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Abstract—Recent advances in machine learning (ML) have1

spotlighted the pressing need for computing architectures that2

bridge the gap between memory bandwidth and processing3

power. The advent of deep neural networks has pushed tra-4

ditional Von Neumann architectures to their limits due to the5

high latency and energy consumption costs associated with6

data movement between the processor and memory for these7

workloads. One of the solutions to overcome this bottleneck8

is to perform computation within the main memory through9

processing-in-memory (PIM), thereby limiting data movement10

and the costs associated with it. However, dynamic random-11

access memory-based PIM struggles to achieve high throughput12

and energy efficiency due to internal data movement bottlenecks13

and the need for frequent refresh operations. In this work,14

we introduce OPIMA, a PIM-based ML accelerator, architected15

within an optical main memory. OPIMA has been designed to16

leverage the inherent massive parallelism within main memory17

while performing high-speed, low-energy optical computation to18

accelerate ML models based on convolutional neural networks.19

We present a comprehensive analysis of OPIMA to guide design20

choices and operational mechanisms. In addition, we evaluate21

the performance and energy consumption of OPIMA, comparing22

it with conventional electronic computing systems and emerging23

photonic PIM architectures. The experimental results show that24

OPIMA can achieve 2.98× higher throughput and 137× better25

energy efficiency than the best known prior work.26

Index Terms—Convolutional neural networks, machine learn-27

ing (ML) acceleration, photonic memory, processing-in-memory28

(PIM), silicon photonics.29

I. INTRODUCTION30

FOR EMERGING machine learning (ML) models being31

used across application domains [1], [2], [3], the exponen-32

tial growth in their computational demands has significantly33

outpaced the rate of advances in traditional computing archi-34

tectures [4], [5]. The resulting Von Neumann bottleneck35

that alludes to the memory wall problem [6], is a critical36

challenge to overcome, to support modern ML workloads.37

In response to the limitations posed by the Von Neumann38
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architecture, various alternative paradigms are being explored 39

by industry and academia. A promising alternate computing 40

paradigm involves in-memory computing or processing-in- 41

memory (PIM) [7]. PIM architectures propose a departure 42

from traditional designs by integrating processing capabilities 43

within the memory subsystem. This integration aims to min- 44

imize data movement, reduce latency, and minimize energy 45

consumption associated with processing applications. 46

Given that dynamic random-access memory (DRAM) is the 47

standard main memory technology today, it is an obvious 48

candidate for PIM. Several prior efforts have focused on 49

architecting DRAM-PIM [8], [9], [10]. However, conven- 50

tional DRAM-based PIM systems have encountered challenges 51

in achieving high throughput and energy efficiency. These 52

challenges arise primarily due to internal data movement 53

bottlenecks and the necessity for frequent memory refreshes. 54

To address the energy and latency concerns associated 55

with refreshes, nonvolatile memory (NVM) technologies, 56

such as ReRAM [11], [12], spin-transfer torque RAM (STT- 57

RAM) [13], and phase change material (PCM) memories [14], 58

[15], [16], have been considered. However, ReRAM and STT- 59

RAM technologies face fabrication challenges and endurance 60

issues [17], [18]. ReRAM additionally suffers from resistance 61

drift over time, which impacts data readout accuracy [17]. 62

PCMs offer better energy efficiency, bit density, and 63

bandwidth than other NVMs. They can switch between two 64

physical states: 1) amorphous and 2) crystalline. In the context 65

of electrically controlled PCM (EPCM) devices, these phase 66

changes are induced by applying current through microheaters. 67

It is possible to regulate the phase shift from amorphous to 68

crystalline, enabling the creation of multilevel cells (MLCs) 69

to store more data by adjusting the extent of the material’s 70

crystallization. However, utilizing the resistance in PCMs to 71

encode data poses challenges as the resistance values that PCMs 72

attain depend nonlinearly on the applied write voltage [19]. 73

To address these challenges, optically programmed PCM 74

(OPCM) cells can be considered [23]. OPCM cells are fab- 75

ricated with PCM deposited on top of a photonic waveguide 76

and are programmed through laser pulses. Here, in place of 77

resistance, the refractive index of the PCM is the physical 78

property used to represent data. OPCMs can be programmed 79

using laser pulses guided to them through on-chip waveguides. 80

This makes them ideally suited for integration onto silicon 81

photonic platforms. OPCMs are based on silicon photonics, 82

which is an emerging field that integrates photonic systems 83

with electronics. This platform offers several advantages 84

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3619-1465
https://orcid.org/0000-0002-7814-2370
https://orcid.org/0000-0003-4930-2985
https://orcid.org/0000-0002-0846-0066


2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

over traditional electronic circuits, including high throughput85

and low energy consumption, for specialized computation86

tasks [19], [20], [21], [22]. Merging this computational87

capability with an OPCM main memory could allow for high-88

speed in-memory computation without the data movement and89

refresh bottlenecks seen in DRAM-PIM.90

In this article, we explore how to architect a photonic main91

memory, to enable ML acceleration through PIM. We utilize92

the OPCM-based main memory from [23] as the backbone93

for our architecture and make several changes to it to support94

PIM. We have named our photonic PIM architecture for ML95

acceleration, OPIMA.96

The novel contributions in this article a follows.97

1) Scattering and back reflection-aware OPCM cell design98

to maximize bit-density and minimize read errors per cell.99

2) Full system design of an OPCM-based PIM architecture100

that can operate as a main memory while perform-101

ing PIM.102

3) Comprehensive comparison of operational efficiency of103

OPIMA with state-of-the-art accelerators.104

II. BACKGROUND AND RELATED WORK105

Before we discuss our PIM architecture and associated106

techniques, we review some fundamentals and background on107

PCMs, OPCM main memories, and photonic computing.108

A. Phase Change Materials109

PCMs possess the ability to shift between amorphous and110

crystalline states, depending on the level of thermal energy111

applied. This energy must be sufficient to alter the material’s112

temperature to either its melting temperature (Ti; for transition-113

ing to the amorphous state) or its crystallization temperature114

(Tg; for shifting to the crystalline state). Transitioning to the115

amorphous state consumes more energy because its required116

melting temperature exceeds the crystallization temperature.117

It should be noted that it is possible to induce partial phase118

changes within PCMs, creating intermediate states by con-119

verting only a fraction of the material to either state. These120

transitions can be initiated through electrical or optical means.121

Electrical heating can be provided through PN junctions122

whereas optically achieving phase changes requires a laser123

pulse, whose power and duration must be tailored to the124

material’s specific transition energy needs. Common mate-125

rials used for PCM applications include Ge2Sb2Te5 (GST),126

Ge2Sb2Se4Te (GSST), and Sb2Se3 [24].127

The change in a PCM phase brings with it a change in128

the electrical and optical properties of the material. PCM’s129

states have different electrical resistances and different optical130

refractive indices. These differences in characteristics can131

be leveraged for data representation, including multibit data132

representation, enabling dense PCM-based memories, and as133

discussed in this article, PIM architectures.134

For EPCM applications, the high-resistance amorphous state135

is used to represent a binary 0, and the low-resistance crys-136

talline state is used to represent a binary 1. This nonvolatile137

change in resistance allows the PCM cell to be paired with138

an access transistor to form a 1T1R EPCM memory cell and139

Fig. 1. OPCM memory cells proposed in (a) COSMOS [31], (b) Photonic
tensor core [15], and (c) COMET [23]. WG: waveguide; DC: directional
coupler; MR: Microring resonator.

a corresponding memory array of these cells, as described in 140

many prior works (e.g., [26], [27], [28], and [29]). However 141

as discussed earlier, EPCM memories face many challenges, 142

such as asymmetric and high write latencies [30], nonlinear 143

response to write voltages, and resistance drift. 144

OPCM memories rely on shifts in the material’s refractive 145

index to modulate optical transmission, enabling data storage 146

and retrieval [24]. A deep understanding of a PCM’s optical 147

properties is crucial for the effective deployment of OPCM 148

memories. A significant refractive index contrast, ensuring 149

a clear distinction in optical transmission between phases, 150

is vital for reducing optical signal losses and noise [25], 151

which could otherwise lead to readout errors. Similar to the 152

importance of resistance contrast in EPCM memories, a high 153

refractive index contrast improves the signal-to-noise ratio 154

(SNR) during data readout. This is extremely important not 155

just from a data fidelity standpoint but also from a photonic 156

PIM standpoint, as we must ensure error-free data readouts 157

to ensure error-free calculations in the analog domain where 158

photonic computations occur. 159

B. OPCM Memory 160

A main memory architecture should have the ability to 161

store large amounts of addressable data, which can be 162

effectively retrieved and modified, whenever needed by the 163

computing system. DRAMs achieve this by having row- 164

and column-addressable memory cells, arranged into mats 165

of cells, which in turn get organized into subarrays, and 166

then banks. Collections of banks form memory chips, which 167

are arranged into dual in-line memory modules (DIMMs) or 168

3-D high bandwidth memory (HBM) architectures. Modern 169

memory addressing schemes and memory controllers expect 170

this style of data storage and management to be interfaced 171

with them. So, it is prudent to consider a similar style of data 172

storage with OPCM memory as well. A few recent works 173

have tackled the challenge of building an addressable OPCM 174

memory [23], [31], which can be used for the DRAM-like 175

memory organization described above. 176

The work in [31] introduced a straightforward design for a 177

crossbar-based cell, illustrated in Fig. 1(a), in which the OPCM 178

is strategically positioned atop waveguide intersections. This 179

cell design underpins the core of a main memory architecture 180

called COSMOS. In this COSMOS OPCM memory, the 181

mechanism for accessing data is facilitated by specific row 182

and column access signals that operate on distinct optical 183

wavelengths. These signals are required to be activated 184

simultaneously to enable successful write operations within 185
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the memory structure. COSMOS also adopts a subtractive read186

technique. This method involves initially performing a read187

operation across an entire subarray. Subsequently, a reset signal188

is dispatched specifically to the row selected for reading, which189

clears its contents. Following this reset, the subarray undergoes190

another read operation. By executing this sequential reading191

and resetting process, it is possible to extract the data from192

the intended row. The two obtained readouts are subsequently193

processed through subtraction at the memory controller. This194

intricate process, when combined with the assumption that each195

cell can store up to 4 bits of information, significantly amplifies196

the bit density achievable by this architecture, presenting a197

substantial advancement in memory design aimed at enhancing198

data storage efficiency and capacity. However, this architecture199

is inherently susceptible to optical crosstalk as the data storage200

mechanisms end up interfering with one another. It is especially201

susceptible to thermal crosstalk from write operations from202

adjacent rows, especially when multibit storage is assumed, as203

shown in [23].204

The work in [15] showcased an OPCM cell, originally205

devised for photonic tensor core operation, but deserves206

discussion as it has been used in [32] for their OPCM207

memory-based ML acceleration work. The architecture has a208

crossbar structure to allow signals from orthogonal directions209

to interact with each other, enabling a wavelength-division210

multiplexing (WDM)-based broadcast and weight computation211

technique [33]. The OPCM cell itself, however, is placed212

away from the waveguide crossing and can interact with a213

wavelength propagating along the horizontal waveguide. So,214

in effect, each OPCM cell in [15] performs215

Wcell ×
[ {A, λ1}

n
+ {A, λ2}

n
+ · · · + {A, λn}

n

]
= Wcell × A216

(1)217

where, Wcell is the weight stored in the OPCM, A is the218

activation value imprinted onto the wavelength λi, n is the219

WDM degree (i.e., the number of wavelengths in the WDM220

batch) that corresponds to the number of cells per row. This221

operation makes it an excellent MVM engine, with low latency222

and energy-efficient operation. In addition, this cell [Fig. 1(b)]223

is compact and solves the interference and crosstalk issues that224

plague the COSMOS architecture [31] discussed earlier and225

would appear to be a good candidate for an OPCM-based PIM.226

However, the architecture is not column addressable, making227

it not a good choice for memory architecture. To consider this228

cell for a memory architecture and then a PIM architecture,229

column addressability to cells is essential.230

To address these issues, the work in [23], COMET, designed231

a row and column addressable OPCM memory cell [Fig. 1(c)],232

which is also isolated from other cells to avoid data corruption233

due to crosstalk. This memory cell makes use of GST for234

data storage, with two MRs acting as the access control,235

electro-optically. The MRs are electrically tunable using a PN236

junction and are hence active when they are in resonance237

(turned on). In this active state, they allow signals propagating238

through the vertical waveguide on the left to access the OPCM239

cell. The data are imprinted onto the signal and is passed240

to the readout waveguide on the right [Fig. 1(c)]. While the241

proposed cell is not as compact as the one suggested in [15], it 242

offers more reliable data readouts, without crosstalk-induced 243

errors. Further, the GST in the cell was designed to allow for 244

improved energy efficiency in write operations. The subarray 245

architecture also had provisions to ensure loss correction 246

through intermittent semiconductor optical amplifier (SOA) 247

arrays. There are several desirable characteristics that make 248

COMET a suitable backbone for a PIM architecture, but there 249

are also several challenges, as will be discussed in Section III. 250

C. Photonic Computation 251

The previous subsection discussed the characteristics 252

required to realize an OPCM main memory. In this subsec- 253

tion we discuss principles of photonic computation, which are 254

a precursor to realizing a PIM solution with OPCM memory. 255

Photonic computation can be performed through either 256

coherent or noncoherent analog computation methods [19]. 257

Coherent photonic computation utilizes the phase of light 258

waves in a controlled manner, enabling the encoding and 259

manipulation (e.g., multiplication) of data via interference 260

patterns. This approach takes advantage of the coherent prop- 261

erties of light, such as phase coherence and superposition, to 262

perform complex mathematical operations rapidly and with 263

high precision. Computing architectures that leverage coherent 264

computing often make use of Mach–Zehnder interferometers 265

(MZIs) for data manipulation through constructive or destruc- 266

tive interference with a single wavelength. 267

Noncoherent photonic computation, on the other hand, does 268

not rely on the phase information of light, conventionally [33]. 269

Instead, it involves manipulation of the intensity or amplitude 270

of light waves to perform computations, making it less sen- 271

sitive to phase fluctuations and coherence issues that might 272

affect coherent systems. Noncoherent approaches are simpler 273

in terms of data encoding and more robust as they do not have 274

as many noise sources to deal with. This makes them suitable 275

for a wide range of applications that require optical signal 276

processing, such as image processing and sensor data analysis, 277

and fundamental arithmetic operations. In addition, they allow 278

performing arithmetic operations at a very large scale, through 279

the usage of WDM, making noncoherent photonics an attrac- 280

tive option for MVM and general matrix multiply (GEMM) 281

operations. To leverage WDM signals, the photonic device 282

used in noncoherent computation systems must be wavelength 283

sensitive, which makes wavelength selective MRs popular 284

candidates for the fundamental devices in these architectures. 285

An MR is an on-chip optical resonator, which resonates 286

when it encounters an optical wavelength that matches its 287

resonant wavelength (λMR). Through tuning mechanisms, 288

λMR can be altered, increasing losses to the encountered 289

wavelength, thus enabling amplitude modulation, and hence 290

forming the basis for noncoherent computation. There are two 291

main tuning mechanisms used: 1) thermo-optic (TO) tuning 292

and 2) electro-optic (EO) tuning. Both these mechanisms can 293

change the effective refractive index (neff) of the bulk of the 294

MR, thereby affecting (λMR= 2πneffR; R=MR radius). TO 295

tuning achieves this by heating the MR through microheaters, 296

and EO tuning achieves the same through free carrier injection 297

via a PN junction fabricated across the MR [19]. 298
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Several noncoherent computation architecture in prior299

work [20], [21], [22] rely on MR operation for high300

throughput, reliable, low energy ML inference accelera-301

tion, through the computation technique called broadcast302

and weight (B&W) [33]. Here, MRs are tuned to reflect303

a stationary matrix, and vectors are introduced either as304

amplitude-modulated wavelengths or via a subsequent array305

of tunable MRs downstream from the initial MR array’s306

output. The interaction of light with the MRs modifies its307

amplitude to reflect a multiplication operation. Several of308

these light signals can be summed using a photodetector309

(PD), achieving n multiply and accumulate (MAC) operations310

simultaneously. Here, n is the WDM degree of the signal and311

should correspond to the size of the MR array.312

From the discussions in Section II-B, the OPCM memory313

cell in Fig. 1(c) is a potential candidate to be part of non-314

coherent architectures that perform computation operations.315

The OPCM cells can represent the stationary matrix/vector316

element, while the incoming light signal or one of the access317

control MRs can represent the changing vector. At this point,318

performing a memory read operation through the OPCM cell319

will achieve a multiplication operation. However, to achieve320

effective large-scale noncoherent computation via PIM, several321

challenges must be addressed, as discussed in the next section.322

III. REARCHITECTING OPCM MAIN MEMORY FOR PIM323

In this section, we take a brief look at the COMET OPCM324

main memory architecture and why it cannot be used as is for325

effective noncoherent computation within a PIM solution.326

The basic architectural component of the COMET main327

memory architecture is the OPCM memory cell depicted328

in Fig. 1(c). This memory cell is tiled to form an array,329

where each cell can be isolated from each other, while access330

is enabled through a wavelength assigned per column of331

the memory cells in the array. Row access is provided by332

turning on the access control MRs through EO tuning, thereby333

allowing the light signals access to the OPCM cell. N × N of334

these cells can form a subarray and S × S of these subarrays335

form a memory bank. A collection of B memory banks336

constitute the main memory.337

There are four major challenges that must be overcome to338

adapt the COMET OPCM memory architecture for PIM.339

1) Accessing all the cells in the same row across subarrays340

and banks requires B × S × N wavelengths, which341

would be too energy- and power-expensive for a main342

memory of any reasonable size. During data read/write343

operations, the light signals are given access only to the344

subarray in which the corresponding row resides. This345

is achieved through the usage of GST-based waveguide346

switching, rather than splitting the WDM signal into347

multiple subarrays unnecessarily. It should be noted that348

using optical splitters and couplers would essentially349

multiply the laser power needed, and this must be350

avoided.351

2) COMET was architected to enable a power consump-352

tion of under 10 W for the main memory operation.353

This power constraint allows it to operate in a similar354

power point to electronic main memory architectures, 355

such as DDR5. However, from a PIM perspective, 356

these choices pose a problem. Having limited access 357

to subarrays, and hence OPCM cells, per read/write 358

operation severely limits the achievable parallelization 359

of computation operations. So, it is necessary to find 360

a solution that enables multisubarray access, without 361

disrupting the optical main memory operation. Note that 362

we cannot rely on increasing WDM degree or splitting 363

signals from the source across multiple subarrays, as this 364

will incur power consumption over the 10 W constraint, 365

reflecting the previous challenge. 366

3) Optical signals can interact with each other in the 367

readout waveguides. Increasing the WDM degree to 368

avoid using splitters carries with it the risk of increased 369

crosstalk and errors, especially when using OPCM cells 370

at higher bit densities. So, careful orchestration of access 371

and readout is necessary to achieve reliable and error- 372

free computations. 373

4) It is also important to consider the impact of bit density 374

per cell on PIM operations. In COMET, a 4-bit per cell 375

bit density was considered to ensure reliable memory 376

operation. This limits possible neural network parameter 377

sizes to 4-bit if there is a need to perform one-shot 378

operations (e.g., multiplications) as discussed at the end 379

of Section II. Careful architectural considerations are 380

needed to handle higher parameter sizes for computation 381

within COMET. 382

In summary, there are several challenges associated with 383

enabling PIM within an OPCM main memory. In our proposed 384

OPIMA architecture, described in the next section, we address 385

all these challenges via novel and significant alterations to 386

an OPCM main memory architecture, to enable PIM within 387

the memory platform, while still allowing it to retain its core 388

functionality as a main memory solution. 389

IV. OPIMA ARCHITECTURE 390

This section discusses the proposed OPIMA architecture 391

and how it achieves PIM-based ML acceleration. 392

A. Maximizing OPCM Memory Cell Efficiency 393

The OPIMA architecture is a PIM architecture that signifi- 394

cantly expands the capabilities of the COMET main memory 395

architecture. COMET explored how effective refractive index 396

(neff) and optical absorption (κ) can be optimized for maxi- 397

mum energy efficiency in OPCM cells. Based on this analysis, 398

the authors had selected GST as the best suited OPCM material 399

for the C-band of frequencies. 400

In this work, we consider more detailed factors influencing 401

the behavior of OPCM-based memory cells, particularly the 402

unwanted changes in the optical transmission of the cells 403

because of the scattering and back reflection of light when 404

interacting with PCMs. The refractive index of the PCMs in 405

crystalline and amorphous states is significantly higher than 406

the refractive index of the waveguide material. Therefore, 407

the propagating light can be scattered and reflected within 408

the waveguide when interacting with the PCM on top of 409
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Fig. 2. Design-space exploration of GST-based OPCM memory cell. (a) Optical transmission changes due to scattering and back reflections of the light
(�Ts) in the crystalline state. (b) �Ts in the amorphous state. (c) Optical transmission contrast between amorphous and crystalline states (�T). Observe that
for the chosen design point (highlighted with X), the �Ts for both crystalline and amorphous states is less than 5% while the �T is at its maximum with
96%.

the waveguide. Such a scattering effect leads to unwanted410

optical transmission changes at the output of the OPCM411

memory cell.412

To tackle this limitation, we performed a design-space413

exploration using GST on top of silicon waveguide to select the414

most optimal geometry that offers minimal transmission change415

due to light scattering and maximum transmission contrast due416

to phase change. To capture the optimal design with minimized417

scattering of the light, we use the following model:418

Tout = Tin − �Ts − Pabs (2)419

where Tout is the output transmission of the cell, Tin is the input420

power, �Ts is the optical transmission change due to light421

scattering and back reflections, and Pabs is the total fraction422

of the power that is absorbed in the PCM cell (all in dB).423

We perform a design-space exploration of the PCM memory424

cell to minimize �Ts to minimize read errors stemming from425

the scattering effect of the light. For maximizing data signal426

strength, �Ts must be minimized so that the signal change427

due to written data (Pabs) is well represented in Tout428

Tout = (Tin − Pabs) → �Ts = 0. (3)429

This model is applicable to both amorphous and crystalline430

states of the cell. In addition, the desired OPCM memory cell431

should offer: 1) high optical transmission which originates432

from the low power absorption in the amorphous state and433

2) high absorption and hence low optical transmission in434

the crystalline state. Consequently, the optimum design point435

should offer minimized light scattering and back reflections436

at both crystalline and amorphous states while leveraging437

the high controlled optical transmission contrast. Therefore,438

the �Ts and the total optical transmission contrast between439

amorphous and crystalline states (�T = Ta − Tc) can be used440

as a figure-of-merit to find the optimal design for the GST-441

based OPCM memory cell. This optimal design should offer442

a low �Ts in the amorphous and crystalline state and a high443

optical transmission contrast (�T) between amorphous and444

crystalline states.445

The design space exploration results for a 2-μm long446

GST cell that we designed are reported in Fig. 2. Observe447

that for the design point which offers the highest optical448

transmission contrast (�T) highlighted in Fig. 2(c), the trans-449

mission changes due to light scattering and back reflections450

Fig. 3. Architectural overview of OPIMA.

is always less than 5% in the crystalline state [Fig. 2(a)] and 451

the amorphous state [Fig. 2(b)]. In addition, GST offers a 452

high controlled optical transmission contrast (∼96%) for the 453

optimal design point shown in Fig. 2(c) which corresponds 454

to a width of 0.48 μm and thickness of 20 nm. This higher 455

contrast in transmission also allows us to program 16 levels 456

of transmission per cell, allowing a bit density of 4 bits/cell. 457

The OPCM memory cell that we designed and optimized 458

forms the building block of the OPIMA architecture that is 459

designed for efficient data storage and access, as well as for 460

performing in-situ multiplication operations. For the sake of 461

maintaining row and column addressability, and hence main 462

memory operation, we combine this OPCM memory cell with 463

double MRs for optical access control. 464

B. OPCM Memory Operation 465

An overview of how OPIMA is designed to operate as a 466

memory interfaced with an external general-purpose electronic 467

CPU is shown in Fig. 3. A controller unit that handles the 468

electro-optical interfacing requirements must reside between 469

the CPU and OPIMA, as depicted in the figure. This con- 470

troller unit interprets memory commands from the host CPU, 471

enabling main memory operation. It also supports data caching 472

for read data to be sent to the CPU or data to be written to 473

the OPCM memory. In the latter case, the data are encoded 474

via optical signals derived from the laser source. 475

The isolated OPCM cells within OPIMA make read/write 476

operations quite straightforward. For both operations, the row 477

ID and subarray ID must be deciphered from the physical 478

address. Once this has been done, laser signals are sent to 479
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Fig. 4. Memory (a) write and (b) read operation in OPIMA; OPIMA utilizes
multiple read signals simultaneously to perform computation operations. The
differences in control flow between a memory read operation and performing
in-memory computation are highlighted in (b).

the corresponding OPCM bank. The read process [Fig. 4(b)]480

happens as the signal passes through the memory cell and is481

modulated by the OPCM’s optical transmission. The read data482

are sent back to the E-O-E controller where it is demodulated483

using an MR array. Then, this data can be translated to the484

electronic domain and passed on to the CPU. The write process485

[Fig. 4(a)] requires much higher energy as it requires inducing486

partial phase transition in the OPCM memory cells. This487

necessitates more laser power to achieve the phase transition488

across multiple OPCM cells, based on the data to be written.489

During the read and write operations, data integrity is a490

critical concern, especially considering the loss tolerance in491

signal transmission. OPIMA incorporates SOAs within and492

outside the banks and subarrays to maintain signal quality. We493

employ row-wise loss-aware signal amplification to counteract494

potential degradation. The banks and subarrays, once designed,495

have constant losses, facilitating this correction approach.496

C. OPIMA PIM Architecture497

As discussed earlier, the optical transmission of an OPCM498

cell modulates the optical signal passing through it. If the499

access control MR is tuned to represent the second parameter,500

the successive modulations from the MR and the OPCM can501

achieve a multiplication operation. However, since we need502

all the MRs in a row to behave identically to facilitate row503

access, it is better to tune the incoming laser signal to represent504

the second parameter. To achieve an accumulate operation, we505

must let two signals of the same wavelength, modulated to506

reflect products, interact with each other. To perform this step,507

we need to involve products from another subarray sharing the508

same readout waveguide bus. Within the readout waveguide 509

bus, these signals interfering with each other generate the 510

sums. This is desirable from a PIM perspective but will lead to 511

erroneous readouts from a main memory perspective. Hence, 512

for achieving this goal and thus realizing the PIM operations 513

for ML inference acceleration, we need several architectural 514

changes to the main memory architecture, as discussed next. 515

To realize high throughput and error-free PIM operation in 516

OPIMA, we need to address four major challenges: 1) we 517

need to leverage additional mechanisms to increase memory 518

access and computation parallelism beyond those offered by 519

WDM; 2) reads should be supported from a selected subarray 520

or a group of subarrays as needed, without interrupting the 521

main memory operation; 3) when simultaneously read out, the 522

data from computation outputs and main memory accesses 523

must not interfere with each other in an undesirable manner; 524

and 4) the architecture should support PIM operations between 525

parameters (e.g., CNN weights and activations) of any size, 526

irrespective of the specific bit density used in the OPCM cells. 527

1) Implementing MDM for Improved Parallelism: To 528

address challenge 1), within OPIMA, we design the multi- 529

bank OPCM memory organization to go beyond WDM and 530

additionally use mode-division multiplexing (MDM) to enable 531

parallel access across banks [Fig. 5(a)]. MDM involves excit- 532

ing higher order modes in an MDM waveguide bus, where 533

each of the modes of a wavelength can then be used for 534

supporting parallel data transfers and computations. Note that 535

multiple wavelengths co-existing in the waveguide bus (WDM) 536

provide further parallelism for data transfers and computations. 537

Increasing the number of modes comes at the cost of increased 538

width of the individual waveguide to allow the higher order 539

modes to be excited and propagated, as well as increased 540

crosstalk. Thus, determining the optimal number of modes 541

(MDM degree) requires a careful tradeoff analysis. 542

We inverse designed photonic mode convertors based 543

on [34] to exploit the first four modes of TE polarization. 544

Compared to conventional mode convertors based on tapered 545

structures or thickness changes to induce the required index 546

changed, the inverse designed mode convertors offer a compact 547

footprint and minimal loss. Note that exciting more than 548

four modes in the waveguide at the same time is physically 549

challenging as it requires extremely wide waveguides that 550

significantly increase memory area. In addition, higher order 551

modes suffer from intermodal crosstalk due to the overlap 552

of the modes [35], [36]. Based on our MDM propagation 553

analyses, we decided to keep the MDM degree to four, which 554

limits the number of banks in the architecture to four. These 555

MDM signals can be filtered by mode-sensitive MRs to their 556

respective banks and be routed to their respective subarrays 557

through GST switches, enabling parallel read/write operations 558

across banks. However, there is a need to improve parallelism 559

further to achieve higher PIM throughput. In addition, while 560

it is technically possible to perform an MAC operation 561

by reading from two OPCM cells, this operation will be 562

limited to 4-bit parameters under the configuration discussed 563

here. 564

2) Redesigning Banks for Concurrent PIM and Memory 565

Access: A memory bank within the OPIMA architecture is 566
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Fig. 5. OPIMA’s PIM-specific architecture. (a) OPCM bank organization. (b) Subarray organization within the bank, showcasing grouping, aggregation unit,
and computation specific waveguides, coupling MRs, and mode converters (MCs). (c) Subarray group internals; each subarray is equipped with an MDL
array for PIM operation independent of main memory operation. (d) Low loss waveguide (wg) crossings designed using inverse design. (e) GST cells used
for subarray access control during OPCM main memory operation. (f) OPCM memory cell with EO tuned MRs showcased. (g) OPCM memory array within
subarrays, with R × C OPCM cells within it.

composed of R×C OPCM cells [Fig. 5(g)], offering a total567

capacity determined by the product of the number of cells568

and the bit density of each OPCM MLC. To enhance energy569

efficiency, banks are divided into subarrays. The OPIMA570

architecture employs electrically controlled GST-based waveg-571

uide switching to facilitate efficient subarray access [Fig. 5(e)],572

markedly reducing the laser power requirements. The GST573

switch introduces minimal losses and is pivotal for the energy-574

efficient operation of the system. We need to make changes575

to this organizational structure and provide additional access576

mechanisms to address challenge 2).577

Data within OPCMs cannot be sensed in the same manner578

as charge-based storage in DRAM. Accessing data in OPCM579

cells necessitates external laser signals, which must overcome580

several losses in propagation, to be rerouted to the subarrays581

within which the OPCM cell resides. This leads to high582

power consumption, to overcome the losses and the signals583

being split into several destinations. To circumvent this, we584

propose the addition of local laser sources to subarrays, which585

can be triggered as needed for reads. Fortunately, unlike586

OPCM write operations, OPCM read operations are not energy587

intensive [23] and hence we can employ low-power lasers.588

For OPIMA we opted for low-power microdisk laser (MDL)589

arrays [Fig. 5(c)], which can be integrated with every subarray.590

Each subarray uses C MDLs in its subarray, reflecting the591

column number per subarray. The laser output from the MDL592

array can be coupled onto the signal input waveguide of the593

corresponding subarray, using directional couplers. Using the594

MDL arrays, we can access any row within a subarray, without595

the involvement of the external laser source which drives the596

main memory operation. In addition, since the MDL arrays are597

independent of each other, multiple of them can be activated598

simultaneously to read from multiple subarrays without having599

to reroute or incur additional losses.600

Moreover, to ensure that we can read for PIM while601

main memory operations happen in parallel, the subarrays are602

divided into several groups [Fig. 5(b)]. One row of subarrays603

per group can be employed for PIM at a time, while the rest 604

of the subarrays can be used for main memory read/write 605

operations. This ensures significant parallelism in MAC oper- 606

ations that can be executed simultaneously per bank, offering 607

simultaneous solutions to challenges 1) and 2). 608

3) Reducing Output Interference: Now that we have sev- 609

eral MAC operations being supported simultaneously, we must 610

ensure that their results can be aggregated without interfering 611

with each other or the main memory readout operations, to 612

address challenge 3). It should be noted that the subarrays 613

make use of WDM signals which can interfere with each other 614

constructively or destructively. 615

To avoid computation signals interfering with memory 616

read operations, we employ a series of computation-specific 617

waveguides. Computed data are rerouted to the computation 618

waveguides rather than the data-out waveguide using cou- 619

pling MRs which can be activated alongside the MDL array 620

[Fig. 5(c)]. The computation waveguide is used to move the 621

data to the aggregation unit in the bank. To prevent losses 622

and the computed signal from interfering with orthogonally 623

traveling data signals, all the waveguide crossings in the 624

computation waveguide have been carefully designed to be as 625

leakage-free as possible [Fig. 5(d)]. 626

To achieve the optimized waveguide crossing design, we 627

used a photonic inverse design technique to minimize the 628

loss and crosstalk of the waveguide crossings. The Lumerical 629

FDTD solver [37] with the LumOpt [38] inverse design library 630

was used to perform the geometry optimization of the waveg- 631

uide crossings. The optimized geometry of the waveguide 632

crossing is shown in Fig. 6. Note that the transmission of the 633

fundamental TE mode was used as a figure-of-merit in our 634

inverse design optimization of waveguide crossing. We can 635

observe from the figure that the inverse-designed waveguide 636

crossing offers the maximum transmission at the C-band with 637

less than 0.001% of the input optical signal being lost due 638

to optical insertion loss. Note that the optimized waveguide 639

crossing offers minimal −40 dB of the crosstalk in the C-band. 640
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Fig. 6. Low-loss waveguide crossing designed with inverse design method-
ology (left) and its loss profile for C-band (right).

As the data reaches the aggregation unit, they have to be641

merged. Here again, interference between signals can be an642

issue. As discussed earlier in this subsection, we can make use643

of up to four modes without significant crosstalk between the644

signals. We can reuse the orthogonality of modes here again.645

Each subarray group can be assigned a mode using a mode646

converter (MC), before it merges with the waveguide carrying647

the signals to the aggregation unit’s demultiplexer (demux).648

These changes to the architecture solve challenge 3).649

4) Addressing Bit Size Mismatches: OPCM cells within650

the photonic memory can be designed to have different bit651

densities, e.g., 1 bit/cell, 2 bit/cell, 4 bit/cell, etc. However,652

the parameters in an ML model like a CNN can be 32 bits653

in size without quantization. They can also be quantized to654

lower bitwidths, such as 16, 8, or 4 bits to reduce storage655

requirements and to reduce computation latency and energy. In656

scenarios where there is a mismatch between OPCM cell bit657

density and the CNN parameter size (e.g., 4 bits/cell bit den-658

sity with 8-bit CNN parameters), the one-shot multiplication659

operation achieved by reading the OPCM cell, as discussed660

earlier, is not feasible.661

To support different bitwidth scenarios and tackle challenge662

4), we make use of a time division multiplexing (TDM)-based663

approach. For higher bit densities per cell than 4-bits (i.e., a664

nibble), each nibble will have to interact with every nibble of665

the other parameter. This can be achieved without significant666

loss in throughput because of solutions for challenges 1)–3)667

which offer high parallelism in MAC operations, while the668

signals can stay disentangled from each other. However, we669

still have to perform shift-and-add operations to obtain the670

true results for these operations [39]. These necessary oper-671

ations are facilitated within the aggregation unit [Fig. 5(b)].672

This results in an overall drop in throughput, but facilitates673

flexibility in operation, unconstrained by the OPCM MLC bit-674

density.675

The aggregation unit is essential to address challenge 4),676

but it also provides some additional benefits. The PD-based677

conversion to the electrical domain acts as a noise filtering678

mechanism. The wavelength-specific PDs offer disentangle-679

ment from crosstalk between wavelengths, improving SNR680

before the longer transmission to the E-O-E control unit.681

In addition, the parameters can be stored within the SRAM682

cache within the aggregation unit, for additional accumulation683

operations if needed. We also consider 5-bit ADCs so that the684

data can be translated to the electrical domain with any carries685

from the operations. Finally, the readout signals for the MAC686

operations which were generated using low-power MDLs687

will be regenerated through DACs and vertical cavity surface 688

emission lasers (VCSELs) for better fidelity before they reach 689

the E-O-E controller which handles further aggregation and 690

applies nonlinear activation functions (see Fig. 3) for ML 691

inference operations. 692

D. CNN Mapping and Inference in OPIMA 693

The architectural design choices discussed in the previous 694

subsection allow the OPIMA architecture to realize high 695

power consumption efficiency and high integrity large-scale 696

parallel MAC operations and main memory accesses in the 697

optical domain. From a CNN inference perspective, this offers 698

two-fold benefits. First, MAC operations are fundamental 699

operations in CNNs and OPIMA can perform them with 700

high degrees of parallelism. Second, CNNs in general require 701

significant storage and data movement between layers, but this 702

can be significantly reduced as the processing occurs within 703

the memory where model parameters and activation feature 704

maps are stored. 705

To leverage the parallelism offered by the PIM substrate in 706

OPIMA for CNN inference, we need to efficiently map CNNs 707

onto the OPCM arrays. For CNNs, this involves mapping the 708

parameters from both convolutional layers and fully connected 709

layers. Operations for both types of layers can be mapped into 710

MVM operations. For convolutional layers, we adopt an input 711

stationary dataflow approach, where the input data can stay in 712

its native storage location while we drive the smaller weight 713

matrices (decomposed as vectors) through them. Because of 714

the large row sizes within the subarrays, we will be able to 715

drive several kernels simultaneously. The feature map must be 716

divided across subarrays, so that we can access subsequent 717

rows of the map from neighboring subarrays. The kernels 718

rows which must operate on the feature map can be encoded 719

into laser signals through MDL tuning and be introduced into 720

the subarrays. In addition, we can achieve several parallel 721

MAC operations through in-waveguide interference of WDM 722

signals, from multiple subarrays within the same subarray 723

group. 724

Let us consider a simple example with a 2×2 kernel, a 725

feature map (F) with a row size of 4 elements, and MDL 726

array generating wavelengths {λ1, λ2, . . . , λC} (C=number 727

of columns per subarray). The kernel can be broken down 728

into two vectors and mapped to MDL wavelengths: k1 = 729

{k00, k01} → {λ1, λ2} and k2 = {k10, k11} → {λ1, λ2}. 730

Similarly the rows in F can be broken down into vectors 731

and mapped to subarrays: {f00, f01, f02, f03} → Subarray1 and 732

{f10, f11, f12, f13} → Subarray2. Both subarrays must be within 733

the same subarray group to facilitate the MAC operation. If 734

we now enable access to the rows containing these vectors 735

and simultaneously send the k1 and k2 signals from the 736

MDLs through the subarrays, we shall obtain the following 737

in the common readout waveguide bus {(k00 × f00, k10 × 738

f10), λ1}, {(k01 × f01, k11 × f11), λ2}. 739

Because signals of the same λi interfere with each other, 740

this in turn generates: (k00 × f00 + k10 × f10), (k01 × f01 + 741

k11 × f11), which is one addition away from generating the 742

first element of an output feature map. This addition can be 743
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TABLE I
OPTICAL LOSS AND POWER PARAMETERS CONSIDERED FOR OPIMA

Directional coupler loss 0.02 dB [42]
MR drop loss 0.5 dB [43]

MR through loss 0.02 dB [44]
Propagation loss 0.1 dB/cm [45] 

Bending loss 0.01 dB/90o [46]
EO tuned MR drop loss 1.6 dB [47]

EO tuned MR through loss 0.33 dB [47]
SOA gain 20 dB

OPCM read 5 pJ [23]
OPCM write 250 pJ [23]
EPCM write 860 nJ [48]

DRAM access 20 pJ/bit [49]
ADC 24.4 fJ/step [50]
DAC 2.0 pJ/bit [51]

performed at the aggregation unit. The kernel can be moved744

across the MDL array to reflect the stride operation and further745

outputs can be obtained. In addition, multiple kernels can be746

deployed simultaneously over F, across different wavelengths,747

reducing overall processing time requirement. This mapping748

process scales easily with kernel sizes as well, if the kernel749

sizes do not exceed the subarray row size.750

For fully connected layers we opt for a weight-stationary751

approach. In both cases, the stationary matrix must be dis-752

tributed across subarrays to ensure parallelism in operations.753

Once this mapping process is done, OPIMA’s PIM-specific754

architecture (Fig. 5), as described in this section, can be755

utilized effectively to achieve inference operation.756

V. EXPERIMENTS757

In this section, we discuss the evaluation of the performance758

of OPIMA for PIM-based CNN inference acceleration.759

OPIMA adopts a main memory configuration of 4 banks,760

64×64 subarrays per bank, with 256×512 OPCM elements761

and 256 MDLs per subarray. For evaluating OPIMA we762

rely on a modified NVMain 2.0 [61] for memory simulation763

followed by a Python-based performance analyzer, which764

makes use of the loss and energy parameters from detailed765

physics simulations and fabricated device characterizations766

summarized in Table I.767

We compare OPIMA against several electronic and optical768

acceleration platforms along with the current state-of-the-art769

photonic PIM. For photonic accelerator systems, we consider770

the work in [32], named PhPIM in our comparison studies,771

which proposed a PIM adjacent system, and CrossLight [41], a772

photonic CNN accelerator. CrossLight and PhPIM are modeled773

using the parameters in Table I, and considering 8GB DDR5774

DRAM, with 4800 megatransfers per second (MTS) data775

transfer rate as its main memory.776

We also consider Nvidia P100 GPU (referred to as NP100777

in results), AMD EPYC 7742 CPU (referred to as E7742778

in results), and Nvidia Jetson ORIN (a low-power embedded779

GPU for edge AI applications; referred to as ORIN in780

results), as our electronic platform comparison points. In781

addition, we consider the ReRAM-based PIM CNN accelerator782

PRIME [11] for comparison.783

Fig. 7. Subarray group selection for OPIMA architecture.

A. Subarray Grouping 784

The first experiment explores the OPIMA design space to 785

determine the number of subarray groups, which in turn will 786

determine the number of operations that can be performed per 787

cycle, in OPIMA. This increase in parallelism trades off with 788

the power consumption of the architecture. As the number 789

of groups increases, the complexity of the interface required 790

at the aggregation unit also increases, along with the laser 791

power requirement to perform the operations. Simultaneously, 792

we would like the maximum number of subarray rows to be 793

accessible for main memory operations. 794

The OPIMA memory organization has 64 rows of subarrays 795

per bank as mentioned earlier, which must be grouped as per 796

the criteria discussed above. While considering the groups, 797

we would like to avoid the extremes, i.e., the case with a 798

single group or the case with each subarray row belonging to 799

an individual group, resulting in 64 groups. A single group 800

severely limits parallelism, and 64 groups imply that all 64 801

rows will be engaged in PIM operations, essentially preventing 802

any main memory read/write operations. 803

Fig. 7 shows the normalized power, MAC throughput, and 804

rows available for main memory operation, with changing 805

number of subarray groups (x-axis). It can be observed that a 806

configuration with 16 groups strikes a balance between achiev- 807

able compute parallelism with reasonable power consumption 808

and sufficient memory access without starvation. In addition, 809

16 subarray groups enable the maximum throughput efficiency 810

(MAC/Watt) from OPIMA. 811

Our earlier analysis on mode conversion pointed to the fact 812

that we can only have a maximum of four modes in our 813

waveguide at the aggregation unit. Since we must rely on four 814

modes only, to meet the demand of 16 groups, the modes 815

can be reused. For enabling mode reuse, we use the same 816

mode converter designs along the computation waveguides 817

[Fig. 5(b)]. In addition, to prevent the same modes from 818

interacting with each other, each of the four modes is assigned 819

a separate multimode waveguide for transferring to the demux 820

unit within the aggregation unit. 821

B. OPIMA Power Breakdown 822

The power consumption breakdown of the resulting version 823

OPIMA is shown in Fig. 8. From this plot we can observe 824

that the maximum power consumption is contributed by the 825

MDL array and the electrical-optical interface, leading to 826
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TABLE II
VARIOUS MODELS CONSIDERED FOR OPIMA EVALUATION AND THEIR ACCURACY ACROSS QUANTIZATION

LEVELS FOR CLASSIFYING THE SPECIFIED DATASETS

Model Dataset Accuracy (fp32) Accuracy (int8) Accuracy (int4) Parameter count 
Resnet18 CIFAR100 [57] 75.3% 74.2% 72.6% 11584865 (11.6 M)

InceptionV2 SVHN [58] 81.5% 80.8% 75.9% 2661960 (2.6 M)
MobileNet CIFAR10 [57] 88.2% 87.5% 83.5% 4209088 (4.2 M)
SqueezeNet STL-10 [59] 92.5% 90.3% 86.5% 1159848 (1.1 M) 

VGG16 Imagenette [60] 98.96% 96.25% 93.7% 134268738 (134.3 M) 

Fig. 8. Power breakdown for OPIMA architecture.

a maximum power consumption of 55.9 W, for both main827

memory and PIM operations running simultaneously.828

C. CNN Workload Accuracy and Latency Analyses829

For workloads we considered four CNN models: 1)830

ResNet18 [53]; 2) InceptionV2 [54]; 2) MobileNet [55]; and831

4) SqueezeNet [56]. The inference is performed for image832

classification of datasets, details of which are provided in833

Table II. We have considered 4-bit integer quantization using834

TensorRT, as this is the baseline MLC capacity. As the table835

shows this level of quantization results in at most 6% loss836

in accuracy, in the considered models. But this accuracy drop837

is model architecture-dependent, as can be seen in Table II.838

To showcase OPIMA’s flexibility in handling parameter sizes,839

we have also considered 8-bit variants of the same models840

(Table II).841

Before we go into further comparisons, we first analyze842

the performance of OPIMA using both the 4-bit and 8-bit843

quantized variants of the CNN models. A breakdown of844

OPIMA’s latency in ms, as it processes these models, is845

provided in Fig. 9. Processing latency is the total time for846

processing the necessary MAC operations and the aggregation847

unit operation, i.e., all in-memory processing operations. The848

writeback latency refers to the latency incurred while applying849

the nonlinearities and writing back the results, i.e., output850

feature maps, back into OPIMA’s main memory architecture.851

It can be observed that writeback is a significant contributor852

to latency in OPIMA. The PIM operations can leverage853

data within the memory and the high processing parallelism,854

leading to remarkably low processing times. However, the855

latency for the OPCM write operations needed to make the856

output feature maps available within the memory for further857

processing far outweighs the latency savings from the PIM858

operations. So, even though OPIMA can handle a variety of859

parameter sizes, given the OPCM write latencies, it is prudent860

Fig. 9. Latency breakdown for OPIMA’s 4-bit (4b) and 8-bit (8b) variants
across the models from Table II.

to rely on 4-bit quantized models, while suffering some loss 861

in accuracy, if throughput is significantly more important. 862

It can also be observed that OPIMA does not perform 863

as one would expect for the far smaller InceptionV2 and 864

MobileNet models when compared to ResNet18. Both models 865

have higher processing latencies, with MobileNet having 866

significantly higher processing latency than ResNet18. This 867

is attributed to the 1×1 kernel in these models, which pose 868

problems for the WDM-based MAC parallelization within 869

OPIMA. Since the results from these operations do not have 870

any further accumulation to be performed on them, they 871

prevent the totality of the subarray row from being used. If 872

more operations are performed, they will interfere with the 873

results from the 1×1 kernel, leading to erroneous results. So, 874

when these are encountered, OPIMA loses a significant portion 875

of its parallel processing capabilities, especially when they are 876

sequential in the CNN execution graph, like in the case of 877

InceptionV2. MobileNet, though a larger model, offers higher 878

parallelization opportunities, and hence performs at a similar 879

latency, despite being ∼4× the size of InceptionV2. 880

Similarly, writeback is a significant contributor to overall 881

latency as discussed earlier. However, this is proportional to 882

the sizes of the output feature maps generated by the model 883

and not the computational complexity of the model. This is the 884

reason MobileNet has lower writeback latency than processing 885

latency, in comparison, and why InceptionV2 has an overall 886

lower latency than ResNet18. 887

To further characterize the latency benefits of OPIMA, 888

we compare it against the latency for the other photonic 889

computing architectures we have considered, as shown in 890

Fig. 10. The OPCM-based architectures (OPIMA, PhPIM) 891

have better performance than CrossLight, because of the 892

higher parallelism achievable in these architectures. PhPIM 893

leverages the photonic tensor core operation from [15], along 894

with an external DRAM acting as the actual main memory. 895
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Fig. 10. Latency breakdown of CNN model inference across photonic
architectures OPIMA (O), CrossLight (C), and PhPIM (P), for model-dataset
pairs from Table II.

Fig. 11. EPB comparison across architectures.

PhPIM has opted for the faster yet energy-intensive electrical896

PCM programming mechanism, but the tensor core operation897

is still in the optical domain. The reprogramming, or writeback898

as we call it for an OPCM PIM, is significantly faster for899

PhPIM. However, OPIMA leverages much higher parallelism900

inherent to a main memory, and available to a PIM archi-901

tecture, enabling faster processing times. In addition, OPIMA902

does not have to access an external DRAM to access data903

needed for processing hence it does not have any external904

data movement latencies associated with its operation. Note905

that the internal data movement latencies are factored into our906

writeback latency.907

D. Comparison Studies908

In this section, we compare OPIMA against the various909

photonic and electronic acceleration platforms in terms of910

energy per bit (EPB) and throughput efficiency (FPS/W;911

FPS=frames per second).912

On average OPIMA achieves 78.3×, 157.5×, 1.7×, 4.4×,913

2.2× and 137× better performance in terms of EPB over914

NP100, E7742, ORIN, PRIME, CrossLight, and PhPIM,915

respectively, (Fig. 11). It should be noted that P100 can916

outperform OPIMA in terms of raw throughput, especially917

in the case of InceptionV2 and MobileNet, where the GPU918

threads are not constrained by the interference limitations of919

our WDM-based parallelization of operations. But OPIMA920

consumes significantly less power, which also leads to overall921

better throughput efficiency. In terms of FPS/W, OPIMA922

achieves 6.7×, 15.2×, 8.2×, 5.7×, 1.8×, and 11.9× better923

performance over NP100, E7742, ORIN, PRIME, CrossLight,924

and PhPIM, respectively, (Fig. 12).925

Fig. 12. FPS/W comparison across architectures.

It can also be noted that though OPIMA and PhPIM had 926

comparable latencies (Fig. 10), OPIMA is able to outperform 927

PhPIM in these metrics. This is because of the energy- 928

intensive EPCM write processes that accompany PhPIM 929

operation (nJ), as opposed to OPIMA’s OPCM reprogramming 930

process (pJ). 931

VI. CONCLUSION 932

In this work, we presented OPIMA, a high throughput, 933

low latency, highly energy efficient OPCM PIM architecture. 934

OPIMA showcases how an OPCM main memory architecture 935

can be rearchitected to achieve photonic PIM. Through device- 936

level design to enhance efficiency and various architectural 937

innovations, OPIMA compares remarkably against electronic 938

and photonic ML acceleration platforms. On average OPIMA 939

outperforms the considered architectures by 83.1× in terms 940

of EPB and 27.5× in terms of FPS/W. It outperforms the 941

state-of-the-art photonic PIM architecture PhPIM by 186× 942

and 55.3× in these metrics, while achieving lower average 943

latency, across several CNN models. OPIMA also opens the 944

door for possible system-level integration of photonic PIM 945

with dedicated photonic accelerators, such as those described 946

in [20], [21], [22], and [41]. Such a system can benefit from 947

both the higher bandwidth that OPIMA’s main memory can 948

provide along with computation support through PIM. 949
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