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Abstract—3D NAND flash memories are the dominant storage
media in modern data centers due to their high performance,
large storage capacity, and low power consumption. However,
the lifetime of flash memory has decreased as technology scaling
advances. Recent work has revealed that the number of achievable
program/erase (P/E) cycles of flash blocks is related to the dwell
time between two adjacent erase operations. A longer dwell time
can lead to higher achievable P/E cycles and, therefore, a longer
lifetime for flash memories. This paper found that the achievable
P/E cycles would increase when flash blocks endure uneven dwell
time distribution. Based on this observation, this paper presents
an opportunistic self-healing method to extend the lifetime of
flash memory. By maintaining two groups with unequal block
counts, namely Active Group and Healing Group, the proposed
method creates an imbalance in erase operation distribution. The
Active Group undergoes more frequent erase operations, resulting
in shorter dwell time, while the Healing Group experiences longer
dwell time. Periodically, the roles of the two groups are switched
based on the Active Group’s partitioning ratio. This role switching
ensures that each block experiences both short and long dwell
time periods, leading to an uneven dwell time distribution that
magnifies the self-healing effect. The evaluation shows that the
proposed method can improve the flash lifetime by 19.3% and
13.2% on average with near-free overheads, compared with the
baseline and the related work, respectively.

I. INTRODUCTION

3D NAND flash memory has been developed with character-
istics of high performance, large capacity, and low energy con-
sumption, which gradually replaces planar flash memory and
has become mainstream media for many storage systems. How-
ever, with the multi-bit-per-cell technique and layer-stacking
architecture, the lifetime of flash memory has significantly
reduced, which hinders its further deployment [1]. Fig. 1 shows
the trend of the P/E cycle limit that the modern 3D NAND
flash memory can achieve, provided by the flash vendors. The
transition from SLC (1-bit-per-cell) flash memory to PLC (5-
bit-per-cell) flash memory has resulted in a significant reduction
in the P/E cycle limit, decreasing from several thousand to
several hundred. As technology continues to advance, the P/E
cycles of the memory are expected to undergo further reduction.
Consequently, addressing the lifetime degradation issue of high-
density flash memory becomes crucial to extending their oper-
ational lifetime in both consumer and enterprise environments.

To tackle the lifetime degradation issue of flash memory,
multiple approaches have worked on heat-accelerated healing
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Fig. 1. The P/E cycle limit degraded with the increased cell density [2], [3].

and prolonged dwell time of blocks. These efforts aim to facili-
tate self-healing mechanisms that can effectively extend the P/E
cycle limit of flash memory. We termed the extended P/E cycle
limit as the achievable P/E cycle. First, the heat-accelerated
healing method applies heating operations on flash blocks for
an aggressive healing process [4]–[8]. However, heating opera-
tions, which require hardware support, are exceptionally time-
consuming and must relocate the data in heated blocks before
heating. Cui et al. [9] proposed to avoid unnecessary heating
operations by partitioning the blocks into groups. Only the
blocks exceeding their P/E cycle limit and experiencing short
dwell time need to be heated. While this method can reduce the
time required for the heating operation to some extent, hardware
modifications are still necessary. Second, the dwell time-based
self-healing method revealed that the achievable P/E cycle of
flash blocks is related to the dwell time between two adjacent
erase operations during garbage collection (GC). Extending the
dwell time of a block can improve the block’s achievable P/E
cycle [10], [11]. Lee et al. [11] presented the relationship
between the achievable P/E cycles and dwell time with a set of
parameters based on a 20nm MLC flash memory, and proposed
to throttle the write requests for achieving a better SSD’s
lifetime extension, with the cost of poor write performance.
However, an accurate model with proper parameters to present
such a relationship on high-density 3D NAND flash memory
is still missing. Besides, no prior work has explored the self-
healing effect to improve the lifetime of endurance-limited 3D
NAND flash memory.

In this paper, we first conduct experiments on real 3D TLC



flash chips to study the relationship between the number of
achievable P/E cycles and dwell time, filling the void of critical
parameters in the model for high-density 3D NAND flash
memory. With the model, we further observed that uneven
distribution of dwell time, during the lifetime of a block, is
beneficial to the self-healing effect of flash blocks. The number
of achievable P/E cycles in a block becomes larger if the block
endures long and short dwell time during its lifetime, compared
to enduring even distribution of dwell time. Based on this
observation, we propose an opportunistic self-healing method
for flash memory that aims to prolong the lifetime by leveraging
the self-healing benefits brought by the uneven distribution of
dwell time. The proposed approach maintains two groups with
an unequal number of blocks: the Active Group and the Healing
Group. The Active Group is subjected to a higher frequency
of erase operations, resulting in a shorter dwell time for its
blocks. In contrast, Healing Group experiences longer dwell
time from fewer erase operations. After a predetermined period,
which depends on the partitioning ratio of Active Group, the
roles of the two groups will be switched, with some blocks
in the Healing Group taking on the role of Active Group.
At the same time, all the blocks from the previous Active
Group will be switched to the Healing Group. This periodic
role switching ensures that each block undergoes both short
and long dwell time periods, creating an uneven distribution
of dwell time. By alternating high and low erase operation
frequencies, the proposed method enhances the self-healing
effect of flash blocks, leading to an extended lifetime of flash
memory. Notably, our approach incurs near-free overheads,
making it an attractive solution for improving the lifetime of
flash-based storage systems.

In summary, this paper makes the following contributions:
• We show that there is a great potential to improve the

overall self-healing effect based on the relationship be-
tween the achievable P/E cycles and the block dwell time,
where the model is updated by conducting experiments on
the newly released 3D TLC NAND flash chip;

• We propose an opportunistic self-healing method to im-
prove flash lifetime by maintaining two groups with un-
even numbers of flash blocks, thus achieving an improved
self-healing effect;

• Experiments are conducted on a widely used simulator
with TLC flash extensions. Evaluation results show that
the proposed method can effectively improve the flash
lifetime with near-free overhead.

II. BACKGROUND

A. Basics of NAND Flash Memory

3D NAND flash memory is widely used as the storage
medium in the solid-state drive (SSD), due to its high per-
formance, large capacity, and low power consumption. The
SSD includes a flash memory array and a controller. The flash
memory array is composed of several chips, and the chips
are connected by I/O buses. Inside the flash chip, there are
thousands of blocks with a three-dimensional (3D) stacking
architecture. Fig. 2 shows the internal structure of a flash
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Fig. 2. The internal structure of a 3D NAND flash memory block.

block. Cells in the horizontal direction form a wordline, while
cells in identical directions compose a string. Data in 3D
NAND flash memory uses threshold voltages to represent the
bit information. The number of bits in a storage cell has
increased from one bit to five bits. For example, a cell that can
maintain 2-bit data is called a multi-level cell (MLC). To cater
to the needs of high density, triple-level cell (TLC) and quad-
level cell (QLC) have become the mainstream 3D NAND flash
memory type. There are three types of bits in a TLC NAND
flash memory: least significant bit (LSB), center significant bit
(CSB), and most significant bit (MSB). In 3D NAND flash
memory, read, program, and erase are three basic operations.
The basic unit of read and program operations is a page, but
the erase operation reclaims a block for each time.

There are several management components integrated into
the SSD controller to manage internal activities, such as address
mapping, garbage collection (GC), wear leveling (WL), and so
on. The address mapping is used to translate the logical address
to the physical address of data stored in the flash array. The GC
scheme is designed for space reclamation when the remaining
free space is not enough. Once the number of free blocks is
lower than a predefined threshold, the GC is triggered. When
GC moves valid data from one block to another, it can cause
uneven wearing on the memory cells. This is because some
cells may be written to or erased more frequently than others,
depending on the pattern of data usage and the way that garbage
collection is implemented. The WL scheme is responsible for
managing such uneven wearing among different flash blocks.
WL algorithms aim to evenly distribute the program and erase
cycles across all blocks, which can prevent individual blocks
from wearing out earlier than others and becoming bad blocks.
This helps extend the lifetime of the flash memory and enables
even the wearing of NAND flash blocks.

Combining a well-designed WL algorithm with an effective
GC strategy is essential for optimizing the lifetime of flash-
based storage systems. The current GC policy is the greedy
GC [12], [13] that selects the victim block with the largest
number of invalid pages in a plane to erase, which can free
up more space in the SSD, and then the performance can
be improved. Despite the benefits, the greedy GC also has
potential drawbacks. For example, the greedy GC may prioritize
freeing up space quickly without considering the long-term
effects of the GC process, such as the fragmentation of data.
Furthermore, the greedy GC may cause valid page migration,
where valid data need to be rewritten during each GC process.



When the number of migrating valid data is high, it means
that the SSD has performed more additional write operations
than necessary, which can lead to a decrease in the lifetime
of NAND flash memory and overall performance. Therefore,
how to improve the efficiency of the GC process in modern
high-density flash memory has become a well-studied topic
[13]–[16]. In particular, multi-stream technology [14], [16]
is one of the effective approaches for reducing valid page
migration, which divides data into streams based on data update
characteristics. Each stream is responsible for writing data with
the same update frequency. In this way, data with the same
update frequency can be gathered into the same block so that
they expire at the same or similar time. However, the lifetime of
a flash block is primarily limited by the wear on the flash block
itself as electrons continuously charge and leak. Additional data
writing during GC and WL is the culprit that speeds up the
flash wear. Fortunately, flash blocks can be self-healed, which
can alleviate the wearing. In this paper, we focus on how to
optimize the flash lifetime with the self-healing effect.

B. The Healing Effect of Heating on Flash Blocks

Flash blocks are capable of storing data but have a P/E
cycle limit. To improve the endurance and extend the P/E cycle
limit of NAND flash memory, various techniques have been
developed. One approach is to apply heating operations on
flash blocks, which requires redesigning the internal memory’s
structure by adding the mini heater. Heating operations involve
exposing the memory cells to an exceeded high temperature
(e.g., 800 ◦C [17]) for a short period of time to repair the
damage caused by repeated P/E cycles on flash cells, which
can extend flash cells’ lifetime. The rationale is that the high
temperatures during the heating operation can activate certain
self-healing effects in the flash cells, such as dissipating trapped
charges. Because of the physical characteristics, there is a limit
on the number of heating operations that can be performed
on each flash block. Until the flash memory cells reach their
maximum number of heating operations, the P/E cycle limit,
which is fixed and specified by the vendor, can be extended to
the maximum achievable P/E cycle after experiencing a self-
healing effect. The duration and temperature of the heating
operation must be carefully controlled to prevent excessive
stress on the flash cells, which can cause additional damage
and degrade the flash’s performance. Besides the cost of an
additional internal heater in NAND flash memory, valid data
must be removed from a free block before heating a worn-
out block, which results in additional write operations and a
significantly increased number of valid data migrations.

C. Self-Healing Effect of Dwell Time

Accumulating P/E cycles trap extra electrons in the tunnel
oxide of flash cells, which shifts the voltage states of cells in the
direction of higher value and deteriorates the endurance of flash
memory. Thus, the raw bit error rates (RBERs) of stored data
are significantly increased, and the lifetime of flash memory is
limited to some specific number of P/E cycles. After a period
of retention time, the trapped charge slowly dissipates, which is
called flash self-healing [10], [17]. The idle time between two

successive P/E cycles is referred to as the Dwell Time (DT),
which can help free electrons trapped in the oxide layer [4],
[18], [19]. Eq. (1) shows the relationship between dwell time
and the threshold voltage shift difference (△Vth) caused by
self-healing effect [11]:

△Vth = (Ait ×N0.62
pe +Bot ×N0.3

pe )(1− C × ln(
DT

t0
)) (1)

where N means the number of P/E cycles, DT denotes the dwell
time, and the constant C represents the healing efficiency [11].
t0 typically accounts for the impact of the DT, while the Ait and
Bot regulate the influence from the P/E cycles. As inferred from
Eq. (1), the △Vth is proportional to the dwell time, and thus,
a longer dwell time can achieve a better self-healing effect.

This paper presents a novel approach that performs a proac-
tively self-healing procedure in 3D NAND flash memory. By
carefully designing the GC process to consciously control the
dwell time for each block throughout the memory’s lifetime,
we can improve endurance and reliability without incurring
additional costs.

III. MOTIVATION

Fig. 3. The relationship between the achievable P/E cycles (ranging from 0 to
5k P/E cycles) and the dwell time (ranging from 0 to 5×105 seconds).

The dwell-time-driven self-healing process facilitates the
gradual release of trapped electrons from the oxide layer,
leading to the self-healing effect, which prolongs the lifetime
of the flash blocks, surpassing the P/E cycle limit set by the
flash memory manufacturer. Previous works have studied the
relationship between the achievable P/E cycles (PEa) and the
dwell time (DT), which is demonstrated in Eq.(2) [4], [9], [20]:

PEa =
RBERECC −RBERinit

k × ln(1 + DR
t0+C×DT )

− g (2)

where g and t0 are constant, and k and C are coeffi-
cients, which are set to 3.359×10−1, 7.848×10−1 seconds,
1.213×10−7 and 4.877×10−1 , respectively. The k and g
control the impact of RBER on the PEa, and C and t0 are
the same parameter in Eq. (1). The RBERinit is presented as
ϵ + α PEm

a [21], where ϵ, α and m is 1.484×10−1, -1.597
×10−1and -8.2×10−3, respectively. The RBERECC, which is
the correction ability of error correction code (ECC) in the
BCH ECC module, is set to 160 bits/16KB [22]. We assume
that the data retention time for stored data is three months,
which is required by enterprise SSD [23]. Hence DR is set to
7.776×106 seconds.



The above parameters, except the RBERECC and DR, are
obtained by testing on the latest 3D TLC charge trap NAND
flash memory from one vendor. This flash chip has 2224
blocks and 178 layers in each block. To perform program and
erase operations on the actual chip, we utilize the YEESTOR
9082HC flash memory testing platform [24]. We selected three
different blocks with the same setting to avoid experimental
bias. Before writing random data, the tested blocks undergo
2K P/E cycles with varying dwell time, such as 1s, 16s,
20s, 30s, 40s, 80s, 85s, and 90s. Subsequently, the tested
blocks are subjected to accelerated data retention under 100°C
about 96 minutes to simulate one year’s retention time under
real working environment temperatures (i.e., 25°C) by using
the Arrhenius equation, showing in Eq. (3), to calculate the
acceleration factor [25], [26].

thigh = troom × exp(
E

K
× (

1

Thigh
− 1

Troom
)) (3)

where the Boltzmann constant K and activation energy constant
E are set as 8.62×10-5eV/K and 1.1eV, respectively.

Eq. (2) is graphically interpreted in Fig. 3, which is a log-like
function, presenting the relationship between the achievable P/E
cycles and the dwell time. The achievable P/E cycles increase
with the increase of dwell time. In particular, we observe that
uneven distribution of dwell time during the lifetime of a block
can achieve higher achievable P/E cycles. We take the following
cases to illustrate the above observation. Assume that there are
N pieces of data written into M blocks in a time period of T ,
where T is set to three months. M represents an SSD’s capacity.
Note that the value of N should be greater than the value of M .
Otherwise, no GC operations will be triggered. To simplify the
assumption model, the size of each data piece is equal to the
capacity of a block. If we evenly distribute all the data among
blocks, each block will write N

M data, so the average dwell time
of each block is (T×M)

N , called DTave. On the other hand, if we
divide the block into two parts, one takes up Tblk, and the other
is 1-Tblk. Similarly, we also divide the data into two parts: Tc

and 1-Tc. Tc’s data is written into the blocks of part Tblk, and
vice versa. Thus, the dwell time (DThealing, DTactive) for each
part during the entire healing procedure could be calculated as
follows:

DThealing =
Tblk

Tc
× T ×M

N
(4)

DTactive =
1− Tblk

1− Tc
× T ×M

N
(5)

Suppose DTave is 63072 seconds, so the lifetime of NAND
flash memory can roughly reach 3833 P/E cycles, according to
Eq. (2). Now, when Tblk is set to 7

10 and Tc is set to 1
10 , the

dwell time of the first part (DThealing) will be 441504 seconds,
and we call this part as the Healing Group. For the second
part, the dwell time (DTactive) will about be 21024 seconds,
and we call this part the Active Group. Therefore, blocks in
the Healing Group will obtain 5085 achievable P/E cycles, and
the achievable P/E cycles of the blocks of Active Group will
be 3387 P/E cycles. In this case, by dividing the blocks into
two groups and storing different amounts of data in each group,

the average achievable P/E cycles for each block will be 4236,
which is 10.5% higher than evenly writing the data into all
blocks. The other case is that we assign 7

10 of blocks to the
Healing Group and handle 1

2 of data, while 3
10 of blocks are

in the Active Group to serve the remaining data. As a result,
we can achieve only 3804 achievable P/E cycles, which is even
0.7% lower than the case of evenly distributing the data across
all the blocks. These two cases indicate that appropriately
partitioning flash blocks to accommodate varying amounts of
data can substantially improve the self-healing process of flash
blocks. This, in turn, can lead to an overall improvement in the
lifetime of SSDs. The relationship between the achievable P/E
cycle and the dwell time remains logarithmic [9]. Therefore,
the aforementioned discussion is applicable to different flash
chips, where the only difference lies in the detailed parameter
values. To ensure that the Healing Group undergoes fewer GC
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Fig. 4. The analysis of thresholds Tblk(ranging from 0.5 to 1), which is the
ratio of block count in Healing Group, and Tc (ranging from 0 to 0.5), which
is the ratio of the GC count on Healing Group (The range of the y-axis is from
3K to 6K P/E cycles).

operations than the Active Group, the value range of Tc is
set between 0 and 0.5. Additionally, our switch is based on
the number of blocks in the Active Group. To ensure that a
block has a longer duration in the Healing Group, the value
range of Tblk is set between 0.5 and 1. Since Eq. (2) is a
concave function, we should avoid the selection of Tblk and Tc

to make the average dwell time of the Healing Group and the
Active Group less than or equal to the case that all the data are
evenly distributed. Based on the same assumption mentioned
above, we plot Fig. 4 to guide parameter selection. It can be
observed that, at the same value of Tblk, a smaller value of Tc

leads to a greater enhancement in the lifetime of flash memory,
compared to the translucent plane in the middle representing
the achievable P/E cycles when data is evenly allocated to
all blocks. Fig. 4 can provide valuable guidance for selecting
threshold values during the implementation of the opportunistic
self-healing method. In summary, without the requirement for
additional hardware, we can simply group the blocks and
control the amount of data written to each group. Then, by
periodically switching the blocks in these two groups, blocks
can experience a long and short dwell-time period. By creating
an uneven distribution of dwell time among blocks’ lifetime,
we can extend the lifetime of the flash memory. Therefore,
we need to improve the existing GC strategy and deliberately
control the data writes.



IV. DESIGN

A. Overview
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Fig. 5. The architecture of storage system with the opportunistic self-healing,
including three main components: 1) Block Partition Scheme, 2) GC Block
Selection, and 3) Inter-Group Switching.

In this section, an opportunistic self-healing method is pro-
posed to extend the lifetime of NAND flash-based storage
systems. Fig. 5 shows the architecture of the opportunistic
self-healing method, including three main components: 1)
Block Partition Scheme; 2) GC Block Selection; 3) Inter-Group
Switching. We propose to maintain two distinct groups with
an unequal number of blocks. The key idea is to intentionally
create an unevenness in the erase operation distribution between
these two groups. The group that frequently undergoes erase
operations is called the Active Group, whereas the group that
experiences fewer erase operations is known as the Healing
Group. This uneven distribution of erase operations will result
in the blocks in Active Group enduring shorter dwell time, while
the blocks in Healing Group endure longer dwell time. After
a predetermined period, which depends on the partitioning
ratio of Active Group, the roles of the two groups will be
switched, with some blocks in the Healing Group taking on
the role of Active Group. In tandem with this, all the blocks
that constituted the previous Active Group will be reassigned
to the Healing Group. This periodic switching of roles ensures
that each block experiences a period with short dwell time and
the remaining period with long dwell time, achieving the goal
of uneven distributions of dwell time. This process enhances the
self-healing effect of flash blocks, thus prolonging the lifetime
with near-free overheads. Meanwhile, the dwell time of blocks
is important statistical information in our approach. Therefore,
we propose an efficient and space-saving method called Dwell
Time based Block Management for recording blocks’ dwell
time.

To realize the idea, several challenges should be addressed.
First, we should correctly record the dwell time for each block
without introducing excessive storage overhead. Second, how
to assign blocks to the Healing Group and the Active Group
remains a challenge. A simple solution is that all blocks in
each plane can be separated into two groups based on the
hotness of service requests. One is responsible for serving the
hot write data, and the other one can handle the cold write

data. The number of blocks in each group is determined by the
proportion of cold and hot data from upper-level applications,
but the setting of block quantities between the two groups
can considerably affect the flash lifetime, as illustrated by
the second case presented in Section III. It is necessary to
deliberately control the number of blocks in two groups. Third,
for GC victim block selection, we should consider both the
number of invalid pages within a block, which determines the
GC efficiency, and the dwell time of flash blocks, which affects
the self-healing effects. The existing GC strategy is no longer
suitable for our approach, and it needs improvement. To uneven
the dwell time of blocks, a new strategy that selects victim
blocks from different groups should be introduced. Finally, the
conventional WL algorithm is designed to wear evenly across
the entire lifetime of blocks, which is against the idea of our
proposed method. We aim to unevenly distribute wear on blocks
at arbitrary points during their lifetime, but ultimately, each
block will experience the same degree of wear. Therefore, our
proposed method should apply a new mechanism to control the
wear on blocks. In the following, the detailed design will be
discussed to address these challenges.

B. Dwell Time based Block Management
In this section, we introduce a dwell-time based block

management method to facilitate the implementation of the
opportunistic self-healing method. Within the dwell time of a
flash block, it undergoes three distinct statuses: free block, open
block, and data block. There is a conversion relationship among
these three block statuses. First, when a free block is selected
and ready for data writing, it becomes an open block. Second, if
we continue to write data into the open block until there are no
remaining free pages, the open block will become a data block
and we need to find another free block as the open block. The
data block is then erased and becomes a free block for future
writing services. As introduced in Section II, the dwell time of
a block is defined as the time interval between two adjacent
erase operations. Thus, the dwell time of a block, denoted as
DT , encompasses the time spent in the free block status, the
open block status, and the data block status.

The dwell time information of each block is recorded in a
table, named dwell time table (DTT), which is stored in the
DRAM of SSD’s controller, as shown in Fig. 5. Each entry
in the DTT includes the block ID and the last erase time of
this block. To ensure the accurate tracking of the DT for each
block, the recorded information needs to be updated during
each GC process. Assume that a data block (e.g., the block
ID is 1) has participated in the i − 1 erase operation during
the GC process. Then, the time point of this erase operation is
labeled as erasei−1 that has been recorded in the DTT. Once
a block is erased at the ith erase operation, the time point of
the ith erase operation is referred to as the erasei, and will be
updated in the DTT. Therefore, given the time points of two
erase operations, we can calculate the ith DT of a block. For
instance, if a block with ID 1 was erased at time point 8, the last
erase time of block 1 in the DTT would be updated to 8, which
means that the next dwell time of block 1 starts to accumulate,
and this value will be updated until the block is selected for the



next erase operation. Such dwell time can be calculated as the
interval between the time point of the current erase operation
and the last erase time point recorded in the DTT. For example,
if the time point of the current erase operation is 64 while the
last erase time is 8, then the current dwell time of block 1 can
be calculated as 64-8=56. At the same time, the last erase time
of block 1 will be updated as 64 in the DTT. Gradually, we can
separately collect the average dwell time for each block in two
distinct groups: the average long dwell time when the block is
in the Healing Group and the average short dwell time when
the block is in the Active Group. According to Eq. (2), we can
individually calculate the achievable P/E cycles for each block
within the two groups. Ultimately, each block’s final achievable
P/E cycle is determined by averaging the two achievable P/E
cycles.

As discussed in Section III, the uneven distribution of dwell
time can prolong the achievable P/E cycles of a block. The
dwell time information is used as a significant indicator to
reveal the self-healing effect of a block. In the following,
we will provide a comprehensive description of our proposed
opportunistic self-healing method, achieving flash lifetime op-
timization by controlling block dwell time.

C. Opportunistic Self-Healing

In this section, we propose an opportunistic self-healing
scheme to optimize flash lifetime. The basic idea is to partition
blocks into two distinct groups: the Healing Group and the
Active Group. During each GC process, we strategically select
the victim block for erasure from either group. This approach
aims to achieve a longer dwell time for blocks in the Healing
Group, and a shorter dwell time for blocks in the Active Group.
To achieve this goal, we have introduced three schemes to man-
age flash blocks and garbage collection. Firstly, to achieve the
desired partition ratio between two groups, we design a Block
Partition Scheme that ensures the block count ratio between
the two groups remains within a specified threshold. Secondly,
a new GC process called GC Block Selection, is designed to
select the victim block from each group, considering both the
dwell time and the number of invalid pages. This scheme makes
a tradeoff between the GC efficiency and the self-healing effect
of certain blocks. Thirdly, we propose Inter-group Switching
to ensure not only uneven wear distribution across each block
at arbitrary points but also achieve uniform wear levels among
all blocks over time. The above strategies of the opportunistic
self-healing scheme are described in detail in the following.

1) Block Partition Scheme: We aim to make some blocks
experience short dwell time periods with more frequent erase
operations, while other blocks with long dwell time periods
and less frequent erase operations. A practical approach to
naturally distinguish between these two types of blocks without
compromising SSD performance is considering the data hotness
since the hot and cold data have different update frequencies,
directly affecting the GC process frequency on the data blocks.
Inspired by this, separating cold and hot data naturally divides
the blocks into two distinct groups, termed Healing Group
and Active Group, as illustrated in Fig. 6. The blocks in the
Healing Group allocated with cold data have longer dwell time,
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while blocks in the Active Group that store hot data experience
shorter dwell time. The ratio of cold and hot data depends
on the access behaviors of upper-layer applications, leading to
variability in the number of blocks within each group. However,
not all partitioning ratios result in the desired extension of the
block’s lifetime, as described by the second case in Section III.
Hence, regulating the number of blocks within these two groups
becomes necessary. In summary, we initially divide blocks into
different groups based on the hotness of the data. As the volume
of data requests from the upper layer increases, we re-assign
data to the other group for incoming requests once the ratio
between the two groups deviates from our expectations.

This paper adopts the frequency of data updates [15] to
indicate the hotness of data. We use a counter to record the
update frequency of incoming write requests. Data with update
frequencies exceeding a specified threshold is classified as
hot data, while data with frequencies below this threshold is
classified as cold data [27]. The proposed method incorporates
multi-stream capability, allowing two blocks to simultaneously
stay in the open status in each plane [28], where one block is for
cold data and one is for hot data. By employing different blocks
for storing cold and hot data, distinct invalidation frequencies
are observed in these two kinds of blocks, and the logical
capacity is split into two distinct parts.

In summary, we first place the incoming cold or hot data
from the upper layer into the respective open block, with cold
data going into the open block primarily designated for cold
data and hot data into the open block mainly designated for
hot data. Subsequently, the open block that stores the cold data
will be assigned to the Healing Group, whereas the open block
storing hot data will be assigned to the Active Group. With
each write request, we check the number of blocks within both
groups. Once the block ratio between these two groups deviates
from the pre-defined threshold, we may reassign the current
open block to another group. We introduce a threshold, Tblk,
to determine the partition ratio of the Healing Group, as shown
in Eq. (6).

# Blk in HG = Tblk × Total Blk Number (6)



where the value of Tblk ranges from 0.5 to 1, and the # Blk
in HG means the number of blocks in the Healing Group. As
shown in Fig. 6, initially, we identify the hotness of the write
request from the host through the Hotness Classifier. Then, we
distribute data to one of two open blocks based on their hotness.
If the open block is for hot data, we assign it to the Active
Group. Conversely, if the open block is for cold data, we will
assign it to the Healing Group. After the block finishes the data
writing and becomes a data block, it stays in the corresponding
group. Once the number of blocks in the Healing Group falls
below the threshold (less than Tblk times the total number of
blocks in the plane, like Case 1⃝ in Fig. 6), we assign the open
block to the Healing Group. On the contrary, if the number
of blocks in the Healing Group exceeds Tblk times the total
number of blocks in the plane, like Case 2⃝ in Fig. 6, the open
block will be assigned to the Active Group. With the above
strategy, each block will be assigned to either Active Group
or Healing Group, and the ratio between them approximately
reaches the desired setting after the initial assignment.

2) GC Block Selection: To further uneven the dwell time of
blocks in these two groups, it is necessary to redesign the GC
victim selection during the runtime. When a block is frequently
erased, its dwell time is shortened, while blocks that are not
frequently selected for GC operations have a longer dwell time.
Therefore, it is crucial to meticulously design our GC victim
block selection strategy to distribute different GC frequencies
across two groups.

GC Block Selection for opportunistic self-healing considers
both dwell time and the invalid page counts of flash blocks. Our
objective is to conduct more GC operations on blocks in the
Active Group, thereby shortening their dwell time. Conversely,
we reduce the chance of selecting blocks from the Healing
Group as victim blocks, enabling them to have longer dwell
time. Based on this principle, we control the probability of
the GC operations occurring in the two groups by setting a
threshold (Tc), which satisfies the following relationship:

GC Count in HG <= Tc × Total GC Count (7)

where Tc varies between 0 and 0.5, and GC Count in HG means
the number of GC operations that happened in the Healing
Group. We prioritize selecting blocks (ABlks) from the Active
Group for erasure, like Case 3⃝ in Fig. 6, as shown in Line 20
of Algorithm 1. Yet, if the number of erasures on blocks
(HBlks) from the Healing Group falls below a certain value
(Tc times the total number of GC operations), like Case 4⃝ in
Fig. 6, the GC operation will select the victim block from
the Healing Group for reclamation, as shown in Line 25 of
Algorithm 1.

The selection strategy for victim blocks within a group
follows the principle of greedy GC, where we prioritize blocks
with the highest number of invalid pages for erasure. Nonethe-
less, when we choose a victim block to be erased, the block
with the highest number of invalid pages within one group
might have much fewer invalid pages than the block with the
highest number of invalid pages in the whole plane. The reason
is that both groups may contain blocks that predominantly store

Algorithm 1 The Process of the GC Block Selection.
1: function FVICBLK(Blks,BlkCnt, T )
2: InPage← −∞;
3: V icBlk ← −1;
4: for i← 0 to BlkCnt− 1 do
5: if Blks[i].BlkInPage > InPage then
6: InPage← Blks[i].BlkInPage;
7: V icBlk ← i;
8: end if
9: end for

10: if InPage < T then
11: return −1;
12: else
13: return V icBlk;
14: end if
15: end function
16: procedure GCBLKSELECT( )
17: Initialize variable Tc, Ti, TotalGCCnt, ABlks, HBlks,

MaxInPage
18: T ← Ti ×MaxInPage;
19: if GC on HG > Tc × TotalGCCnt then
20: V icBlk ← FVICBLK(ABlks,ABlkNum, T );
21: if V ictim = −1 then
22: V icBlk ← FVICBLK(HBlks,HBlkNum, T );
23: end if
24: else
25: V icBlk ← FVICBLK(HBlks,HBlkNum, T );
26: if V icBlk = −1 then
27: V icBlk ← FVICBLK(ABlks,ABlkNum, T );
28: end if
29: end if
30: return V icBlk;
31: end procedure

cold data with lower update frequencies, resulting in a smaller
number of invalid pages in these blocks. Selecting such blocks
could lead to a considerable degradation in GC efficiency and
introduce more GC counts. Therefore, when performing GC
operations on both groups, we will implement an invalid page
checkpoint mechanism. Each time, we compare the number
of invalid pages in the selected victim block (InPage) with
the highest number of invalid pages across the entire plane
(MaxInPage). As demonstrated from Line 10 to Line 11 of
Algorithm 1, if InPage is less than Ti×MaxInPage in the
same plane, where Ti is a value between 0 and 1, we consider
that erasing this victim block may lead to low GC efficiency
and substantial data migration of valid page. Thus, we do not
select this victim healing block to erase but re-select a new
victim block with the highest number of invalid pages from
another group. In this case, the newly selected block is the
block with the maximum number of invalid pages across the
entire plane.

The setting of Ti can largely impact the effectiveness of our
approach. If the value of Ti is set too small, the valid data
migration can not be well addressed. On the other hand, if the
value is set too large, the GC strategy is close to the traditional
greedy GC strategy, with little control over the distribution of
dwell time across blocks. Therefore, it is crucial to carefully
select the value of the Ti threshold.

3) Inter-Group Switching: Following a period of opportunis-
tic self-healing, the blocks in the Healing Group have a longer



dwell time due to fewer GC operations. At the same time,
the blocks in the Active Group have experienced extensively
frequent GC operations with shorter dwell time. To realize the
uneven distribution of the dwell time for each block throughout
its lifetime, we propose to periodically switch the blocks in the
Active Group with the blocks in the Healing Group. In the
following, we will provide a detailed description of how to
perform the switch between these two groups.

We use the same threshold for partitioning groups, Tblk, to
control the time for role switching. When the average erase
count of all blocks within a plane reaches Tblk × P/E cycle
limit, a switch is triggered. Firstly, all the existing blocks in
the Active Group will be assigned to the Healing Group. Then,
we select (1-Tblk) multiplied by the total number of blocks
from the Healing Group as the new Active Group. During
the switch, the blocks in the Healing Group that have been
previously assigned to the Active Group will not be reassigned
to the Active Group again. This way, when the SSD approaches
the end of its lifetime, all blocks will experience an equal
number of P/E cycles, without specialized WL strategies. In
terms of the traditional WL, all the blocks experience a similar
degree of wear throughout their entire lifetime. However, our
proposal aims to create an uneven dwell time distribution of
each block during its lifetime, by repeatedly swapping blocks
from Healing Group to Active Group. Therefore, in this work,
we replace the traditional WL algorithm with the Inter-Group
Switching mechanism.

D. Discussion and Analysis of Implementation Overhead
The proposed method incurs two additional costs. First is the

number of valid page migrations, resulting from the potentially
lower GC efficiency. Second is the storage overhead of DDT.
Therefore, it is crucial to strike a balance between the benefits
of achieving higher P/E cycles and the costs associated with the
number of valid page migrations. In our approach, during the
GC process, we select the victim block within a group based
on the maximum number of invalid pages it contains. However,
this victim block may not necessarily have the highest number
of invalid pages among all blocks in the entire plane. If we
were to erase this block, it would lead to a minor reclamation
of space and the migration of a larger number of valid pages.
This is especially evident when the GC occurs in the Healing
Group, as most of the blocks in this group are storing cold data.
Therefore, overheads caused by inefficient GC operations can
be compensated by the benefits of the self-healing effect. We
introduce invalid page checkpoint mechanism for controlling
invalid pages in the victim block, which greatly reduces the
negative impact caused by the number of valid data migrations.
We have conducted the corresponding sensitivity studies in
Section V.B.4) to present the effects. Compared to previous
work, we do not need to add additional hardware to perform
passive self-healing operations on the memory cell. We only
need to redesign the GC strategy to enable the memory cell
to perform the self-healing process actively. Therefore, there
is no additional firmware overhead since our proposed method
is implemented inside the SSD controller. To realize the Dwell
Time based Block Management, we need to use a table to record

the last erase time of each block. For a 128GB SSD, such
storage overhead is 256KB, which can be negligible. Also, the
dwell time computation overhead of each block and the average
dwell time for each group during GC should be considered.
The dwell time calculation, involving a simple subtraction for
a victim block during GC running in the background, has
minimal computational overhead, ensuring no impact on the
performance of serving write requests by the open block.

V. EVALUATIONS

In this section, we will present the experimental setup and
compare the impact of extending the lifetime using our pro-
posed method with multi-stream GC and state-of-the-art work.
Furthermore, we will evaluate the performance and overheads
of implementing our proposed method.

A. Experimental Setup

The experiments are conducted on the SSDsim [29], which
is an event-driven SSD simulator. Table I shows the detailed
configuration of the evaluated SSD. There are two channels,
and each channel consists of two chips. We use a four-plane
architecture in one die [30]. Each plane consists of 512 blocks.
A block has 1024 pages, so there are 524288 pages in a
plane. The capacity of each page is 16KB. Thus, the total SSD
capacity is 128GB. The ratio of over-provisioning (OP) space is
set as 7%, which is the usual setup for enterprise SSD products.
The value of ThresholdGC is set to 10%. Table II summarizes
the characteristics (e.g., read footprint, write footprint, duration,
and the number of loops) of nine real-world workloads from
MSR-Cambridge benchmark [31], which are a common testing
benchmark for evaluating the flash-based storage systems [9],
[11]. We implement extensions to support the recent TLC flash
memory. The request size is multiplied by 4 times. Further, to
trigger GC operations to wear the flash blocks, we repeat each
workload with specific loops as shown in Table II, extending
the SSD duration to three years, based on the minimum SSD
lifetime [11]. The studies have shown that applications tend to
have similar access behavior over days [2], [32]. We believe
repeating workloads could simulate real long-time workloads.
For each loop, we offset the start address of each request by
its size to avoid the same address updating during replay. The
evaluated comparisons are as follows:

• Multi-Stream combines the conventional greedy GC that
selects a block with the highest number of invalid pages as
a victim block [12], [13], with the multi-stream technique
[14], where two streams for each plane: one for storing hot
data and another for storing cold data. The identification
of hot and cold data is based on the update frequency [27].

• SmartNH is the related work [9], aiming to enhance
the lifetime of flash memory by strategically selecting
worn-out blocks for heating to obtain the healing effect.
To present a fair comparison, we excluded the hardware
heating component, only comparing the strategy of data
allocation that exploits the self-healing effect.

• OSH represents our proposed opportunistic self-healing
method, where employ the same data hotness identification
and multi-stream technique as the Multi-Stream method.



TABLE I
PARAMETERS FOR THE SIMULATED SSD.

Parameters Value Parameters Value
# of channel 2 # of page per block 1024

# of chip per channel 2 page capacity 16KB
# of die per chip 1 SSD capacity 128GB
# of plane per die 4 OP ratio 7% [33]

# of block per plane 512 GC threshold 10% [9]

To assess the benefits of our proposal, two metrics are
evaluated: 1) the cumulative distribution of dwell time to reveal
the variation in dwell time among different blocks; and 2) the
achievable P/E cycles to show the lifetime extension. Moreover,
the overhead mainly comes from GC behaviors, which are
evaluated from two aspects: 1) GC count; and 2) migrated valid
page count. The thresholds used in OSH are Tblk as 0.7, Tc

as 0.2, Ti as 0.9, where the detailed parameter settings are
discussed based on the sensitivity study in Section V.B.4).

TABLE II
THE CHARACTERISTIC OF THE EVALUATED WORKLOADS. (THE DURATION

OF ALL WORKLOADS IS 3 YEARS)

Workloads Read Footprint(GB) Write Footprint(GB) Loops
hm0 0.86 9.94 2432

rsrch0 0.14 12.27 1107
stg0 5.64 6.27 1728

wdev0 0.29 5.22 896
prxy0 0.15 13.81 9788
prn0 1.84 32.64 3932
proj0 2.09 7.97 1544
src20 0.64 14.33 1129
usr0 2.23 7.56 1718

B. Experimental Results

1) The Cumulative Distribution of Dwell Time: Fig. 7 shows
the cumulative distribution of dwell time for blocks, compar-
ing our proposed method (OSH) with the Multi-Stream and
SmartNH. The x-axis represents the dwell time, and the y-axis
is the probability of the dwell time. The results show that our
proposed method creates varying degrees of uneven dwell-time
distribution in the majority of workloads. The workloads, prxy0,
proj0, src20, and usr0, exhibit the significant imbalance in dwell
time, as shown in Fig. 7(e), (g), (h) and (i), which potentially
leads to a remarkable lifetime improvement. However, for the
workload wdev0, in Fig. 7(d), the whole distribution of the
dwell time remains less uneven compared to that of other
methods. Due to the low intensity of write requests in wdev0,
the GC process is not frequent on this workload, as shown
in Fig. 9. As a result, the effect of self-healing from our
method becomes not so effective. In conclusion, OSH achieves
an uneven distribution of the dwell time in blocks, owing
to the well-designed GC strategy, while it is less effective
on workloads with low intensity of write requests. In the
following, we will discuss the effects of each method on
lifetime optimization in detail.
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Fig. 7. The cumulative distribution of blocks’ dwell time.
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Fig. 8. The achievable P/E cycles (OSH: Tblk=0.7; Tc=0.2; Ti=0.9)

2) The Extension of Flash Lifetime: We use the achievable
P/E cycles to evaluate the lifetime extension, as shown in Fig.
8. The demonstrated achievable P/E cycle counts for Multi-
Stream and OSH have already subtracted the additional GC
counts compared to Multi-Stream. From the results, OSH
outperforms the Multi-Stream and SmartNH by achieving a
19.3% and 13.2% on average enhancement in flash lifetime.
This is because OSH can achieve an uneven distribution among
all blocks. Since the GC Block Selection of the OSH may
not always choose the block with the maximum number of
invalid pages, decreasing reclaim space may trigger more GC
operations than methods using greedy GC, like SmartNH and
SmartNH, OSH introduces the least additional GC counts for
all nine workloads.

3) Analysis of GC Behaviors: We analyze the GC behaviors
in detail in this subsection from the perspective of the GC count
and the migrated valid page count.

GC Count: Although the GC count for OSH is marginally
higher than other methods, as illustrated in Fig. 9, the increment
is minimal. In the analysis of all nine workloads, the GC count
for OSH is only about 2.3% higher than that for Multi-Stream
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Fig. 9. The average GC count per block.
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Fig. 10. The average migrated page count.

and 1.3% higher than for SmartNH. Therefore, the cost of the
extra GC counts can be considered negligible.

Migrated Valid Page Count: To evaluate the additional
GC impact because of the lower GC efficiency, we collect the
average migrated valid page count during the GC process, as
shown in Fig. 10. The OSH may not select the victim block
with the most number of invalid pages, so we introduce the Ti

to control the effect of valid page migrations. By appropriately
selecting Ti, the OSH exhibits an average increment of approx-
imately 5% and 3% in the migrated valid page count compared
to Multi-Stream and SmartNH, respectively. This increase is
considered acceptable.

4) Sensitivity Study: The benefits of OSH are affected by
the thresholds, Tblk and Tc. First, Fig. 11 shows the achievable
P/E cycles, the average GC count per block, and the average
migrated valid page count of each GC when the value of
Tblk is fixed at 0.7 and vary the value of Tc from 0.1 to
0.5 with a step size of 0.1. The reason for selecting these
sets of Tblk and Tc values is based on Fig. 4. It can be
observed that substantial improvements are achieved when Tblk

is approximately 0.7, with Tc holding the same value. We also
observe that by fixing Tblk’s value, as Tc decreases, we can
achieve a higher number of achievable P/E cycles. By applying
these sets of values for Tblk and Tc in our proposal and testing
them on nine real workloads. From the figure, the achievable
P/E cycles increase as Tc decreases (see Fig. 11(a)). However,
this improvement is accompanied by an increase in the number
of GC counts per block (see Fig. 11(b)), and in the number of
valid page migrations during each GC process (see Fig. 11(c)).
In conclusion, Tc is set to 0.2 and Tblk is set to 0.7 in this
paper.

Second, when Tc is 0.2 and Tblk is 0.7, the value of Ti is
varied among 0.95, 0.9, and 0.85, as shown in Fig. 12. We
observe that Ti effectively limits the number of valid page
migration during each GC process. From the figure, with the
decrease of Ti, there is a slight increase in the number of
achievable P/E cycles (see Fig. 12(a)), however, both the GC
counts per block (see Fig. 12(b)) and the number of valid

page migration per GC process (see Fig. 12(c)) also increase.
Therefore, in this paper, we set Ti to 0.9.

VI. RELATED WORK

To improve the flash lifetime, previous studies have proposed
approaches from different aspects, including 1) utilizing the
self-healing effect and 2) minimizing the number of valid data
migrations during garbage collection and wear leveling.

Self-Healing Effect. Multiple prior works proposed to im-
prove the flash lifetime through self-healing, which can dissi-
pate electrons embedded in the oxide layer, thereby mitigating
flash reliability degradation. There are two ways to achieve
self-healing, either by hardware-assisted heating or extending
the dwell time between two erase operations. On the one hand,
high temperature can accelerate the self-healing procedure to
improve flash lifetime. To assist the heat-accelerated healing
method, Macronix’s researchers redesigned a new flash archi-
tecture with heaters along each wordline, which can create the
local high temperature in a flash chip. Wu et al. [5] added
an extra die in a flash chip for internal heating operation.
Lue et al. [6] designed a built-in heating plate on the top
of wordlines, which provides extremely high temperature in
about one second to efficiently postpone the lifetime of the
target block in flash memory. Chen et al. [7] and Chang et
al. [8] proposed a strategy to heat cells in batches to avoid
influencing the performance of self-healing operations. Cui et
al. [9] raised a heating method that dynamically adjusts the
heating operation by tracking the dwell time between two P/E
cycles and the write hotness of workloads. However, the above
heat-accelerated healing schemes have several drawbacks. First,
before performing heat operations, the valid data in the heating-
target block should be migrated to a new block. This process
is time-consuming, which is approximately one second for
a block [6]. Second, frequent self-healing operations will be
triggered during the middle or late lifetime of flash memory.
This is because more blocks have low reliability and need to be
recovered by self-healing. Third, high temperature also harms
valid data, increasing their RBERs.

On the other hand, several works studied the impacts of dwell
time on the achievable P/E cycles. Luo et al. [20] proposed to
adjust the read voltage based on the recorded healing period.
The model to expose the relationship between the stresses and
self-healing on the flash cells was initiated by Mohan et al. [10],
who exploited the healing effect by adding dwell time to extend
the lifetime of SSDs. Moreover, a longer dwell time means
more electrons can be dissipated [4], [5]. Unlike the above
methods, our proposal focuses on extending the lifetime of 3D
NAND flash memory via opportunistic self-healing.

Garbage Collection and Wear Leveling. Flash memory
faces a notorious problem of a large number of valid data
migrations during background GC and WL, which is brought
by the out-of-update property of flash memory. Reducing the
number of valid data migrations can ensure the flash lifetime,
especially in a modern high-density flash with fewer P/E cycles.
Prior GC works can be divided into two parts. The first is to
use the GC victim block selection algorithms. For example,
greedy GC is a widely adopted victim block selection algorithm
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Fig. 11. The sensitivity study for Tblk and Tc, where Tblk is 0.7, only varying the Tc values: 0.1 (P1), 0.2 (P2), 0.3 (P3), 0.4 (P4), 0.5 (P5).
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Fig. 12. The sensitivity study for Ti (0.95, 0.9, 0.85), and the value of Tblk and Tc are 0.7 and 0.2, respectively.

[34], which chooses a block with the highest number of invalid
pages to erase. Further, Kwon et al. [35] proposed the FeGC,
which improves the strategy of greedy GC by incorporating the
invalidation history of pages in a block. Lin et al. [36] proposed
to upgrade the GC strategy by using the past data update times.
This approach increases both the efficiency and fairness of
the GC process. The second is to allow data with the same
characteristics to be grouped and written to different streams
[13]–[16]. For example, Kang et al. [14] proposed a multi-
stream SSD method, which maps application and system data
with different lifetimes into SSD streams. Furthermore, Wang
et al. [13] proposed to estimate the block invalidation time
and group data with similar block invalidation time values into
blocks. In addition, optimizing the overall performance of GC
requires consideration in combination with the characteristics of
the upper layer application, such as the real-time system [37].
Gao et al. [38] proposed to improve the latency and perfor-
mance of SSDs by utilizing the variation of idle time to serve
I/O requests among different chips without conflicts of internal
data. The GC efficiency is closely related to the number of valid
data migrations. To alleviate this issue, we use a combination of
the block’s dwell time and invalid page count to select a victim
block. Different from the above works, we achieve self-healing
by redesigning the GC algorithm to spontaneously control the
dwell time of each block. Thus, we aim to improve our GC
strategy while avoiding any negative impact on the achievable
P/E cycle due to the low GC efficiency.

Unevenly wearing the memory cells [39] by the GC seriously
impacts the lifetime. Thus the wear leveling can spread the
erase and program operations across all the memory cells,
rather than repeatedly targeting the same cells. Previous wear
leveling strategies are implemented to make all blocks wear
evenly. For example, Jimenez et al. [40] proposed to redesign
the wear leveling algorithm by tracking the weakest cells and
letting the strongest cells ease them. Yung et al. [41] proposed
an effective block group-based wear leveling algorithm to
separate the hot and cold data into different groups and relieve
the I/O request in the granularity of a group. Chang et al. [42]

proposed evenly distributing the healing cycles among all the
flash. Different from the above works, our work considers the
dwell time of blocks and strategically selects a Group for
serving writes to make full use of all block’s P/E cycles.

VII. CONCLUSION

In this paper, an opportunistic self-healing method is pro-
posed to enhance the lifetime of flash memory. To realize the
uneven distribution of dwell time during the block’s lifetime,
three schemes are proposed and discussed. The Block Partition
Scheme is designed to control the number of blocks between
the Active Group and the Healing Group. The GC Block
Selection is proposed to strategically select victim blocks from
either group. The last one is the Inter-Group Switching, which
periodically switches between blocks in the Active Group and
blocks in the Healing Group, achieving uneven dwell-time
distribution among blocks’ lifetime. Evaluation results show
that our proposal can extend the flash lifetime by 19.3% and
13.2% on average with near-free overhead, compared with the
baseline and the related work.
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