
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

EQ-ViT: Algorithm-Hardware Co-Design for
End-to-End Acceleration of Real-Time Vision

Transformer Inference on Versal ACAP Architecture
Peiyan Dong , Graduate Student Member, IEEE, Jinming Zhuang , Graduate Student Member, IEEE,

Zhuoping Yang , Shixin Ji , Yanyu Li , Dongkuan Xu , Member, IEEE, Heng Huang ,
Jingtong Hu , Senior Member, IEEE, Alex K. Jones , Fellow, IEEE, Yiyu Shi , Senior Member, IEEE,

Yanzhi Wang , Senior Member, IEEE, and Peipei Zhou , Senior Member, IEEE

Abstract—While vision transformers (ViTs) have shown con-1

sistent progress in computer vision, deploying them for real-time2

decision-making scenarios (< 1 ms) is challenging. Current3

computing platforms like CPUs, GPUs, or FPGA-based solutions4

struggle to meet this deterministic low-latency real-time require-5

ment, even with quantized ViT models. Some approaches use6

pruning or sparsity to reduce the model size and latency, but7

this often results in accuracy loss. To address the aforementioned8

constraints, in this work, we propose EQ-ViT, an end-to-end9

acceleration framework with the novel algorithm and architec-10

ture co-design features to enable the real-time ViT acceleration11

on the AMD Versal adaptive compute acceleration platform12

(ACAP). The contributions are four-fold. First, we perform in-13

depth kernel-level performance profiling and analysis and explain14

the bottlenecks for the existing acceleration solutions on GPU,15

FPGA, and ACAP. Second, on the hardware level, we introduce a16

new spatial and heterogeneous accelerator architecture, the EQ-17

ViT architecture. This architecture leverages the heterogeneous18

features of ACAP, where both FPGA and artificial intelligence19

engines (AIEs) coexist on the same system-on-chip (SoC). Third,20

Manuscript received 9 August 2024; accepted 10 August 2024. This work
was supported in part by the NSF under Award 2213701, Award 2217003,
Award 2133267, Award 2122320, Award 2324864, Award 2324937, and
Award 2328972; and in part by the NIH under Award R01EB033387. This
article was presented at the International Conference on Hardware/Software
Codesign and System Synthesis (CODES + ISSS) 2024 and appeared as
part of the ESWEEK-TCAD Special Issue. This article was recommended by
Associate Editor S. Dailey. (Peiyan Dong and Jinming Zhuang are co-first
authors.) (Corresponding author: Peipei Zhou.)

Peiyan Dong, Yanyu Li, and Yanzhi Wang are with the Department of
Electrical and Computer Engineering, Northeastern University, Boston, MA
02115 USA (e-mail: dong.pe@northeastern.edu; li.yanyu@northeastern.edu;
yanz.wang@northeastern.edu).

Jinming Zhuang, Zhuoping Yang, Shixin Ji, and Peipei Zhou are
with the School of Engineering, Brown University, Providence, RI 02912
USA (e-mail: jinming_zhuang@brown.edu; zhuoping_yang@brown.edu;
shixin_ji@brown.edu; peipei_zhou@brown.edu).

Dongkuan Xu is with the Department of Computer Science, North Carolina
State University, Raleigh, NC 27695 USA (e-mail: dxu27@ncsu.edu).

Heng Huang is with the Department of Computer Science, University of
Maryland, College Park, MD 20742 USA (e-mail: heng@umd.edu).

Jingtong Hu is with the Department of Electrical and Computer
Engineering, University of Pittsburgh, Pittsburgh, PA 15261 USA (e-mail:
jthu@pitt.edu).

Alex K. Jones is with the Department of Electrical Engineering and
Computer Science, Syracuse University, Syracuse, NY 13244 USA (e-mail:
akj@syr.edu).

Yiyu Shi is with the Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN 46556 USA (e-mail:
yshi4@nd.edu).

Digital Object Identifier 10.1109/TCAD.2024.3443692

On the algorithm level, we create a comprehensive quantization- 21

aware training strategy, the EQ-ViT algorithm. This strategy 22

concurrently quantizes both the weights and activations into 8-bit 23

integers, aiming to improve the accuracy rather than compromise 24

it during quantization. Notably, the method also quantizes nonlin- 25

ear functions for efficient hardware implementation. Fourth, we 26

design the EQ-ViT automation framework to implement the EQ- 27

ViT architecture for four different ViT applications on the AMD 28

Versal ACAP VCK190 board, achieving accuracy improvement 29

with 2.4%, and average speedups of 315.0, 3.39, 3.38, 14.92, 59.5, 30

and 13.1× over computing solutions of Intel Xeon 8375C vCPU, 31

Nvidia A10G, A100, Jetson AGX Orin GPUs, AMD ZCU102, and 32

U250 FPGAs. The energy efficiency gains are 62.2, 15.33, 12.82, 33

13.31, 13.5, and 21.9×. 34

Index Terms—Design for space exploration, embedded 35

systems, FPGA, hardware/software co-design, high-level synthe- 36

sis, modeling, performance optimization, reconfigurable logic. 37

I. INTRODUCTION 38

V ISION transformers (ViTs) [1], [2], [3] have shown 39

remarkable versatility in a broad range of application 40

domains, including computer vision (e.g., image classifica- 41

tion [1], [3], object detection [4], [5], image processing [6], 42

and video understanding [7]), and in complex scenarios that 43

involve the multimodal data. Many networks [1], [8], [9], 44

[10] use ViTs as the backbone [8], [9] and show superior 45

transferability to various downstream tasks with minor fine 46

tuning. 47

Low-Latency Real-Time Application Scenarios: Adopting 48

ViT inference as a key chain for low-latency real-time decision 49

making usually requires stringent latency requirements. For 50

example, in autonomous driving scenarios with a 120 km/h 51

speed, 1 ms latency corresponds to 3 cm between a vehicle 52

and a static object or 6 cm between the two moving vehi- 53

cles [11]. In such a life-critical system, deterministic low 54

latency (<1 ms) is the first-class design citizen. European 55

Organization for Nuclear Research (CERN) collaborates with 56

autonomous driving software company Zenseact to apply 57

CERNâTMs decision-making algorithm acceleration on FPGA 58

at microsecond level to help avoid accidents in self-driving 59

cars [12]. Such latency (<1 ms) is required in broader 60

scenarios, including the edge and cloud applications. On the 61

edge, for example, radio access networks (RANs) [13] support 62

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5287-5149
https://orcid.org/0000-0003-3659-339X
https://orcid.org/0000-0002-7655-4080
https://orcid.org/0009-0003-3429-4692
https://orcid.org/0000-0003-1240-4785
https://orcid.org/0000-0002-1456-9658
https://orcid.org/0000-0002-3483-8333
https://orcid.org/0000-0003-4029-4034
https://orcid.org/0000-0001-7498-0206
https://orcid.org/0000-0002-6788-9823
https://orcid.org/0000-0002-3024-7990
https://orcid.org/0000-0002-0493-1844

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 1. E2E latency comparison for DeiT-T (FP32, INT8, batch size = 6) by
using HeatViT on U250 FPGA, TensorRT on A10G GPU, CHARM on Versal
ACAP VCK190, and EQ-ViT (ours) on ACAP VCK190.

interactive streaming media [14], augmented reality/virtual63

reality (AR/VR) [15], [16], robot systems control [17], online64

error detection in the manufacturing industry [18], and indus-65

trial IoT 4.0 [19]. RAN stack operates in low-latency at a66

transmission time interval of 1 ms or less (based on the67

5G standards). Thus, it has to make control decisions at68

each millisecond [13]. In AR/VR, the latency requirement is69

<1 ms as the visual reaction time for the human expected70

events is only around 1 ms [20]. In the cloud, to guarantee71

the quality of service, deep learning-based inference for the72

cloud services in Microsoft Bing Search [21], Microsoft73

Azure Cloud [22], [23], and Google Cloud [24], [25], [26],74

all have a single-digit millisecond latency budget to process.75

Powered by the next-generation cellular networks with 5G or76

6G standard [13], optical interconnection network [27], and77

optical chiplet [28], [29] technology, the latency requirement78

will be more stringent. Acceleration solutions that meet79

certain end-to-end (E2E) inference latency requirements and80

optimize the overall system energy efficiency, i.e., performance81

per watt are desired.82

However, the existing works fail to fulfill such stringent83

low-latency requirements, hindering the ViT deployment in84

low-latency application scenarios. We measure the E2E low85

batch inference latency for the representative ViT model86

DeiT-T [2] using the state-of-the-art (SOTA) acceleration87

frameworks on the FPGA and GPU, including HeatViT [30] on88

AMD U250 FPGA, and TensorRT [31] on Nvidia A10G GPU.89

As shown in Fig. 1, in terms of E2E inference latency under90

single-precision floating-point (FP32) precision, U250 FPGA91

takes 50.3 ms, which far exceeds the low-latency real-time92

requirement, e.g., <1 ms, while A10G GPU takes 2.21 ms. We93

can achieve a lower inference latency by quantization [32] and94

deploying the 8-bit integer (INT8) inference on U250 FPGA95

and A10G GPU. Then, the inference latency reduces to 7.3 ms96

on U250 FPGA and 1.78 ms on A10G GPU.97

Based on the requirements of deterministic E2E inference98

latency and the initial profiling results of the existing solutions,99

several research questions arise as follows.100

1) What are the limitations of the existing acceleration101

platforms in satisfying the low-latency demands?102

2) With quantization optimization, do we have a better 103

computing solution to achieve lower latency than FPGAs 104

and GPUs?1
105

3) If so, how to achieve that? 106

4) Can we also improve the accuracy with integer quanti- 107

zation? 108

Our answer to the second question is “Yes.” We propose 109

the EQ-ViT architecture and our implemented EQ-ViT design 110

on the AMD Versal adaptive compute acceleration platform 111

(ACAP) VCK190 achieves a latency as low as 0.56 ms, 112

which has 3.2× latency improvement over A10G GPU and 113

13.1× over U250 FPGA. However, achieving latency as low 114

as 0.56 ms on the heterogeneous Versal ACAP system-on-chip 115

(SoC) involves a lot of design efforts. To ease the programming 116

efforts, we propose the EQ-ViT design automation framework 117

to perform the design space exploration and automatic code 118

generation to facilitate the implementation. In addition, we 119

propose the EQ-ViT algorithm to improve the inference 120

accuracy after the INT8 quantization and EQ-ViT algorithm- 121

hardware co-design to meet the hardware constraints without 122

hurting the algorithm accuracy. Our contributions are summa- 123

rized below. 124

1) Detailed Profiling and Bottleneck Analysis: To under- 125

stand the performance constraints of the existing 126

solutions, we perform in-depth kernel-level performance 127

profiling of ViTs on FPGA, GPU, and ACAP in 128

Section II. Based on the bottlenecks for the existing 129

solutions, we propose our solution principles. 130

2) EQ-ViT Accelerator and Mapping: We propose a novel 131

spatial and heterogeneous accelerator template and pro- 132

gramming mapping solution to take advantage of the 133

ACAP heterogeneous features: the coexistence of FPGA 134

and artificial intelligence engine (AIE) vector cores on 135

the same SoC in Section IV. Our accelerator architecture 136

features multiple spatial accelerators to improve the AIE 137

core utilization and fine-grained pipeline to overlap the 138

execution time of the accelerators that run on the FPGA 139

and AIEs of the ACAP. 140

3) EQ-ViT Algorithm and Algorithm-Hardware Co-Design: 141

On the algorithm level, we develop a full quantization- 142

aware training (QAT) strategy, the EQ-ViT algorithm, 143

to quantize both the weights and activations into 8-bit 144

integers in Section V. This method improves accuracy 145

on all the four different ViT models. More importantly, 146

our proposed EQ-ViT algorithm-hardware co-design 147

quantizes the nonlinear functions with the algorithm 148

optimization and realizes the efficient hardware imple- 149

mentation for the Softmax and GeLU. 150

4) EQ-ViT Automation and System Implementation: We 151

design EQ-ViT automation framework to implement the 152

EQ-ViT architecture for the four different ViT models 153

on the AMD Versal ACAP VCK190 board. Experiments 154

1Note that, <1 ms latency requirement in the example discussion is
for the illustration purposes. The latency requirements differ across various
application scenarios. We desire a solution that achieves lower latency than
GPUs and FPGAs under the same throughput requirement or achieves higher
throughput (or energy efficiency) than GPUs and FPGAs under the same
latency requirement. In this article, we discuss such a solution EQ-ViT.

DONG et al.: EQ-ViT: ALGORITHM-HARDWARE CO-DESIGN FOR END-TO-END ACCELERATION 3

TABLE I
HARDWARE SPECIFICATION COMPARISONS ON PEAK PERFORMANCE FOR

DATA TYPES FP32 AND INT8, ON-CHIP MEMORY SIZE, OFF-CHIP

BANDWIDTH (BW), TDP AMONG AMD FPGA U250, NVIDIA GPU
A10G, NVIDIA GPU JETSON AGX ORIN, AND AMD VERSAL

ACAP VCK190

in Section VI show EQ-ViT achieves accuracy improve-155

ment with 2.4% and average speedups of up to 315.0,156

3.39, 3.38, 14.93, 59.5, 13.1× over computing solutions157

of Intel Xeon 8375C vCPU, A10G, A100, Jetson AGX158

Orin GPUs, AMD ZCU102, and U250 FPGAs.159

5) EQ-ViT Generality Discussion: We discuss how EQ-160

ViT mapping framework can be applied to the other161

architecture, e.g., FPGA and GPU, to improve the162

performance in Section VII. We further discuss the163

microarchitecture insights, i.e., what role reconfigurabil-164

ity plays in the future heterogeneous architecture.165

II. BOTTLENECK ANALYSIS AND PROPOSED SOLUTION166

In this section, we first explain the performance bottlenecks167

of the current solutions on FPGA, GPU, and ACAP. Then, we168

discuss our proposed design principles.169

First, FPGAs are mainly constrained by the limited170

computation resources. Table I indicates that AMD FPGA171

U250 (Ultrascale+, 16 nm fabrication) has the lowest peak172

performance among the three hardware platforms, at 1.2173

TFLOPS for FP32 and 6.95 tops for INT8 under 250 MHz.174

When transitioning from FP32 to INT8, the E2E latency175

decreases from 50.3 to 7.3 ms. However, both the cases are176

computation-bound and latency can not be further reduced177

because of the limited computation resources from DSP/LUT178

in FPGA.179

GPUs have abundant computation cores, e.g., NVIDIA180

introduces Tensor cores since the volta architecture. Table I181

reveals that GPU A10G (the ampere architecture, 8 nm fab-182

rication) boasts the highest peak performance at 35 TFLOPS183

for FP32 and 140 TOPS for INT8. Tools like TensorRT184

simplify inference streamline through the methods, such as185

quantization. However, Fig. 1 shows that the E2E latency186

on GPU A10G is 2.21 ms for FP32 and 1.78 ms for187

INT8. This results in a modest 1.24× E2E improvement,188

significantly smaller than the theoretical peak computation189

performance improvement from FP32 to INT8 (4×, calculated190

as 140T/35T). To understand the performance bottleneck, we191

utilize NVIDIA Nsight System [33] and depict the kernel-192

level time breakdown for INT8 in Fig. 2. We identify the193

following performance constraints for using TensorRT on the194

GPU: ❶ Low Tensor Cores Utilization for INT8 MM Kernels:195

Although MM kernels constitute 34.4% of the total runtime,196

their effective throughput is 23 tops, representing only 16%197

utilization of the peak INT8 computation performance for198

(a)

(b)

Fig. 2. E2E inference latency comparison of using TensorRT on NVIDIA
A10G GPU and using EQ-ViT (ours) on AMD Versal VCK190 ACAP for the
representative ViT model DeiT-T with INT8 precision when batch size = 6.
(a) DeiT-T INT8 E2E latency on A10G is 1.78ms, (b) DeiT-T INT8 E2E
latency on EQ-ViT (Ours) is 0.56ms.

GPU A10G. ❷ TensorRT Adopts an Implicit Quantization 199

Policy, Which Leads to BMM Computing in FP32, Not in 200

INT8: Quantization enables MM and batch-MM (BMM) to 201

compute in INT8 for higher throughput. However, according 202

to the NVIDIA Nsight compute kernel-level profiling report, 203

BMM kernels compute in FP32. This is related to the implicit 204

quantization strategy applied by TensorRT [34], which will 205

quantize one kernel only when this kernel runs faster in INT8. 206

Otherwise, TensorRT will assign a higher precision to this 207

kernel, FP32, by default. Despite having only 1/6 of the total 208

operations of MM kernels, BMM kernels contribute to 21.7% 209

of the total runtime. We calculate their effective throughput 210

as 6.3 TFLOPS, which is 18% of the peak FP32 computation 211

performance for A10G. ❸ The Data Type Conversion Between 212

FP32 and INT8 Consumes Non-Negligible GPU Cycles: MM 213

kernels are processed in INT8 mode using NVIDIA Tensor 214

cores, while other kernels use FP32 mode with NVIDIA 215

CUDA cores. Data type conversions between FP32 and INT8, 216

known as Reformat are introduced. This operation is signifi- 217

cant, accounting for 5.3% of the E2E latency. ❹ The Nonlinear 218

Kernels Take Significant GPU Cycles: Non-MM kernels, such 219

as Softmax, GeLU, and LayerNorm, collectively contribute 220

27.6% of the total, despite their operations being only 1.5% 221

of MM kernels. This is due to these kernels involving special 222

functions, such as exponent functions, division, and square 223

root. 224

AMD Versal ACAP is a heterogeneous SoC, featuring ARM 225

CPUs, FPGA, and AIE vector cores. The AIEs support several 226

data types, including FP32, INT16, and INT8 [35]. ACAP 227

integrates the aspects of both the domains, that is, FPGA for 228

reconfigurability and AIEs for abundant computation cores. 229

We deployed the DeiT-T model FP32 version on the VCK190 230

board using CHARM [36], an SOTA deep learning inference 231

framework on the ACAP architecture. Fig. 1 illustrates that 232

CHARM has an E2E latency of 48.07 ms, which is 27× 233

slower than using TensorRT on GPU A10G under FP32. This 234

performance lag is mainly due to the significant load/store 235

of the feature data from/to off-chip memory, caused by the 236

FP32 model’s size exceeding the VCK190 on-chip storage 237

capacity of 33 MB. Quantizing the model into INT8 allows 238

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE II
ARCHITECTURE AND ALGORITHM FEATURES OF EQ-VIT AND

COMPARISONS WITH PRIOR WORKS

it to fit on-chip. However, without careful design, ACAP239

acceleration may face similar limitations (from ❶ to ❹) as240

A10G, and potentially worse due to VCK190’s limited 4.2%241

off-chip BW compared to A10G. This leads to the following242

question. How can we optimize latency for INT8 ViT on243

ACAP, given its high computation intensity but constrained244

off-chip BW?245

Proposed Design Principles: We propose EQ-ViT to246

optimize latency for INT8 ViT, which circumvents all the247

constraints from ❶ to ❹ typically encountered in GPU. The248

key idea of EQ-ViT is to design multiple heterogeneous249

MM accelerators on AIEs, design other non-MM kernels250

on FPGA, and overlap the execution of kernels running on251

AIEs and FPGA. Fig. 2(b) demonstrates the kernel runtime252

overlapping in EQ-ViT. However, new challenges appear.253

First, we need to enable explicit INT8 computation for BMMs254

and achieve high computation utilization for both MMs and255

BMMs. The computation and communication requirements of256

MMs and BMMs are different. Overlapping these two types of257

kernels can improve both the computation and communication258

utilization. Second, we need to design efficient accelerators for259

nonlinear kernels (Softmax, GeLU, and LayerNorm). Third,260

we need to leverage the flexible on-chip memory architecture261

provided by FPGA on ACAP to enable the data forwarding in262

the adjacent kernels and further reduce the off-chip memory263

access. Fourth, we need to carefully overlap the execution time264

and optimize workload partitioning and resource partitioning265

jointly, for utilization optimization, high throughput, and low266

latency. Fifth, we need analytical models to optimize the267

E2E latency under computation resource and communication268

bandwidth constraints. Sixth, we need to keep the accuracy269

after quantization and, if possible, enhance it.270

III. BACKGROUND AND RELATED WORK271

In this section, we first discuss the background for the272

ViT model architecture, and the existing quantization methods273

for ViT in Section III-A. In Section III-B, we discuss prior274

works on the hardware acceleration and mapping frameworks275

on ASICs, FPGAs, GPUs, and ACAP. We also discuss the276

algorithm-hardware co-design frameworks. We summarize our277

proposed methodologies in hardware accelerator architecture278

and the algorithm with the prior works in Table II.279

A. Vision Transformer280

Transformers were initially proposed to handle the learning281

of long sequences in NLP tasks. Great interest has surged fol-282

lowing the work [1] that applies a transformer architecture for283

Fig. 3. Computation flow of one transformer encoder.

the image classification without reliance on the convolutional 284

architectures (CNN). With more data, the data enhancement 285

techniques or extended training epochs, ViTs can achieve 286

significantly improved task accuracy [2]. Currently, ViTs excel 287

over CNNs in terms of both the speed and accuracy in various 288

computer vision tasks, including image classification [15], 289

object detection [43], and real-time object detection [44]. 290

ViT Architectures: The input image is first divided and 291

arranged into a sequence of patches (or tokens). This sequence 292

is then passed through an L-layer Transformer encoder [45]. 293

Each Transformer layer/block consists of two main compo- 294

nents (Fig. 3): 1) a multihead self-attention (MSA) module 295

and 2) a multilayer perceptron (FFN) module. For instance, 296

the DeiT-T model is composed of L = 12 Transformer blocks, 297

where the typical input image resolution is 224×224 with a 298

patch size of 16×16. Consequently, this results in a sequence 299

of n = 196 tokens, each token being embedded with 64×3 300

dimensions and utilizing h = 3 heads, and dim = 64 per head. 301

Quantization on Transformers: Quantization is one of 302

the most powerful ways to decrease neural networks’ 303

computational operations and memory footprint. Current 304

quantization methods can be divided into two categories: 305

1) QAT [46] and 2) posttraining quantization (PTQ) [47]. 306

NLP-oriented Transformers mainly employ PTQ for the two 307

reasons [48], [49], [50]: QAT needs the open dataset. If the 308

dataset is not publicly available, users have to use PTQ. QAT 309

requires significant computational resources to support the 310

training of large model sizes (usually over 350M), to which 311

academics usually have limited access. However, the compact 312

model size of ViT and the presence of the public datasets 313

make it a suitable candidate for QAT, thereby sidestepping 314

the notable accuracy decrease that is often associated with 315

PTQ. [51] proposes a QAT method for ViTs with information 316

rectified. However, this work does not quantize the nonlinear 317

operations, which causes more hardware overhead because 318

of the data conversion between different data types (dequan- 319

tizing and requantizing), and etc. Moreover, several existing 320

works [30], [52], [53], [54] utilize model pruning or sparsity 321

to reduce the computation operations in ViTs. However, these 322

techniques often lead to unavoidable accuracy drops. In EQ- 323

ViT, we aim to implement a fully quantized ViT through the 324

QAT algorithm and to improve the accuracy. 325

B. Transformer Accelerators on Hardware 326

Hardware acceleration for neural networks spans various 327

platforms like ASICs, GPUs, FPGAs, and ACAPs as shown 328

in Table II. ACAP stands out with its high theoretical INT8 329

DONG et al.: EQ-ViT: ALGORITHM-HARDWARE CO-DESIGN FOR END-TO-END ACCELERATION 5

performance but faces a challenge with its relatively low off-330

chip bandwidth. This requires more design efforts due to the331

high computation-to-communication (CTC) ratio on ACAP.332

Nevertheless, EQ-ViT incorporates all the listed accelera-333

tor and algorithm-hardware co-design features, achieving the334

highest computation utilization and the lowest latency for ViT335

compared to the existing works.336

Hardware Acceleration and Mapping Framework:337

TensorRT [31] provides a general quantization solution on338

GPUs. However, TensorRT adopts an implicit quantization339

policy and faces low INT8 tensor core utilization due to340

its sequential execution model, i.e., calling each kernel one341

after another. Herald [37] introduces a heterogeneous system342

with simultaneous spatial accelerators (accs), allowing for343

optimization exploration as different accs may have varied344

CTC ratios. While Herald integrates well-designed accs,345

EQ-ViT goes a step further by supporting the accs hardware346

specialization and jointly optimizing accs scheduling and347

designing. MAGMA [38] proposes an automatic framework348

for the multitenancy heterogeneous architectures but suffers349

from significant latency due to the off-chip communication.350

This is not ideal for scenarios that are sensitive to time. In351

contrast, EQ-ViT customizes on-chip forwarding among any352

two adjacent accs to optimize the off-chip access. ViA [39]353

applies a well-customized spatial solution on U50 FPGA,354

supporting at most two spatial accs, while EQ-ViT explores355

more accs. FLAT [55] applies a tensor fusion mechanic and356

a tiling method to reduce the communication in attention-357

based models. CHARM proposes an open-source framework358

that composes multiple specialized accelerators, but it only359

supports FP32 data type and falls short of meeting real-time360

requirements on ACAP. EQ-ViT features a spatial architecture361

with customized accs. The fine-grained pipeline structure and362

on-chip data forwarding achieve deterministic low latency.363

Algorithm-Hardware Co-Design Acceleration for ViT: ViT364

architecture works [30], [40], [41] also consider algorithm365

adaption, e.g., sparsity, to speed up the model inference.366

ViTCoD [40] efficiently prunes and polarizes attention maps367

to create denser or sparser fixed patterns, reducing atten-368

tion computations. HeatViT [30] employs image-adaptive369

token pruning and 8-bit quantization to eliminate the model370

redundancy, resulting in improved on-device throughput. Auto-371

ViT-Acc [41] utilizes network search to tune the quantization372

choices for the best latency under the frame-per-second373

(FPS) performance constraints. SSR [42] provides a frame-374

work that explores the latency throughput tradeoff for the375

transformer-based applications. While enabling the hardware376

accelerator features, there is a lack of discussion about the377

algorithm design and the algorithm-hardware co-design fea-378

tures. However, these works have two main limitations.379

1) In [40] and [41], the nonlinear operators in ViT models380

are computed in FP32, leading to significant hardware381

overhead. HeatViT [30] uses polynomial approximations382

for GeLU and Softmax, quantizing them into INT8.383

However, this approach consumes a significant amount384

of FF/LUT resources due to the exponent “e”’ in385

Softmax. EQ-ViT (ours) employs “2” as the exponent,386

resulting in lower FF/LUT resource usage.387

Fig. 4. EQ-ViT software/hardware co-design framework.

2) Task accuracy degrades. ViTCoD applies uniform prun- 388

ing pattern to compress the attention matrix, leading 389

to accuracy drops of 0.5%∼1%. HeatViT and Auto- 390

ViT-Acc fail to consider the inherent data distribution 391

within ViTs, resulting in inconsistencies between the 392

quantization strategy and the data distribution. In con- 393

trast, EQ-ViT introduces a hardware-efficient nonlinear 394

quantization and achieves better task accuracy than 395

the full-precision models through the activation-aware 396

quantization. 397

IV. EQ-VIT FRAMEWORK AND ARCHITECTURE 398

In this section, we first illustrate the proposed framework 399

and the EQ-ViT heterogeneous accelerator. We then elaborate 400

on the detailed mapping methodology. 401

A. EQ-ViT Framework Overview 402

Our EQ-ViT provides the optimization for the algo- 403

rithm/hardware co-design. In Fig. 4, our framework takes 404

the latency and accuracy requirement and the hardware 405

information from the user. These combined constraints will 406

decide the final quantization strategy by the activation-aware 407

training and mapping strategy through (1)–(7) in Section IV-D. 408

Given an application, our EQ-ViT will conduct activation- 409

aware training and provide accuracy under 32, 16, 8, and 4 410

bits for both the activations and weights. Then, according to 411

the accuracy constraint and the hardware information, EQ- 412

ViT will pick a quantization strategy that meets the accuracy 413

requirement while best fitting the vector processors (AIEs). For 414

instance, Versal VEK280 provides peak performance under 415

the 8 bits×4 bits mode whereas VCK190 provides peak 416

performance under the 8 bits×8 bits mode. Then, we use 417

(1)–(7) to optimize the throughput under the latency constraint 418

and the quantization strategy. If the model quantization is 419

insufficient to target a single board, our work can be used 420

in concert with partitioning approaches to map larger models 421

onto the multiple devices [23]. Our EQ-ViT framework also 422

includes a Python-based code generation toolflow. Based on 423

the generated mapping strategy, it can instantiate the code 424

template to generate the design source files, including ARM 425

CPU host code, FPGA high-level synthesis code, and AIE 426

intrinsic C/C++ code which can be directly compiled and 427

deployed on Versal ACAP. 428

B. EQ-ViT Heterogeneous Accelerator Overview 429

Fig. 5 shows the overall EQ-ViT architecture on ACAP. It 430

is composed of multiple spatial accelerators with MM units 431

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 5. Proposed EQ-ViT architecture overview.

AIE Local Memory

AIE Registers

00 01 10 118

8
8

4

8

2

Mem L Mem O

Reg A Reg B Reg Acc

00 0110 11 0 1

Mem R

0
0 1

1
Load R

Load L

MAC

Store

Cycle 0

L00 A00

R0 B0

Pre-load

Acc1+=
A0*B01

3

Acc0 O0

51

L01 A01

Acc0+=
A0*B00

2

L10 A10 L11 A11

6

Acc1 O1

4

Acc1+=
A0*B11

Acc0+=
A1*B10

R1 B1

0 1

Fig. 6. Efficient single AIE design.

allocated to the AIE region and non-MM units allocated to the432

PL region. The MM and non-MM units are connected through433

the PLIO interface. We design specialized MM units for the434

computation-intensive kernels, e.g., MM, BMM, and Conv by435

exploring 3-D parallelism on the AIE array. By leveraging the436

flexibility of the PL region, we implement non-MM units for437

transpose, Softmax, Layernorm, and GeLu. Based on these438

building blocks, our proposed EQ-ViT architecture has the439

following hardware characteristics: 1) we apply spatial archi-440

tecture that multiple accelerators compute different kernels441

with high AIE utilization at the same time instead of using442

one unified accelerator and launching it sequentially; 2) to443

reduce the expensive off-chip memory access, we explore the444

on-chip data forwarding between different spatial accelerators;445

and 3) we propose a fine-grained pipeline structure within each446

spatial accelerator to further overlap the execution of nonlinear447

and element-wise kernels with MMs to reduce latency. The448

details will be elaborated in Section IV-C.449

C. Hardware Design Methodology450

High Utilization Matrix Multiply Design on Single AIE and451

AIE Array: When designing the MM/BMM kernels under452

the INT8 data type, efficient communication between the453

PL SRAM, AIE local memory, and registers is important454

to saturate the abundant computation resource. We optimize455

MM/BMM kernels from the two levels, the single AIE and456

AIE array levels.457

In the single AIE level, based on the byte-level flexibility of458

AIE, we write efficient AIE intrinsic instructions to make full459

use of the 2 Kb vector register to sustain the 128 MACs/cycle460

throughput with two 256 bits/cycle load instructions. The461

128 MACs can be constructed as a 16×8 MAC array where462

the second dimension is the reduction dimension. Under the463

constraints of 2 Kb vector register as well as the 256 bits/cycle464

load bandwidth, we customize the 128 MACs into an 8×8×2465

Fig. 7. Data distribution in DeiT-T. (a) A representative normal distribution
of the weight of the 12th FC1 layer. (b) Long-tail distribution for attention
map.

3D-SIMD instruction. Based on our atomic 8×8×2 MAC 466

operation, the execution pipeline of a MM with size 8×16×4 467

is shown in Fig. 6. In order to achieve back-to-back issued 468

MAC instructions, we allocate 8×8 and 8×4 8 bits vector 469

registers and use the double buffer technique to hide the 470

latency of loading from the local memory to the vector 471

registers. After two cycles of preloading the data into AIE 472

registers for the LHS and right-hand-side (RHS) operands, the 473

MAC operations can be issued without the idle cycles. Based 474

on this scheduling, it can also handle the MM with a larger 475

size at the expense of only two preload cycles. 476

When scaling out to the AIE array, the shape variance of 477

the multiple layers within a transformer block often leads to 478

the hardware underutilization [36], [37], [56]. Thus, for each 479

layer within a transformer block, we design a customized MM 480

unit that perfectly matches the shape of the layer. The number 481

of AIEs utilized in each MM unit are proportional to the total 482

number of operations within the layer. We propose two kinds 483

of MM units as shown in Fig. 5. For AIEs of Type 0 that 484

take both the activation and weights as their operands, we 485

efficiently allocate the AIE local memory to make sure the 486

weight of all the blocks fit and loaded during initialization 487

without further excessive loads. Thus, it saves the PLIO of 488

sending the RHS operands (weights). For the kernels that 489

the weights cannot fit in the AIE local memory or the two 490

operands are both activations (attention batch dot), we map 491

them to AIE design of Type 1. 492

Element-Wise and Nonlinear Kernel Design: Element- 493

wise kernels and nonlinear kernels, including Transpose, 494

VectorAdd, Reformat, Softmax, LayerNorm, and GeLU 495

account for less than 2% of the total operations. However, 496

they collectively contribute 40% of the total execution time as 497

shown in Fig. 2. To overlap the latency of these operations with 498

the MM operations, we apply a similar line-buffer methodol- 499

ogy proposed in SSR [42] to enable a fine-grained pipeline. 500

Beyond the proposed method, we further apply quantization to 501

the nonlinear kernels introduced in Section V-C, significantly 502

reducing the number of resources used in the PL. 503

D. Hardware Design Optimization 504

We mathematically formulate a mixed-integer-programming 505

(MIP) [57] optimization problem to guide the design space 506

exploration and determine the hardware resource partitioning 507

and configuration for each spatial accelerator. We denote the 508

number of accelerators and batches as Acc and B. The ViT 509

DONG et al.: EQ-ViT: ALGORITHM-HARDWARE CO-DESIGN FOR END-TO-END ACCELERATION 7

graph is denoted as G and the start execution time of each510

node included in the graph is referred to as Tn. Dn,m refers to511

a binary dependency matrix of the nodes in the graph, where512

Dn,m = 1 means node, m depends on n. En,a and An,a are the513

integer and binary matrix variables representing the execution514

time and allocation map of each node on every accelerator. (2)515

limits the finish time of every node in batch 1 as the latency of516

the first batch should meet a certain budget, e.g., Budget as 1517

ms. The goal is to maximize the overall throughput calculated518

as (1) and (3); (4) and (5) guarantee each node will be mapped519

to only one accelerator and each time one hardware accelerator520

will only execute one logic node in the graph. The execution521

order should follow the dependency map (6). The sum of522

hardware utilization should meet the hardware constraints (7)523

maximize B/Latall (1)524

s.t. Tn + En,a × An,a ≤ Budget ∀n ∈ (G1) (2)525

Latall = Tn + En,a × An,a ∀n ∈ (G) (3)526

�Acc
a=1An,a = 1 ∀n ∈ G (4)527

Tm ≥ Tn + En,a × An,a or Tn ≥ Tm + Em,a × Am,a528

∀(n, m) ∈ G,∀a ∈ Acc, Dn,m = 0, Am,a = An,a (5)529

Tm ≥ Tn + En,a × An,a ∀(n, m) ∈ G, Dn,m = 1 (6)530

�U{RAM,AIE,PLIO,DSP}a ≤ HW{RAM,AIE,PLIO,DSP}531

∀a ∈ Acc. (7)532

V. EQ-VIT ALGORITHM533

In this section, we first probe into a comprehensive534

analysis of the data distribution (weight and activation) of535

ViTs and arrive at several discoveries. Then, we develop536

activation-aware QAT to quantize ViTs and improve accuracy.537

Furthermore, we propose INT-Softmax2n and I-GeLUImp to538

reduce the hardware resources.539

A. Discovery of Data Distribution Within ViTs540

Weight: Data follows a standard normal distribution541

[Fig. 7(a)].542

Activation: Two key features impact the quantization strat-543

egy, long-tail distribution and channel-wise outliers.544

Long-Tail Distribution:545

Attention Map: The attention map is the feature map of the546

Softmax output. To preserve the informative message of the547

Softmax, we plot attention maps in the real and log domain548

[Fig. 7(b)], which reveals a long-tail distribution. Compared to549

the uniform quantization (with 8-bit), which assigns only one550

bin to such a large number of values, the log2 method has more551

resolution (24 bins) to cover this data range. This indicates that552

the low-bit log2 method plays an ideal quantization choice.553

Channel-Wise Outliers:554

Large Interchannel Variations in the Residual Link Addition:555

As shown in Fig. 8(b), the channel-wise ranges in ViTs exhibit556

more significant fluctuations than in ResNets. As the channels557

with outliers require larger scales than the others, using558

common quantization methods like the layer-wise quantization559

with the same parameters for all the channels would result in560

an unacceptable quantization error.561

Systematic and Fixed Outliers: Although outliers appear 562

in every sequence, they are concentrated in fixed channel 563

dimensions of the residual link addition as shown in Fig. 8(a) 564

B. Activation-Aware QAT 565

We propose two novel quantization methods, long-tail- 566

oriented quantization and outlier-predictable QAT . Assuming 567

the bit-width is b, the quantizer Q(X|b) can be formulated 568

by mapping a floating-point number X∈R to the nearest 569

quantization bin. Among various quantizers, uniform [59] and 570

log2 [60] are typically used. Apart from the special data 571

distribution in Section V-A, we apply the layer-wise uniform 572

quantization on the weights and activations. 573

1) Long-Tail-Oriented Quantization: Log2Q on Attention 574

Map: Based on Section V-A, we apply Log2Q on the attention 575

map to preserve the informative content as 576

AttnQ = Log2Q(Attn|b) = clip
(
�−log2(Attn)	, 0, 2b − 1

)
. 577

(8) 578

2) Outlier-Predictable QAT: We propose the outlier- 579

predictable training that obtains the precise channel indices of 580

outliers in the addition of residual links and regularizes scales 581

of outliers with different power-of-two coefficients (PTCs) in 582

channel wise. 583

PTCs on the Residual Link Quantization: Given the 584

input activation (token) X ∈ B × L × C (B: batch size, L: 585

token/sequence length, C: the channel dimension of one token, 586

and the PTC r∈NC, then the quantized activation XQ is 587

XQ = Q(X|b) = clip

(
� X

2rs
	 + z, 0, 2b − 1

)
(9) 588

s = max(X) − min(X)

2R
(
2b − 1

) , z = clip

(⌊
− min(X)

max(X)

⌉
, 0, 2b − 1

)
589

(10) 590

where the outlier channel index is i, PTC is r ∈ [2,3,4], s is 591

the scaling factor, and z is the zero-point. 592

Outlier-Predictable Training: It includes three stages: 593

1) initialize the PTC with the full-precision model estimated 594

by threeσ method [62]; 2) search for the channel index i and 595

the PTC r with the l2 regularization; and 3) fix the index i and 596

r obtained in stage 2 and fine tune the model. 597

C. Nonlinear Operations Quantization 598

1) INT-Softmax2n : We replace the natural constant e inside 599

the Softmax with the power of 2 [63] with the integer inputs. 600

i represents the ith token 601

INT-Softmax2n(X) = exp(Xi)

�L
l=1exp(Xl)

→ 2Xi

�L
l=12Xl

. (11) 602

Log2Q With INT-Softmax2n : Similar to [64], we utilize 603

Log2Q on the attention map. We then integrate the power of 604

2 inside the Softmax and the operation can be modified as 605

AttnQ = Log2Q(Attn|b) 606

= clip
⌊
−log2�

L
l=12X̂l +X̂i

⌉
, 0, 2b − 1. (12) 607

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

(a) (b) (c)

Fig. 8. (a) Channel-wise minimum and maximum values of the second residual link addition in the 9th block of DeiT-T. (b) Channel-wise ranges of the last
residual link addition in representative models. (c) Comparison of common INT-Softmax [61] and INT-Softmax2n in quantized MSA inference.

TABLE III
MODEL STRUCTURES OF FOUR DIFFERENT VIT MODELS

The exponent function is a crucial component of the Softmax,608

but its nonlinearity makes it expensive to implement on the609

hardware. Combined with the Log2 quantization, the Softmax610

function can be executed with only addition computation and611

removes division thus can be implemented by LUTs on FPGA612

instead of AIEs. As shown in Fig. 8(c), the floating-point613

exponential calculation of the INT-Softmax2n is replaced with614

BitShift and addition and keeps integer-only data type.615

2) I-GeLUImp: We adapt I-GeLU [65] to a combination616

with linear kernels and lookup table under INT8 mode, since617

1+L(x) is an odd function within the range (0, 2)618

I-GeLUImp =
⎧⎨
⎩

0 if − (
28 − 1

) ≤ x ≤ −3
{0, 0, 0, 0, 1} if x ∈ {−2, 1, 0, 1, 2}
x if 3 ≤ x ≤ 28 − 1.

(13)619

For implementation, we preload the requantized integer value620

directly on-board as (13).621

VI. EXPERIMENT622

A. Experiment Settings623

Application and Training Framework Setup: Our experi-624

ments are conducted on the ImageNet-1k [66], Cifar-100,625

and Cifar-10 [67] datasets in PyTorch 3.8. We use two626

representative ViTs, DeiT [2], and LV-ViT [68], in Table III.627

The baseline models with FP32 are obtained from the628

TorchVision. The outlier-predictable training follows Q-ViT629

with distribution-guided distillation (DGD) techniques [51],630

and the training process is executed on four NVIDIA V100631

GPUs. We set stage 1 to 70 epochs and stage 2 to 30 epochs.632

Hardware Setup: We evaluate EQ-ViT the on AMD ACAP633

VCK190. We compare EQ-ViT with the other SOTA imple-634

mentations on CPU, FPGA, and GPU. For each model, we635

iterate the inference for over 60 s and perform this mea-636

surement ten times to calculate the average inference latency.637

On CPU, we measure the inference latency on an m6i.large638

instance from Amazon AWS using Pytorch 2.0.1. The instance 639

has two Intel Xeon 8375C vCPU cores running at 2.9 GHz 640

and thermal design power (TDP) is 300 W. On GPUs, we 641

measure the performance of TensorRT [31] on A10G (8 nm), 642

A100(7 nm), and Jetson AGX Orin (8 nm). We first use onnx 643

1.14.0 to compile the PyTorch model into the onnx format, 644

then use TensorRT 8.6 and its Python interface to compile the 645

onnx model into the TensorRT engine. To perform the INT8 646

inference, we enable the tensorrt.BuilderFlag.INT8 flag in 647

compilation. The power consumption of the GPUs is measured 648

via NVIDIA-smi [69]. For the CPU and GPU experiments, the 649

PyTorch models are from the meta research [70]. 650

On FPGA, we compare EQ-ViT with HeatViT [30] on 651

AMD Zynq ZCU102 and AMD Alveo U250. We compare EQ- 652

ViT with SSR [42] on the same device VCK190. We measure 653

the power of VCK190 using the AMD board evaluation and 654

management [71]. To be noted, EQ-ViT provides the algorithm 655

and the algorithm/hardware co-design to explore different 656

quantization strategies, e.g., activations 8 bits and weights 657

4 bits (A8W4) without the accuracy loss. We add the new 658

estimated results (est.) in Table IV when using the A8W4 659

quantization on AMD Versal VEK280 which provides 4× 8 660

bits × 4 bits MAC operations/cycle/AIE over VCK190 with 661

8 bits × 8 bits precision. Our estimation shows that EQ-ViT 662

further reduces the latency by 1.67× using VEK280 over 663

VCK190. This gain can not be achieved without the algorithm 664

and the algorithm/hardware co-design, demonstrating the key 665

new contribution of EQ-ViT. 666

B. ViT Inference Performance and Energy Efficiency Analysis 667

1 Performance and Energy Efficiency Comparison Among 668

CPU, GPU, FPGA, and ACAP: We apply our EQ-ViT frame- 669

work to four different ViT applications under the INT8 670

quantization mode and evaluate the on-board implementation 671

on AMD Versal VCK190. We compare EQ-ViT with six works 672

on CPU, GPUs, and FPGAs regarding latency and energy 673

efficiency on the four models in Table IV. Here, we report the 674

performance when setting the latency budget as 1 ms. EQ- 675

ViT DSE finds the optimal throughput design under this 676

latency constraint when the batch size is set to 6. The achieved 677

latencies are 0.56, 0.46, 0.89, and 0.61 ms for the four applica- 678

tions. In contrast, the solutions on other platforms have larger 679

DONG et al.: EQ-ViT: ALGORITHM-HARDWARE CO-DESIGN FOR END-TO-END ACCELERATION 9

TABLE IV
COMPARISON OF EQ-VIT AND WORKS ON CPU, GPU, FPGA, AND ACAP IN LATENCY AND ENERGY EFFICIENCY ON FOUR MODELS

TABLE V
LATENCY COMPARISON BETWEEN ON-BOARD MEASUREMENTS AND

MIP MODELING ESTIMATIONS FOR FOUR VIT MODELS

TABLE VI
RESOURCE UTILIZATION OF SOFTMAX AND GELU BEFORE VERSUS

AFTER EQ-VIT ALGORITHM CHANGES FOR HARDWARE EFFICIENT

IMPLEMENTATION ON VCK190

latency and do not meet the latency constraint under the same680

batch size. For all the four applications, the average latency681

gains are 315.0, 3.39, 3.38, 14.93, 59.5, and 13.1×, and the682

gains of energy efficiency are 62.2, 15.33, 12.82, 13.31, 13.5,683

and 21.9× when comparing to the Intel Xeon 8375C vCPU,684

A10G, A100 GPUs, AMD ZCU102, and U250 FPGAs. We685

further analyze the latency improvement from the four features686

(4.2x, 3.4x, 2.3x, and 2.7x) in Section VIII, together achieving687

89× latency reduction from 50 ms using the FP32 model688

with CHARM to 0.56 ms using the INT8 model with EQ-689

ViT on VCK190. We also applies the int8 GEMM solution690

proposed by [35]. For DeiT-T with batch equals 6, it achieves691

12.1 ms latency as it only implement a monolithic accelerator692

and requires the weights and activation to be accessed from693

the off-chip memory. By applying the on-chip data forwarding,694

fine-grained pipeline and multiple spatial accelerators, EQ-ViT695

achieves 21.6× performance improvement.696

2 Analytical Model Versus EQ-ViT On-Board697

Implementation: We evaluate the latency of the four ViT698

models on AMD Versal VCK190 and compare them with699

the proposed MIP modeling. Guided by the MIP, all the four700

cases utilize over 98.5% AIE. The error rate in percentage701

refers to the difference between the estimated latency by MIP702

and our real on-board implementation. On average, the MIP703

modeling achieves a high prediction accuracy and has less704

than 4% error rate as shown in Table V.705

Fig. 9. Latency and throughput tradeoff comparison between EQ-ViT on
VCK190 and TensorRT on A10G GPU.

3 The Effect of Batch Size on Latency-Throughput Tradeoff: 706

We can leverage the MIP-based analytical model to perform 707

the latency-throughput tradeoff in EQ-ViT, e.g., find the 708

designs that achieve the highest throughput under the latency 709

constraints. Fig. 9 shows the latency-throughput Pareto fronts 710

of EQ-ViT on VCK190 and TensorRT on A10G GPU. EQ- 711

ViT achieves a better Pareto front than that of GPU. 712

4 Resource Utilization Before Versus After EQ- 713

ViT Hardware-Efficient Algorithm Adaption for Two Non-MM 714

Kernels Softmax and GeLU: We compare the hardware uti- 715

lization of the optimized Softmax and GeLU implementation 716

with the previous FP32 design reported in CHARM [36]. We 717

normalize the number of processing units to 16, the same as 718

the implementation in CHARM. As shown in Table VI, we 719

normalize one URAM as eight BRAM and report the total 720

number of RAM used in both the designs. For the Softmax 721

layer, since we replace the resource-demanding operations, 722

i.e., exponential and division, we saved the number of DSP 723

and LUT by 7.0 and 14.48×, respectively. Instead of using 724

the double buffer technique applied in CHARM [36], by using 725

the streaming pipelined architecture within this kernel, we 726

save the LUTMem by 18 834× and total RAM by 9.19×. For 727

the GeLU kernel, with the LUT optimization, it no longer 728

consumes LUTMem, RAM, and DSP and reduces REG and 729

LUT by 137 and 142×. We show the overall implementation 730

layout of DeiT-T in Fig. 10 containing ten MM units and non- 731

MM modules, including AXI DMA, Transpose, and nonlinear 732

kernels. 733

5 Can We Leverage EQ-ViT When Model Sizes Do Not 734

Fit On-Chip? If a model can not fit on a single board, we can 735

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 10. EQ-ViT implementation layout on VCK190 with kernels highlighted
in the FPGA and AIE portion of ACAP.

TABLE VII
COMPARISON OF THE TOP-1 (%) ACCURACY WITH SOTA METHODS ON

MULTIPLE DATASETS

leverage EQ-ViT to explore how the model is most effectively736

partitioned onto the multiple devices, which is our future work.737

C. Inference Accuracy Comparisons738

We compare EQ-ViT accuracy with the popular PTQ meth-739

ods [59], [72], [73] and the SOTA QAT methods [51], [74].740

For the sake of fairness, we reproduced the results of Q-ViT741

with quantized GeLU and Softmax.742

Image Classification on Multiple Datasets: 1 ImageNet.743

Recent SOTA methods for PTQ suffer a significant drop in744

accuracy up to 3.8% (Table VII). In contrast, ours can enhance745

the task accuracy up to 2.4% over the baseline by minimizing746

the quantization errors and removing the model redundancy.747

While the SOTA QAT method, Q-ViT, has made strides in748

correcting information distribution within ViT models, it still749

relies on the floating-point computations for Softmax and750

GeLU, making it challenging for the practical and efficient751

hardware deployment. In contrast, EQ-ViT leverages activation752

flow fitting and optimization to achieve an additional accuracy753

boost of 0.4%∼0.9% over Q-ViT. Furthermore, EQ-ViT sup-754

ports efficient implementation on ACAP. 2 Cifar-100 and755

Cifar-10. We extend results on the Cifar datasets to showcase756

our validation. For the Cifar-100 dataset, EQ-ViT can enhance757

accuracy up to 1.4% and achieve 0.3% ∼ 0.4% higher758

accuracy than Q-ViT. For the Cifar-10 dataset, EQ-ViT can759

enhance accuracy up to 0.8%, and reach 0.2% higher accuracy 760

than Q-ViT. Q-ViT introduces DGD distillation to distill the 761

knowledge from the larger-size ViT to the smaller-size one, 762

which is integrated into our training setting. Notably, EQ-ViT 763

also surpasses the Q-ViT accuracy under the same training 764

conditions. 765

VII. GENERALITY DISCUSSION AND 766

MICROARCHITECTURE INSIGHTS 767

EQ-ViT performance improvements over the prior solu- 768

tions come from two folds as follows. 769

1) Software Aspect: EQ-ViT accelerator mapping and 770

optimization techniques that fully leverage all the het- 771

erogeneous microarchitecture features on ACAP. For 772

those, we explain how different optimization techniques 773

included in EQ-ViT contribute to the performance 774

improvements and discuss whether and how those 775

optimizations can be applied on the other platforms, 776

including FPGA and GPU. 777

2) Hardware Aspect: The heterogeneous microarchitecture 778

features from ACAP that provide flexible mapping 779

features to be applied on such architecture. Specifically, 780

those EQ-ViT mapping features that can not be ported 781

to FPGAs or GPUs reflect the corresponding architecture 782

limitations on FPGAs or GPUs. 783

Quantization: The performance gain from quantization 784

comes from two parts: 1) the improved peak computation 785

throughput and 2) the reduced off-chip data access. Especially, 786

if the model size after quantization gets across a threshold and 787

the weights can fit on-chip, there will be a huge improvement 788

since all the intermediate data can be forwarded on-chip. 789

Accelerators on FPGA and ACAP can fully benefit from 790

quantization, whereas GPU can not. Current GPU frameworks, 791

e.g., TensorRT, can not fully cache intermediate data across 792

different kernel function calls unless the users explicitly 793

rewrite multiple kernels into one kernel (fusion). Another GPU 794

software limitation is the implicit quantized kernels. In our 795

GPU profiling for quantized models, TensorRT generates a 796

mixed precision model, where the BMM kernels are computed 797

in FP32 and not in IN8. If we can quantize the BMM, Softmax, 798

LayerNorm, and transpose kernels in GPU, the hypothetical 799

latency of DeiT-T on A10G GPU can be reduced to 1.05 ms, 800

which is 1.9× when compared to the EQ-ViT latency. 801

On-Chip Forwarding: By applying on-chip forwarding, 802

activations of the models can be kept inside the accelerator 803

chip to reduce the off-chip communication. This technique has 804

been applied to the Versal ACAP and FPGA platforms. On 805

ACAP, applying this technique gives 3× latency reduction. 806

For GPU, the on-chip forwarding is limited compared to 807

FPGA or ACAP. The flexibility in PL logic in FPGA and 808

ACAP allows multiple accelerators to communicate with each 809

other with arbitrary data forwarding per the user’s control. In 810

GPU, shared memory can be explicitly controlled by the user. 811

However, one shared memory in one stream multiprocessor 812

(SM) can not directly forward the data to the other shared 813

DONG et al.: EQ-ViT: ALGORITHM-HARDWARE CO-DESIGN FOR END-TO-END ACCELERATION 11

TABLE VIII
COMPARISONS OF FPGA, GPU, AND ACAP WITH SOTA FRAMEWORK IMPLEMENTATIONS (IMPL.) AND EQ-VIT OPTIMIZATIONS

memory in another SM. It has to go through the off-chip DDR814

or HBM. This is the microarchitecture limitation on GPU.2815

Multiple Spatial Accelerators: On FPGA and ACAP816

platforms, compared with sequentially called one unified817

accelerator, the spatially called multiple accelerators can reach818

higher hardware utilization as each hardware accelerator has819

smaller hardware resources and can be specialized for the820

kernel.821

In GPUs, horizontal fusion [76], [77] is motivated by similar822

reasons, i.e., using multiple kernels running at the same time823

instead of launching kernels sequentially. The key idea is824

to allocate different groups of SM working simultaneously825

whereas each SM group works on one type of the kernel.826

However, such multiple spatial accelerators in GPU have827

less flexibility than in FPGA and ACAP. The partition in828

GPU is in the SM granularity, therefore, different hardware829

resources, i.e., computation processing elements (PEs), and830

on-chip storage across different accs have a fixed ratio. In831

FPGA and ACAP, PL provides users with full flexibility to832

partition computation PE (DSPs, LUT, and AIEs) and on-833

chip storage (BRAM and URAM) with arbitrary ratios across834

different accs.835

Fine-Grained Pipelining: Applying the fine-grained pipelin-836

ing enables execution overlap among the accelerators, and837

leads to higher resource utilization and lower latency. Fine-838

grained pipelining can be easily implemented in FPGA and839

ACAP, on the contrary, it is not easily implemented on GPUs.840

We analyse the DeiT-T inference on A10G, if we can hack841

all the BMM kernels to be computed in INT8, the latency842

reduces from 1.8 to 1.05 ms, however, this can not be further843

reduced. The 1.05 ms latency includes MM kernels at 0.78 ms844

and non-MM kernels at 0.27 ms. Unlike ACAP, which allows845

full programmability and flexibility to allow AIE and FPGA846

within the ACAP SoC to run simultaneously, the current847

GPU programming model does not allow the simultaneous848

execution between the GPU Tensor cores and GPU CUDA849

cores.850

VIII. SUMMARY AND CONCLUSION851

We summarize our generality discussion in Table VIII.852

The FPGA platforms are highly flexible and support853

most of the EQ-ViT optimization methods. Without the854

AI-optimized PE like tensor cores or AI engine, the855

2On-chip forwarding between SMs can not be implemented on Nvidia
GPUs before ampere generation. However, as the successor of ampere archi-
tecture, the Hopper architecture uses distributed shared memory (DSMEM)
[75], enabling fast communication between the shared memory and potentially
providing more flexibility in on-chip forwarding among SMs on GPUs.

computing capability limits the performance of FPGAs. 856

GPUs have the highest theoretical throughput and band- 857

width, but the relatively fixed architecture limits their 858

performance in latency-critical situations. The ACAP plat- 859

form has both the flexibility and AI-optimized PE, thus 860

reaching the lowest latency with the optimization of 861

EQ-ViT. 862

This implies interesting research questions, e.g., what 863

other kinds of applications will let ACAP, a combination 864

of FPGA and AI-optimized SoC achieve the better of both 865

the worlds? Shall we introduce FPGA or reconfigurable 866

architecture in broader GPU architecture to improve the 867

latency? If FPGA is too fine grained, what is the least 868

reconfigurability needed in the future architecture to balance 869

the performance and adaptability? We leave these in our future 870

work. 871

REFERENCES 872

[1] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers 873

for image recognition at scale,” in Proc. ICLR, 2021, pp. 1–22. 874

[2] H. Touvron et al., “Training data-efficient image transformers & distil- 875

lation through attention,” in Proc. 38th ICML, 2021, pp. 10347–10357. 876

[3] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using 877

shifted windows,” in Proc. ICCV , 2021, pp. 1–14. 878

[4] N. Carion et al., “End-to-end object detection with transformers,” in 879

Proc. ECCV , 2020, pp. 213–229. 880

[5] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable 881

DETR: Deformable transformers for end-to-end object detection,” in 882

Proc. ICLR, 2020, pp. 1–16. 883

[6] H. Chen et al., “Pre-trained image processing transformer,” in Proc. 884

CVPR, 2021, pp. 12299–12310. 885

[7] L. Zhou et al., “End-to-end dense video captioning with masked 886

transformer,” in CVPR, 2018, pp. 8739–8748. 887

[8] W. Wang et al., “Pyramid vision transformer: A versatile backbone 888

for dense prediction without convolutions,” in Proc. ICCV , 2021, 889

pp. 548–558. 890

[9] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Transformer in 891

transformer,” in Proc. NeurIPS, 2021, pp. 1–14. 892

[10] H. Cao et al., “Swin-unet: Unet-like pure transformer for medical image 893

segmentation,” 2021, arXiv:2105.05537. 894

[11] M. Rafie. “Autonomous vehicles drive AI advances for edge com- 895

puting.” 2021. [Online]. Available: https://www.3dincites.com/2021/07/ 896

autonomous-vehicles-drive-ai-advances-for-edge-computing/ 897

[12] (CERN, Geneva, Switzerland). Colliding Particles Not Cars: CERN’S 898

Machine Learning Could Help Self-Driving Cars. (2023). Accessed: 899

Jan. 25, 2023. [Online]. Available: https://home.cern/news/news/ 900

knowledge-sharing/colliding-particles-not-cars-cerns-machine-learning- 901

could-help-self 902

[13] W.-H. Ko, U. Ghosh, U. Dinesha, R. Wu, S. Shakkottai, and D. Bharadia, 903

“EdgeRIC: Empowering realtime intelligent optimization and control in 904

nextG networks,” 2023, arXiv:2304.11199. 905

[14] G. Feng et al., “RisGraph: A real-time streaming system for evolving 906

graphs to support sub-millisecond per-update analysis at millions ops/s,” 907

in Proc. SIGMOD, 2021, pp. 513–527. 908

[15] Y. Li et al., “EfficientFormer: Vision transformers at mobileNet 909

speed,” in Proc. 36th Adv. Neural Inf. Process. Syst., 2022, pp. 1–16. 910

[16] Y. Li et al., “Rethinking vision transformers for mobilenet size and 911

speed,” 2022, arXiv:2212.08059. 912

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

[17] Y. Nagamatsu, F. Sugai, K. Okada, and M. Inaba, “Basic implementation913

of FPGA-GPU dual SOC hybrid architecture for low-latency multi-DOF914

robot motion control,” in Proc. IROS, 2020, pp. 7255–7260.915

[18] D. Gizopoulos et al., “Architectures for online error detection and916

recovery in multicore processors,” in Proc. DATE, 2011, pp. 1–6.917

[19] R. Basir et al., “Fog computing enabling industrial Internet of Things:918

State-of-the-art and research challenges,” Sensors, vol. 19, no. 21,919

p. 4807, 2019.920

[20] P. Koppermann, F. De Santis, J. Heyszl, and G. Sigl, “Low-latency921

x25519 hardware implementation: Breaking the 100 microseconds bar-922

rier,” Microprocess. Microsyst., vol. 52, pp. 491–497, Jul. 2017.923

[21] J. Soifer et al., “Deep learning inference service at microsoft,” in Proc.924

OpML, 2019, pp. 1–4.925

[22] A. Putnam et al., “A reconfigurable fabric for accelerating large-926

scale datacenter services,” IEEE Micro, vol. 35, no. 3, pp. 10–22,927

May/Jun. 2015.928

[23] J. Fowers et al., “A configurable cloud-scale DNN processor for real-929

time AI,” in Proc. ISCA, 2018, pp. 1–14.930

[24] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor931

processing unit,” in Proc. 44th ISCA, 2017, pp. 1–12.932

[25] N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for and933

evaluation of the first tensor processing unit,” IEEE Micro, vol. 38, no. 3,934

pp. 10–19, May/Jun. 2018.935

[26] N. Jouppi et al., “TPU v4: An optically reconfigurable supercomputer936

for machine learning with hardware support for embeddings,” in Proc.937

ISCA, 2023, pp. 1–14.938

[27] F. G. de Magalhães et al., “Optical interconnection networks: The need939

for low-latency controllers,” in Photonic Interconnects for Computing940

Systems. Aalborg, Denmark: River Publ., 2022, pp. 73–105.941

[28] M. Miscuglio and V. J. Sorger, “Photonic tensor cores for machine942

learning,” Appl. Phys. Rev., vol. 7, no. 3, Jul. 2020, Art. no. 031404.943

[29] F. P. Sunny, E. Taheri, M. Nikdast, and S. Pasricha, “A survey on silicon944

photonics for deep learning,” J. Emerg. Technol. Comput. Syst., vol. 17,945

no. 4, pp. 1–57, Jun. 2021.946

[30] P. Dong et al., “HeatViT: Hardware-efficient adaptive token pruning for947

vision transformers,” in Proc. HPCA, 2023, pp. 442–455.948

[31] H. Vanholder, “Efficient inference with tensorRT,” in Proc. GPU949

Technol. Conf., vol. 1, 2016, pp. 1–24.950

[32] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer quanti-951

zation for deep learning inference: Principles and empirical evaluation,”952

2020, arXiv:2004.09602.953

[33] “Nvidia Nsight systems.” NVIDIA Developer. Accessed: Aug. 22, 2024.954

[Online]. Available: https://developer.nvidia.com/nsight-systems955

[34] “Nvidia TensorRT documentation.” Nvidia. [Online]. Available:956

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.957

html#working-with-int8958

[35] J. Zhuang, Z. Yang, and P. Zhou, “High performance, low power matrix959

multiply design on ACAP: From architecture, design challenges and960

DSE perspectives,” in Proc. DAC, 2023, pp. 1–6.961

[36] J. Zhuang et al., “CHARM: Composing heterogeneous accelerators for962

matrix multiply on versal ACAP architecture,” in Proc. FPGA, 2023,963

pp. 153–164.964

[37] H. Kwon et al., “Heterogeneous dataflow accelerators for multi-DNN965

workloads,” in proc. HPCA, 2021, pp. 71–83.966

[38] S.-C. Kao and T. Krishna, “MAGMA: An optimization framework for967

mapping multiple DNNs on multiple accelerator cores,” in Proc. HPCA,968

2022, pp. 814–830.969

[39] T. Wang et al., “ViA: A novel vision-transformer accelerator based970

on FPGA,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,971

vol. 41, no. 11, pp. 4088–4099, 2022.972

[40] H. You et al., “ViTCoD: Vision transformer acceleration via dedicated973

algorithm and accelerator co-design,” in Proc. HPCA, 2023, pp. 1–14.974

[41] Z. Lit et al., “Auto-ViT-acc: An FPGA-aware automatic acceleration975

framework for vision transformer with mixed-scheme quantization,” in976

Proc. FPL, 2022, pp. 109–116.977

[42] J. Zhuang et al., “SSR: Spatial sequential hybrid architecture for latency978

throughput tradeoff in transformer acceleration,” in Proc. FPGA, 2024,979

pp. 55–66.980

[43] Z. Zong, G. Song, and Y. Liu, “DETRs with collaborative hybrid981

assignments training,” in Proc. ICCVW, 2023, pp. 6748–6758.982

[44] W. Lv et al., “DETRs beat YOLOs on real-time object detection,” 2023,983

arXiv:2304.08069.984

[45] A. Vaswani et al., “Attention is all you need,” in Proc. NeurIPS, 2017,985

pp. 1–15.986

[46] Z. Dong, Z. Yao, A. Gholami, M. Mahoney, and K. Keutzer, “HAWQ:987

Hessian aware quantization of neural networks with mixed-precision,”988

in Proc. ICCVW, 2019, pp. 293–302.989

[47] Y. Li et al., “BRECQ: Pushing the limit of post-training quantization by990

block reconstruction,” 2021, arXiv:2102.05426.991

[48] A. H. Zadeh et al., “GOBO: Quantizing attention-based NLP models 992

for low latency and energy efficient inference,” in Proc. 53rd MICRO, 993

2020, pp. 811–824. 994

[49] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “LLM.int8(): 995

8-bit matrix multiplication for transformers at scale,” Proc. NeurIPS, 996

vol. 33, 2021, pp. 28089–28154. 997

[50] Z. Yao, R. Yazdani Aminabadi, M. Zhang, X. Wu, C. Li, and 998

Y. He, “ZeroQuant: Efficient and affordable post-training quantiza- 999

tion for large-scale transformers,” in Proc. NeurIPS, vol. 35, 2022, 1000

pp. 1–24. 1001

[51] Y. Li et al., “Q-ViT: Accurate and fully quantized low-bit vision 1002

transformer,” in Proc. NeurIPS, vol. 34, 2022, pp. 28092–28103. 1003

[52] T. Chen et al., “Chasing sparsity in vision transformers: An end-to-end 1004

exploration,” in Proc. NeurIPS, vol. 34, 2021, pp. 19974–19988. 1005

[53] M. Zhu, Y. Tang, and K. Han, “Vision transformer pruning,” 2021, 1006

arXiv:2104.08500. 1007

[54] S. Yu et al., “Unified visual transformer compression,” in Proc. Int. Conf. 1008

Learn. Represent., 2022, pp. 1–17. 1009

[55] S.-C. Kao, S. Subramanian, G. Agrawal, A. Yazdanbakhsh, and 1010

T. Krishna, “FLAT: An optimized dataflow for mitigating attention 1011

bottlenecks,” in Proc. ASPLOS, 2023, pp. 1–17. 1012

[56] X. Zhang et al., “DNNExplorer: A framework for modeling and 1013

exploring a novel paradigm of FPGA-based DNN accelerator,” in Proc. 1014

ICCAD, 2020, pp. 1–9. 1015

[57] M. S. Bensaleh et al., “Optimal task scheduling for distributed cluster 1016

with active storage devices and accelerated nodes,” IEEE Access, vol. 1017

6, pp. 48195–48209, 2018. 1018

[58] D. Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),” 1019

2016, arXiv:1606.08415. 1020

[59] B. Jacob et al., “Quantization and training of neural networks for 1021

efficient integer-arithmetic-only inference,” in Proc. CVPR, 2018, 1022

pp. 2704–2713. 1023

[60] J. Cai, M. Takemoto, and H. Nakajo, “A deep look into logarithmic 1024

quantization of model parameters in neural networks,” in Proc. 10th 1025

IAIT , 2018, pp. 1–8. 1026

[61] Y. Lin, T. Zhang, P. Sun, Z. Li, and S. Zhou, “FQ-ViT: Post-training 1027

quantization for fully quantized vision transformer,” in Proc. IJCAI, 1028

2022, pp. 1173–1179. 1029

[62] W. contributors. “68–95–99.7 rule.” Wikipedia. 2022. [Online]. 1030

Available: https://en.wikipedia.org/wiki/68 1031

[63] G. C. Cardarilli et al., “A pseudo-softmax function for hardware- 1032

based high speed image classification,” Sci. Rep., vol. 11, Jul. 2021, 1033

Art. no. 15307. 1034

[64] W. Wang, S. Zhou, W. Sun, P. Sun, and Y. Liu, “SOLE: Hardware- 1035

software co-design of softmax and layerNorm for efficient transformer 1036

inference,” in Proc. IEEE/ACM Int. Conf. Comput. Aided Design 1037

(ICCAD), 2023, pp. 1–9. 1038

[65] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer, “I-BERT: 1039

Integer-only bert quantization,” in Proc. Int. Conf. Mach. Learn., 2021, 1040

pp. 5506–5518. 1041

[66] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: 1042

A large-scale hierarchical image database,” in Proc. CVPR, 2009, 1043

pp. 248–255. 1044

[67] A. Krizhevsky, “Learning multiple layers of features from tiny images,” 1045

Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, Rep. TR-2009, 1046

2009. 1047

[68] Z. Jiang et al., “All tokens matter: Token labeling for training better 1048

vision transformers,” 2021, arXiv:2104.10858. 1049

[69] “System management interface SMI | NVIDIA developer,” Nvidia. 1050

[Online]. Available: https://developer.nvidia.com/nvidia-system- 1051

management-interface 1052

[70] “ViT Github.” Meta. [Online]. Available: https://github.com/ 1053

facebookresearch/deit 1054

[71] Board Evaluation and Management Tool, AMD/Xilinx, San Jose, CA, 1055

USA, document UG1573, 2023. 1056

[72] R. Li, Y. Wang, F. Liang, H. Qin, J. Yan, and R. Fan, “Fully quantized 1057

network for object detection,” in Proc. CVPR, 2019, pp. 2810–2819. 1058

[73] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev, “Low-bit quantiza- 1059

tion of neural networks for efficient inference,” in Proc. ICCVW, 2019, 1060

pp. 3009–3018. 1061

[74] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and 1062

D. S. Modha, “Learned step size quantization,” 2019, arXiv:1902.08153. 1063

[75] “NVIDIA H100 tensor core GPU architecture.” Nvidia. [Online]. 1064

Available: https://resources.nvidia.com/en-us-tensor-core 1065

[76] L. Ma et al., “Rammer: Enabling holistic deep learning compiler 1066

optimizations with {rTasks},” in Proc. OSDI, 2020, pp. 881–897. 1067

[77] A. Li, B. Zheng, G. Pekhimenko, and F. Long, “Automatic horizontal 1068

fusion for GPU kernels,” in Proc. CGO, 2022, pp. 14–27. 1069

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

