019, pp. 8026–8037. 903

[21] M. Mahoney. “Large text compression benchmark,” 2011. [Online]. 904

Available: https://www.mattmahoney.net/dc/text.html 905

[22] Y. Zhu et al., “Aligning books and movies: Towards story-like visual 906

explanations by watching movies and reading books,” in Proc. IEEE Int. 907

Conf. Comput. Vis. (ICCV), 2015, pp. 19–27. 908

[23] A. L. Maas et al., “Learning word vectors for sentiment analysis,” 909

in Proc. 49th Annu. Meeting Assoc. Comput. Linguist., Hum. Lang. 910

Technol., 2011, pp. 142–150. 911

[24] M. Gerlach and F. Font-Clos, “A standardized project Gutenberg corpus 912

for statistical analysis of natural language and quantitative linguistics,” 913

2018, arXiv:1812.08092. 914

[25] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, 915

“Language models are unsupervised multitask learners,” OpenAI, vol. 1, 916

no. 8, pp. 1–24, 2018. 917

[26] S. Rixner, “Memory controller optimizations for web servers,” in Proc. 918

37th Int. Symp. Microarchit. (MICRO), 2004, pp. 355–366. 919

[27] A. Chen, “A review of emerging non-volatile memory (NVM) tech- 920

nologies and applications,” Solid-State Electron., vol. 125, pp. 25–38, 921

Nov. 2016. 922

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

