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Abstract—Enabled by the recent advancements in 2.5D/3-D1

integration and packaging, the integration of clustered many-2

core processors with high-bandwidth memory (HBM) is3

gaining prominence to satisfy the increasing memory band-4

width demands. Although this integration can offer significant5

performance gains, it is still limited by cache contention in6

the final-level cache on the clusters and by the thermal issues7

in the 3-D HBM. While the existing state-of-the-art resource8

management techniques have tackled these issues in isolation, we9

argue that the cache contention and the temperature of both the10

manycore and the HBM must be considered jointly to harness11

the full performance potential of such modern architectures. To12

cover this gap in the literature, we present MTCM, the first13

resource management technique that considers the cache con-14

tention in maximizing the system performance, while maintaining15

the thermal safety across both the manycore and the HBM16

stack. Enabled by our accurate, yet lightweight, neural network17

models, our proposed task migration and dynamic voltage and18

frequency scaling policies can accurately predict the impact of19

runtime decisions on the performance and temperature of both20

the subsystems. Our extensive evaluation experiments reveal a21

significant performance improvement over existing state of the22

art by up to 1×, while maintaining thermal safety of both the23

manycore and the HBM.24

Index Terms—3-D high-bandwidth memory (HBM), cache25

contention alleviation, clustered many-core processor, machine26

learning models, neural networks (NNs), smart resource man-27

agement, thermal-aware management.28

I. INTRODUCTION29

THE GROWING demand for higher performance in30

computing systems has highlighted the importance31

of improving memory bandwidth, necessitating structuring32

changes across the memory hierarchy. One major break-33

through in this landscape is the introduction of high-bandwidth34

memory (HBM). With its 3D-stacked architecture and multiple35

channels, HBM significantly boosts memory bandwidth,36

enhances power efficiency and lowers latency, meeting the37

demands of memory-intensive tasks. The recent advancements38

in 2.5D/3-D packaging technologies have also facilitated the39

integration of HBM with commercial clustered manycore pro-40

cessors [1], where multiple cores are grouped into clusters and41
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(a) (b)

Fig. 1. Our novel technique targets modern system architectures [1] with
HBM as the main memory of a clustered manycore to address LLC contention
and temperature problems in both subsystems. (a) Clustered manycore.
(b) HBM main memory.

share resources like the last-level cache (LLC). A simplified 42

high-level view of this architecture is shown in Fig. 1. With 43

such integration, the multiple memory channels of the HBM 44

can be leveraged for the parallel data access by the memory 45

controllers on the different clusters, thereby reducing memory 46

bottlenecks and improving the system performance. However, 47

this integration faces some challenges, stemming from the 48

inherent limitations of both the subsystems, i.e., the clustered 49

manycore and the HBM. 50

On the one hand, due to the high thermal density of HBM, 51

parallel accesses to the thermally coupled memory layers can 52

elevate the temperature of the stack to unsafe margins [2]. 53

Such elevated temperatures trigger the dynamic thermal man- 54

agement (DTM) unit, which transitions the impacted memory 55

channels to a low-power state [3] until the thermal violation is 56

recovered, causing long memory request stalls, thus degrading 57

the overall system performance. To alleviate these thermal 58

problems, different solutions have been explored in the liter- 59

ature, ranging from the architecture-level embedded cooling 60

mechanisms [2] to the system-level thermal management 61

techniques [3], [4]. 62

On the other hand, concurrent execution of applications on 63

the same cluster on a clustered manycore can lead to two types 64

of interference problems. First, contention for the limited avail- 65

able cache space on a cluster can slowdown the execution time 66

of the running applications. Second, the heat transfer between 67

the active cores can raise the temperature of the chip, acti- 68

vating the thermal control circuitry (TCC) [5], which in turn 69

throttles the voltage/frequency (VF) levels across the clusters 70

to cool down the cores. State-of-the-art system-level resource 71

management techniques have addressed both the types of 72

interference jointly and in isolation by means of application 73

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9788-9026
https://orcid.org/0000-0003-0245-2062
https://orcid.org/0000-0002-5312-8679
https://orcid.org/0000-0001-9602-2922


2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 2. Although selecting the application-to-cluster mapping in Scenario 2 leads to higher performance gains compared to the other scenarios due to low
cache contention on the cluster, it leads to a temperature violation on the HBM. Overlooking such implications at runtime would trigger the DTM, thus
suppressing the intended performance gains. (a) Initial state. (b) Application-to-cluster mapping scenarios. (c) HBM heatmaps.

mapping, application migration, and dynamic voltage and74

frequency scaling (DVFS) [6], [7], [8], [9], [10], [11].75

Nonetheless, the limitations of both the clustered manycore76

and the HBM have only been addressed individually in77

the literature. As demonstrated in the following motivational78

example, the integration of HBM and clustered manycores79

introduces new intricate tradeoffs between the thermal and80

cache interferences in both the susbsystems, whereby the81

performance potentials might be missed if the contention and82

thermal impacts on the two subsystems are overlooked.83

A. Motivational Example84

We simulate a 64-core processor (detailed in Section VI),85

organized into eight clusters and using an eight-channel HBM86

as main memory, similar to the HBM2E in [12]. The memory87

controller in each cluster is configured to use one of the88

eight channels of the HBM, following a cluster-to-channel89

mapping, where the cluster n uses the channel n similar to [4]90

and [13] as shown in Fig. 2(a). We consider 80 ◦C as the91

temperature constraint for the manycore and HBM. The default92

mechanisms that react to the thermal violations, i.e., TCC on93

the manycore and the low-power state DTM on the HBM are94

both disabled to highlight the impact of resource management95

decisions on the temperature of both the subsystems. Initially,96

clusters 2, 4, 5, 7, and 8 are fully occupied by compute-97

intensive background tasks. These clusters are running at the98

minimum 1.0 GHz VF level and do not issue any memory99

accesses throughout this experiment. Clusters 1, 3, and 6100

are hosting applications with different characteristics from101

the SPLASH-2 [14] benchmark suite: cholesky, water.sp, and102

radix, respectively. For ease of analysis, clusters 1, 3, and 6 are103

set to run at a medium fixed VF level, i.e., 2.8 GHz, to ensure104

that no thermal violation occurs on the manycore side. With a105

fourth application lu.cont also requiring four cores to execute,106

three application-to-cluster mapping scenarios are possible, in107

each, lu.cont will run in parallel on one cluster with another108

application as shown in Fig. 2(b). We study the performance109

and thermal implications of the three mapping scenarios.110

In scenario 1, lu.cont is mapped to cluster 1 to co-execute111

with cholesky. The resulting average performance degradation112

for both the applications compared to their corresponding 113

execution times when running alone on a cluster reaches a sig- 114

nificant slowdown of 18.25%. In addition to this performance 115

degradation, we also observe thermal violations on multiple 116

banks, reaching up to 85 ◦C on the channel 1. This is due to 117

the intense memory accesses issued by cholesky and lu.cont 118

throughout their execution, which elevates the temperature of 119

multiple memory banks in both their assigned channel 1 and 120

directly adjacent channels 2, 3, and 4, as shown in Fig. 2(c). 121

In scenario 2, lu.cont is mapped to cluster 3 to coexecute with 122

water.sp. This application-to-cluster mapping results in better 123

overall system performance compared to the previous scenario 124

with a minimal slowdown of −1.48%, indicating minimal 125

contention between water.sp and lu.cont. While water.sp barely 126

issues any memory accesses, lu.cont heavily utilizes channel 3 127

throughout its execution. Combined with the intense accesses 128

from cholesky on channel 1, and given that channels 1 and 3 129

are vertically adjacent, temperature on many memory banks on 130

the bottom-most layers on the HBM stack again exceeds the 131

80 ◦C threshold. In scenario 3, we map lu.cont to cluster 6 to 132

coexecute with radix, this time far from the heavily accessed 133

channel 1. As expected, temperature throughout the execution 134

remains below the threshold across the HBM stack, as the 135

intense memory accesses from cholesky and lu.cont are now 136

distributed across the less thermally coupled channels, i.e., 137

channels 1 and 6. However, an average performance degrada- 138

tion of 8.61% is observed for both the applications. 139

Although scenario 2 resulted in the best overall system 140

performance with minimal cache contention, it is not a ther- 141

mally safe application-to-cluster mapping option. Applying it 142

at runtime will trigger the DTM, transitioning all the affected 143

memory channels to a low-power state, eventually suppressing 144

the intended performance benefits of such mapping. Therefore, 145

given the observed slowdowns and temperatures, scenario 3 146

remains the mapping option that maximized performance 147

under the considered temperature constraints. At runtime, as 148

the running applications change their execution phases, the 149

resulting cache contention and temperature effects on both 150

the manycore and the HBM change accordingly. Therefore, a 151

system-level resource management should also adapt to such 152
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changes in order to harness the full performance potentials of153

the system. In this work, we adapt to such runtime changes by154

dynamically adjusting both the application-to-cluster mapping155

through task migration and the VF levels of the clusters156

through DVFS.157

B. Challenges and Contributions158

As demonstrated in the previous motivational example,159

maximizing performance requires a comprehensive analysis160

of the resulting cache contention-induced slowdowns in all161

the possible application-to-cluster mappings, along with their162

impacts on the temperatures of both the manycore and the163

HBM. At runtime, a similar analysis should be conducted to164

evaluate the possible application-to-cluster mappings before165

applying a migration. Therefore, there is a need to predict the166

postmigration system performance, as well as the manycore167

and HBM temperatures, which is challenging for the following168

reasons.169

Performance Prediction: Estimating the migration impact170

on the performance considering contention is a complex171

problem. Contention is affected by both the system’s hardware172

characteristics, e.g., cache capacity and associativity, memory173

bandwidth, etc., and by the characteristics of the concurrently174

running applications on such system, i.e., cache accesses,175

misses, etc. This contention behavior is complex and hard to be176

modeled neither analytically nor via profiling of applications177

at design time as established in [7]. We tackle this challenge178

by training a lightweight neural network (NN) model that is179

able to learn the relevant cache contention indicators, e.g.,180

cache accesses, cache misses, memory accesses, etc. from a181

limited training data generated as design time, and generalize182

to unseen contention scenarios at runtime.183

Predicting Temperature: While predicting the manycore184

temperature for different application-to-cluster mappings is185

straightforward, thanks to the well-known RC thermal model186

[15], predicting the temperature impact on the HBM is a187

challenging problem. The memory controllers on the source188

and target clusters involved in a task migration are config-189

ured to use different memory channels. Therefore, after the190

migration is performed, the memory accesses of the migrated191

application will be serviced by the target memory channel.192

Consequently, the power consumption of the banks spanned193

by the source and target channels will be impacted, resulting194

in a new per-bank power distribution map on the HBM.195

Given such a power map, a thermal model can be used to196

accurately predict the postmigration temperature of the HBM.197

However, as the two clusters could be set to different VF198

levels, an application would show a different memory access199

behavior once migrated to the target cluster, thereby resulting200

in different bank power consumptions. Thus, to accurately201

construct the postmigration per-bank power distribution map,202

there is a need for a model to scale the number of memory203

accesses of the migrated application. As detailed in Section IV,204

we address this challenge by training a second lightweight205

NN that is able to accurately scale the memory accesses of206

applications to the new target VF level.207

Runtime Overhead of Temperature Prediction: To ensure the208

thermal safety, a system-level resource management technique209

must operate within brief epochs, as to adapt to runtime 210

dynamics and the execution phases of running applications. 211

For instance, the Linux governor employs DVFS within epochs 212

as short as 1 ms and initiates migrations within 10 ms- 213

long epochs [16]. Given these tight timing constraints, the 214

traditional finite difference methods, e.g., Hotspot [15] or 215

3D-ICE [17], or Green’s function-based approaches, e.g., 216

3DSim [18], are not viable for runtime use due to their 217

extensive computational overhead, i.e., prediction times in 218

tens to thousands of milliseconds [19]. In contrast, machine 219

learning (ML)-based techniques have been demonstrated to 220

provide the necessary accuracy with significantly lower com- 221

putational costs, i.e., microsecond-level predictions. However, 222

no ML-based thermal simulators are available as open-source 223

solutions [19]. To overcome this limitation, we propose train- 224

ing two highly accurate, yet lightweight, NN-based thermal 225

models, one for the manycore and another for the HBM. 226

These models are designed to efficiently and accurately predict 227

the steady-state temperature of their respective subsystems at 228

runtime with an inference time of a few microseconds. 229

Enabled by our NN models, we build a novel resource 230

management technique, MTCM, that combines both the task 231

migration and DVFS to maximize performance consider- 232

ing contention, while enforcing thermal constraints of both 233

the clustered manycore and the HBM. MTCM periodically 234

attempts to achieve a better cache contention balance across 235

the system by migrating applications between the clusters. 236

Before applying a migration, MTCM evaluates the postmi- 237

gration potential performance gains and thermal impacts on 238

both the manycore and the HBM, then only proceeds if the 239

migration would indeed improve performance without causing 240

a temperature violation on any of the two subsystems. In 241

addition, as applications change characteristics throughout 242

their execution, MTCM’s DVFS policy is invoked periodically 243

to boost the clusters when the thermal headroom is available, 244

and to throttle the clusters to avoid the thermal violations on 245

both the manycore and the HBM due to sudden surges in 246

power consumption. 247

Our novel contributions are as follows. 248

1) We train two lightweight NN models to accurately 249

predict the impact of task migration on the system 250

performance considering cache contention in clusters, 251

and the impact of changing the VF levels on the HBM 252

access behavior of applications. 253

2) We train two lightweight NN-based thermal models, 254

engineered to accurately predict the temperature of the 255

clustered manycore and the HBM within the stringent 256

time constraints at runtime. 257

3) Enabled by our fast and accurate NN models, we present 258

MTCM, the first resource management technique that 259

jointly mitigates cache contention while enforcing ther- 260

mal safety on the systems with an integrated clustered 261

manycore and HBM by means of the task migration and 262

DVFS. 263

The remainder of this article is organized as follows. 264

Section II covers the state-of-the-art research related to our 265

work. After formally formulating the problem in Section III. 266

Section IV introduces our approach to data generation and 267

training of our four NN models. Section V then describes 268
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the details of our proposed MTCM. Section VI presents the269

evaluation results of MTCM compared to the two state-of-270

the-art techniques in terms of the system performance, core271

and HBM temperature, and thermal efficiency. Section VI-E272

discusses the runtime overhead of our MTCM. Section VII273

concludes this article.274

II. RELATED WORK275

The related works to our proposed MTCM are tech-276

niques having addressed the inherent problems of clustered277

manycores and 3-D HBM. On the manycore side, many278

researchers have addressed the thermal and cache interference279

problems. Kim et al. [20] employed both the task migra-280

tion and cluster-level DVFS to maximize performance of a281

thermally constrained clustered heterogeneous multicore pro-282

cessor. The work in [21] proposed ML-based DVFS technique283

that considers cache contention at the level of the cluster,284

in order to satisfy the performance constraints of running285

applications. Mishra et al. [22] built ML-based scheduling286

technique that maps applications to clusters with the minimum287

predicted contention. A recent technique [6] used intercluster288

task migration to balance the thermal interference across289

the chip. The optimized thermal headroom is then exploited290

by a cluster-level DVFS policy to boost the performance291

of running applications. Two other works [23], [24] have292

used reinforcement learning-based DVFS and task mapping293

to minimize temperature of a multicore under performance294

constraints. A more recent work [25] has employed imitation295

learning-based task migration to minimize the temperature of296

a multicore under application latency constraints. Nonetheless,297

none of these techniques has considered the temperature of298

main memory, as they have targeted the systems with the299

traditional 2-D DRAMs, which are not prone to thermal300

issues. Porting these techniques to the systems where HBM301

is the main memory, can lead to the suboptimal resource302

management decisions as demonstrated in Section I-A.303

With the increasing adoption of HBM in modern architec-304

tures, more recent works in the literature have addressed its305

main recognized bottleneck: temperature. Researchers in [2]306

and [26] propose advanced embedded cooling mechanisms and307

architecture-level optimization schemes to address the problem308

of high temperature in the HBM stack. Lo et al. [27] con-309

sidered memory-channel temperatures within their proposed310

memory-page allocation technique as to avoid the formation of311

thermal hotspots on the heavily accessed memory banks. Shen312

et al. [3] proposed a reinforcement learning-based technique313

combining DVFS and low-power states to maximize the314

performance under the temperature constraints of both the315

processor and the HBM. Another recent work NeuroMap [4]316

proposed a technique to maximize performance on a system317

with a manycore processor and HBM. By assigning memory318

channels to core groups, their technique dynamically adjusts319

the mapping of applications to different core groups to manage320

the temperature of the HBM. Additionally, DVFS and low-321

power states are used to further maximize performance while322

enforcing the thermal safety. Though the temperature of the323

manycore is overlooked in their approach, NeuroMap [4]324

remains the closest in the literature to our proposed technique.325

In summary, a gap exists in the literature, as no resource 326

management technique has jointly considered the cache con- 327

tention problem within the performance maximization on the 328

modern clustered manycores with HBM, while enforcing a 329

thermally safe operation of both the subsystems. As high- 330

lighted in Section I-A, cache contention and the temperature 331

of both the manycore and the HBM must be considered jointly 332

to harness the full performance potential of such modern 333

architectures. 334

III. PROBLEM FORMULATION 335

We target a clustered manycore with the M cores and K 336

clusters, each hosting M/K cores and a shared LLC. Cores 337

in the cluster k are operated at the same VF level fk by 338

the cluster-level DVFS. Matrix G = [gi,k]M×K indicates 339

core-to-cluster mapping, where gi,k = 1 if the core i is 340

in the cluster k. The HBM main memory comprises the 341

L layers with B banks each and C channels, each channel 342

ch spanning banks Bch. Each cluster k accesses memory 343

through a dedicated controller MCk configured to access a 344

specific channel ch [13]. Cores in the cluster k issue memory 345

requests to MCk. Core temperatures, [ti]M , are estimated 346

using a thermal model (TM) TMcores, based on the per-core 347

power consumption map Pcores. Similarly, the thermal model 348

of the HBM TMhbm predicts per-bank temperatures [ti]B×L 349

given the per-bank power map Pbanks. Per-channel temperature 350

Tch is the maximum of all banks in channel ch, aligning 351

with the HBM JEDEC standards [28]. The same temperature 352

threshold Tthresh is considered for both the subsystems. In our 353

open system [29], A multithreaded applications with unknown 354

arrival times are mapped to the clusters, with mappings defined 355

by Q=[qk,a]K×A. Each application a runs ha parallel threads, 356

requiring ha cores as per the one-thread-per-core model [30]. 357

Thread-core mappings are given by V=[vi,a]M×A. Our goal is 358

to optimize response time and manage cache contention while 359

ensuring thermal safety for cores and HBM. Our proposed 360

MTCM addresses this problem by training the NN models at 361

design time (Section IV), which empower our runtime task 362

migration and DVFS policies at runtime (Section V). 363

IV. NN-BASED MODELS 364

Before migrating an application at runtime, there is a need to 365

predict the postmigration impact on the system performance, in 366

addition to the resulting manycore and the HBM temperatures, 367

which is challenging as demonstrated in Sections I-A and I-B. 368

We overcome these challenges by employing the NN models 369

that are trained at design time and used at runtime to predict 370

these unknown postmigration metrics. In the following sec- 371

tions, we first present our methodology to train NNp and NNm, 372

our proposed performance and memory access prediction 373

models. Second, we introduce our NN-based thermal models, 374

NNcores and NNhbm for predicting the temperature of the 375

clustered manycore and the HBM, respectively. 376

A. Performance and Memory Access Prediction 377

Fig. 3 summarizes the training methodology of both our 378

performance and memory access models NNp and NNm, which 379

consists of the following key steps. 380
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Fig. 3. Our slice-based training data generation methodology uses a
fine-grained analysis of execution traces of applications to extract the charac-
teristics of their execution phases, relevant to the prediction of postmigration
performance and memory access behavior.

1) Isolating the Cache Contention Effects: First, we run an381

extensive set of simulations of multithreaded benchmark appli-382

cations at all the supported VF levels. During each simulation,383

per-thread performance monitoring counters (PMC)s are col-384

lected periodically, i.e., each 1 ms, throughout the execution,385

including multiple performance-, cache- and main memory-386

relevant metrics, e.g., instructions per second (IPS), IPC,387

L1/L2/L3 cache accesses/misses, memory reads and writes,388

etc. These contention-free alone execution traces serve as a389

reference to the best performance achievable by applications390

at a specific VF level.391

Second, we run all the combinations of applications Appa392

and AppO, i.e., shared executions, on the same cluster, each393

having four threads. By restricting the combinations to only394

two applications, any observed degradation in the execution395

time of Appa compared to its alone execution time, is directly396

due to the parallel execution with AppO and vice-versa.397

Moreover, following the one-thread-per-core model [30], these398

combinations fully occupy the cores on a cluster on our target399

platform, i.e., eight cores per cluster, representing an upper400

bound of occupation representativeness.401

2) Emulating Task Migration Scenarios: The obtained402

alone and combined simulation traces are passed to a task403

migration emulator. For each application Appa, our emulator404

fetches all the simulation traces, where Appa runs in parallel405

on a cluster with another application AppO. These traces are406

used to construct premigration and postmigration scenarios,407

where the application Appa initially runs on a source cluster408

s with an application AppO at the VF level fs, then migrated409

to a target cluster t to run with another application App′
O at ft.410

For each constructed scenario, the collected 1 ms periodic411

PMCs from the premigration and postmigration simulations412

are saved, including their periodic average IPS and the VF413

levels fs and ft. As tasks can be migrated to empty clusters,414

our emulator also constructs such scenarios, where Appa runs415

alone on a cluster after migration, achieving its peak alone416

execution performance at ft.417

3) Extracting Representative Samples: The data from the418

previous phase can be used to train the NN model to predict419

any of the collected postmigration PMCs of Appa, e.g., 420

memory accesses or IPS. These collected traces assume that 421

the applications are mapped to the same cluster throughout 422

their whole execution. At runtime, however, an application 423

could start its execution on one cluster, then be migrated to 424

a new one in the following migration epoch, since MTCM’s 425

migration policy will be invoked periodically every 10 ms. 426

Therefore, there is a need to predict the postmigration PMCs 427

of Appa over only 10 ms-long windows, not over the whole 428

shared execution of applications. To achieve this goal, we 429

perform time-based slicing of execution traces from the task 430

migration scenarios of the previous phase at a 1 ms granularity. 431

Iteratively, for each extracted 10 ms-long execution slice in a 432

premigration shared execution trace {Appa, AppO}, the corre- 433

sponding slice in each thread in the alone execution of Appa 434

is also extracted. Similarly, for each slice in the postmigration 435

shared execution trace of {Appa, App′
O}, the corresponding 436

slice in each thread in the alone execution of App′
O is also 437

extracted. These per-thread slices are used to construct aggre- 438

gated slices, representing a task migration scenario at a 10 ms 439

granularity. It is important to note that this data engineering 440

approach would teach the model that Appa is running in 441

parallel with multiple threads rather than a single application. 442

It is important to note that threads will not be active throughout 443

the whole execution of an application. Therefore, this step of 444

the process will also generate slices that represent the lower 445

bound of core occupation representativeness, where only one 446

thread is active, i.e., only one core is occupied. As such, at 447

runtime, when Appa is running in parallel with any number of 448

multithreaded applications on the same cluster and any number 449

of active threads, their corresponding aggregated per-thread 450

data will be used to construct the slices of AppO and App′
O. 451

With the obtained dataset of approximately two million rows, 452

our NNp and NNm models can be trained to learn that, given 453

the premigration PMCs of Appa and AppO at fs, and given the 454

alone characteristics of App′
O at ft, predict the postmigration 455

IPS and memory accesses of Appa at ft, respectively. 456

4) Selecting Features and Model Topologies: This final 457

phase aims at finding the minimum set of features and the 458

smallest topology for each model, such that a high prediction 459

accuracy is achieved under a reasonable runtime overhead. 460

The generated dataset in the previous phase is used to train 461

both the performance NNp and the memory access NNm 462

models. using Lasso regression and the Pearson product- 463

moment correlation, we first identify the importance of the 464

collected features to the prediction label in each model. After 465

progressively eliminating the least-important features, e.g., 466

L1-I and L1-D cache accesses and misses, etc., we split the 467

dataset randomly to 75% training and 25% test sets. Guided by 468

an initial exploration using the KerasTuner library, we conduct 469

a design-space search for smaller topologies, i.e., numbers of 470

layers and number of neurons per layer, and hyperparameters, 471

e.g., batch size, regularization, dropout factors, etc. Given 472

the mean-absolute-percentage error (MAPE) score and the 473

inference overhead of each obtained model on our target 474

system, the search space is either enlarged or narrowed- 475

down, as to balance the accuracy-overhead tradeoff. Fig. 4 476

shows the different topologies explored for each model and 477
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Fig. 4. Initial search using KerasTuner explores various topologies with
different layers and neurons per layer. After excluding nonconverging models,
a Pareto-front of options is identified. Ultimately, we select the model topology
that balances prediction error and inference time on our target platform,
thereby enabling our runtime policies to maximize the system performance
under thermal constraints with a very negligible runtime overhead.

their corresponding MAPE scores and inference times on our478

target platform. Since, the data points in the explored space479

are Pareto-optimal, we select the topologies that satisfy our480

strict timing requirements at runtime as further discussed in481

Section VI-E. Fig. 4 also shows model topologies with lower482

MAPE scores than the selected topology, to highlight that our483

models could deliver a higher prediction accuracy when the484

strict runtime timing requirements are relaxed.485

Ultimately, the selected NNp has four hidden dense layers486

with 128, 128, 64, and 64 neurons, in addition to an output487

layer of one neuron. The selected NNm has two hidden dense488

layers with 16 neurons each, and one output layer of one489

neuron. The inference time on our target platform is 7.9 µs,490

and 2 µs for NNp and NNm, respectively. The achieved MAPE491

scores are 2.3% and 0.3% for NNp and NNm, respectively.492

These models’ marginal prediction errors are incorporated into493

MTCM as detailed in Section V.494

B. Temperature Prediction for the Manycore and HBM495

As formulated in Section III, the thermal safety must be496

enforced at runtime, by only applying decisions that would not497

violate the thermal constraints of either the manycore or the498

HBM. This requires fast and accurate thermal models for each499

of the two subsystems, that are able to deliver accurate temper- 500

ature predictions within the tight time constraints at runtime. 501

To achieve this goal, the training data for our thermal models 502

shall be representative of the runtime scenarios, when the cores 503

on the manycore and the banks on the HBM will exhibit 504

varying levels of power consumption and will be utilized at 505

varying intensities, i.e., core occupation, memory accesses, etc. 506

However, building upon the simulation framework outlined 507

in Section IV-A, with a targeted architecture of a clustered 508

manycore processor consisting of 64 cores and an integrated 509

HBM with eight channels, collectively holding 128 banks (as 510

per the specifications detailed in [12]), the required simulation 511

combinations to reach the intended state of representativeness 512

lead to an exponential explosion of the design space, making 513

this approach not viable and inefficient. Instead, to train our 514

NN-based thermal models, we propose to use synthetically 515

generated training data obtained using the following steps. 516

1) Generating the Base Datasets: Building upon the sim- 517

ulation framework outlined in Section IV-A, we initiate our 518

study by conducting the simulation experiments, where single 519

multithreaded applications are mapped to one cluster at a time. 520

Each experiment is conducted across all the available VF levels 521

to ensure comprehensive data coverage. During these simu- 522

lations, we collect per-core and per-bank power consumption 523

data, alongside steady-state temperature measurements from 524

the hotspot simulator [15]. This data is collected with a fine 525

granularity of 1 ms, ensuring a detailed temporal resolution. 526

We then proceed to construct two base datasets: one for 527

training NNcores and the other for NNhbm. 528

2) Synthetic Data Augmentation: The base datasets are 529

comprised of power and temperature maps generated from the 530

single application executions at varying VF levels. However, 531

these datasets do not adequately represent runtime scenarios 532

where multiple applications typically run concurrently, leading 533

to diverse utilization patterns of cores and memory banks. 534

To enhance the representativeness of these datasets, we gen- 535

erate synthetic periodic power traces for both the manycore 536

processor and the HBM. By mixing power values from the 537

individual executions and distributing them randomly across a 538

larger set of cores and memory banks, we construct synthetic 539

multiapplication power maps. Given the exponential potential 540

for the trace generation, we cap the number combinations 541

at two million traces for each subsystem, the manycore and 542

the HBM. These synthetic traces combined with the original 543

data, yield two augmented datasets that simulate a range of 544

scenarios, including both the single and parallel application 545

executions with diverse VF level mixes manycore occupation 546

and HBM utilization. Nevertheless, the random generation 547

of power distributions leads to an imbalance in the dataset. 548

Specifically, some cores and banks are underrepresented, 549

which might inadvertently suggest to the model a lower 550

likelihood of their occupancy. Furthermore, the variance in 551

power consumption ranges could mislead the model to infer 552

that certain cores and banks are restricted to specific power 553

consumption levels. To correct this imbalance and improve the 554

training data representativeness, we employ stratified sampling 555

with designated power bins. This approach ensures balanced 556

representation of each core and bank in terms of appearance 557
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TABLE I
OUR NN MODELS ARE LIGHTWEIGHT AND HIGHLY ACCURATE, ENABLING OUR MIGRATION AND DVFS POLICIES TO EFFECTIVELY ACHIEVE THE

GOAL OF PERFORMANCE MAXIMIZATION UNDER TEMPERATURE CONSTRAINTS OF BOTH THE CLUSTERED MANYCORE AND HBM

Fig. 5. Examples of skewed distributions of power values in the training
dataset with dominant activity in few cores or memory banks, which can
limit our thermal models’ ability to generalize to unseen power consumption
patterns at runtime. Our synthetic data generation approach in contrast ensures
a well-balanced distribution across all the cores and memory banks both in
terms of frequency and power value ranges.

frequency and power consumption levels as illustrated in558

Fig. 5. It is important to note that, at this stage, the rows559

in the training data cannot be traced back to any individual560

application, as this information is diluted following the mixing,561

shuffling, and stratified sampling, ensuring that the models will562

not be trained with a bias toward specific application mixes.563

The final step involves using the hotspot simulator [15] to564

predict the steady-state temperature of each core and bank565

based on the power traces, serving as ground truth labels for566

our models. The datasets are then divided, allocating 75% for567

model training and 25% for testing.568

3) Single-Label Model Optimization: Aligned with the goal569

of ensuring thermal safety, essentially predicting potential570

thermal violations based on the power traces, we adjust our571

training data, so that the models only predict the maximum572

temperature across either the cores or memory banks, instead573

of all the temperatures. This approach is not only consistent574

with thermal safety objectives but also serves to minimize575

the computational overhead during runtime. Accordingly, the576

datasets are refined to include just the maximum temperature577

per set, namely the hottest core for NNcores and the hottest578

bank for NNhbm. Similar to the neural architecture search for579

NNp and NNm, and as highlighted on Fig. 4, we select from580

the Pareto front the topologies that satisfy our strict timing581

Fig. 6. Our runtime thermal safety enforcement strategy enables our proposed
policies to apply thermally safe resource management decisions, thereby better
harnessing the performance potential of the system.

requirements at runtime as further discussed in Section VI-E. 582

The final NNcores model comprises the two hidden layers 583

with 128 and 64 neurons, and the NNhbm model is built with 584

the three hidden layers of eight neurons each, all employing 585

the ReLU activation. As detailed in Table I, this optimization 586

results in significant reductions in the memory footprint of the 587

models as well as their corresponding inference time on our 588

target platform. 589

V. ML-BASED RESOURCE MANAGEMENT FOR 590

CLUSTERED MANYCORES WITH HBM 591

Our proposed MTCM periodically executes two resource 592

management policies at runtime: task migration and cluster- 593

level DVFS, as shown in Fig. 6. In the following, both policies 594

are presented. 595

A. ML-Based Application Migration 596

Similar to the Linux migration epoch for the task migra- 597

tion [16], our MTCM’s migration policy executes the following 598

steps each 10 ms. 599

1) Identifying Applications to Migrate: Applications exe- 600

cuting alone on a cluster are expected to achieve their 601

maximum performance at the set VF level and are therefore not 602

considered for migration. On the other hand, any application 603

Appa that is running in parallel with the other applications 604

AppO on a cluster is considered for migration, as it may be 605

suffering performance degradation due to cache contention. 606

Given the parallelism level of Appa, the possible target clusters 607

that have a sufficient number of cores to host it are also 608

identified. Following the migration, Appa would be running 609

with zero or many applications App′
O at ft on the target cluster. 610

The premigration, i.e., over the past 10 ms period, PMCs of the 611

involved Appa, AppO, and App′
O, their observed IPS values in 612

addition to fs and ft are saved for all the running applications 613

that satisfy the aforementioned requirements. 614
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2) Evaluating Performance Potentials: MTCM considers615

that migrating Appa would only benefit the overall system616

performance if the postmigration IPS improves compared617

to the premigration for the applications Appa, AppO, and618

App′
O. Therefore, for each possible migration identified in the619

previous step, MTCM invokes NNp to predict the potential620

postmigration IPS. If an improvement by more than the MAPE621

of our NNp is observed, the migration is saved but awaits the622

validation of the thermal safety enforcement step.623

3) Enforcing Thermal Safety: The performance benefits624

predicted in the previous step may be suppressed if the625

migration leads to thermal violations on the manycore or on626

the HBM as demonstrated in Section I-A. To estimate the627

impact of the migration on the temperature of manycore, the628

postmigration power distribution map Pcores is constructed629

according to the postmigration application-to-cluster mapping,630

where Appa and App′
O would run in parallel on the target631

cluster t at the VF level ft. The current temperature of all the632

cores and the postmigration Pcores are passed to our NNcores633

model to predict the new steady-state temperatures of the634

cores on the manycore. Estimating the impact of the migration635

on the temperature of the HBM, on the other hand, is more636

complex. Before the migration, Appa runs on the cluster s637

and its memory requests are serviced by the channel chs638

assigned to the memory controller MCs at the VF level fs.639

After the migration, Appa will be running on the cluster t640

and its memory requests will be serviced by the channel cht641

assigned to the memory controller MCt at the VF level ft.642

Therefore, the postmigration Pbanks power map depends on643

the postmigration memory access map denoted as MAbanks.644

To construct the postmigration MAbanks memory access map,645

we first predict the number of memory accesses Appa would646

issue at ft using our NNm model. Second, we deduct the647

premigration accesses uniformly from the banks of the channel648

chs in MAbanks. Third, we add the predicted postmigration649

memory accesses uniformly to the banks of the channel cht in650

MAbanks. The obtained MAbanks now depicts the distribution651

of memory accesses across the banks of all the HBM channels652

if Appa is migrated from the clusters s to t. Given the energy653

per access of the modeled HBM obtained from the state-654

of-the-art CACTI-3DD simulator [33], Pbanks can then be655

constructed, then passed to our NNhbm in order to predict656

the new per-bank steady-state temperatures. At the end of657

this step, the migration is considered thermally safe if none658

of the cores on the manycore and none of the banks on the659

HBM exceeds the defined Tthresh temperature. Finally, MTCM660

performs the thermally safe migration that would result in the661

highest overall performance improvement.662

B. Cluster-Level DVFS663

At each DVFS epoch, i.e., 1 ms, our MTCM’s cluster-level664

DVFS policy attempts the following.665

1) It estimates steady-state temperatures of both the sub-666

systems using their corresponding thermal model based667

on their current corresponding power consumption Pcores668

and Pbanks. If a potential thermal violation is detected,669

MTCM needs to throttle down the clusters with the670

higher temperatures. To thermally rank the clusters, 671

we compute a thermal score given the highest core 672

temperature in each cluster k and the highest bank 673

temperature in its assigned channel chk. In decreasing 674

order of thermal score, the clusters are then throttled 675

to the next lower VF level and the new steady-state 676

temperatures of both the subsystems are predicted given 677

the constructed Pcores and Pbanks. Throttling continues 678

until temperatures of both the manycore and the HBM 679

are below Tthresh. The DVFS policy then downgrades the 680

VF levels of selected clusters. 681

2) If no violation is predicted and thermal headroom exists 682

in both the subsystems, MTCM safely boosts clusters 683

to the next higher VF level. It is important to note that 684

constructing the HBM’s Pbanks requires the invocation 685

of our NNm to predict the number of memory accesses 686

at the next potential VF levels. 687

VI. EXPERIMENTAL RESULT 688

A. Setup 689

We run our experiments using the CoMeT [31] simulator, 690

an integrated toolchain combining the well-known Sniper [35] 691

and Hotspot [15] simulators for performance and thermal sim- 692

ulation, respectively. The target system comprises a clustered 693

64-core processor and an eight-channel HBM. Each core has 694

private 32 KB L1 instruction and 32 KB L1 data caches, and 695

a private L2 256 KB cache. Each cluster on the manycore 696

groups eight cores, sharing one 8 MB LLC and one memory 697

controller, mapped to one of the eight channels of the HBM. 698

The HBM main memory is modeled based on the 16 GB 699

HBM2E in [12], having a 6.73 ns latency and 9.51 nJ per 700

access energy, obtained using Cacti-3DD [33]. Cluster-level 701

DVFS sets all the cores within a cluster to the same VF level 702

ranging from 1 to 4 GHz with boosting and throttling steps of 703

200 MHz. The temperature constraint on both the manycore 704

and the HBM is set to 80 ◦C. A thermal violation on any 705

core of the manycore triggers the DTM, which transitions all 706

the cores to the minimum VF level. A thermal violation on 707

any bank of the HBM triggers the corresponding channel to a 708

low-power state until thermally safe operation is restored. In 709

our experiments, we use applications from the PARSEC [32] 710

and SPLASH-2 [14] benchmark suites, including: blackscholes, 711

bodytrack, canneal, streamcluster, fluidanimate, swaptions, 712

x264, barnes, cholesky, fft, fmm, lu.cont, lu.ncont, radix, 713

raytrace, water.nsq, and water.sp. These applications cover dif- 714

ferent application domains., e.g., financial analytics, computer 715

vision, image processing, etc., and therefore have different 716

memory-/compute-intensity characteristics. All the applica- 717

tions are using the large input size and cover a variety of 718

compute and memory intensity characteristics. Each of these 719

applications can be executed at 2, 3, 4, or 5 parallel threads, 720

leading to a total of 68 unique applications. Using these 721

applications, we construct three workloads, each comprising 722

40 randomly selected multithreaded applications. In addition, 723

we sample the arrival times of applications in each workload 724

from a Poisson distribution at the four arrival rates: 120, 140, 725

160, and 180 applications per second, and each workload 726
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(a) (b) (c)

Fig. 7. our mtcm demonstrates substantial performance gains by up to 1× for multiple workloads compared to the state-of-the-art comparison techniques,
thereby underscoring the importance of jointly considering cache and thermal interference while optimizing performance of modern systems with clustered
manycores and hbm!. in addition, our mtcm successfully operates both the manycore and the hbm! closer to the thermal constraint of the system compared to
the state-of-the-art comparison techniques, thereby better harnessing the performance potentials of the system. (a) workload 1. (b) workload 2. (c) workload 3.

is executed at each of the four arrival rates. The different727

arrival rates in combination with the application mixes in each728

workload lead to different CPU and HBM utilization values,729

i.e., core and cluster occupation, cache accesses, memory730

bank accesses, etc. In these experiments, our models are731

exposed to scenarios that are unseen at training in terms of732

cache contention behavior, number of applications per cluster,733

number of threads per application, core occupation, and HBM734

channel utilization.735

B. Comparison Techniques736

Our proposed MTCM is compared against the following two737

techniques.738

NeuroMap [4]: It is the closest state-of-the-art technique739

to our MTCM, which proposes a resource management policy740

that uses task migration and DVFS. It aims at maximizing741

the overall system performance under a memory channel-742

temperature constraint without considering the temperature743

of the manycore processor. Their proposed technique first744

assigns memory channels to groups of cores, a strategy that745

can be applied on our target platform where the cores are746

also grouped into clusters and share a memory channel.747

Then, periodically, NeuroMap adjust the application-to-cluster748

mappings depending on the characteristics of the running749

applications in a rule-based manner. For instance, if an750

application is in a memory-intense phase, NeuroMap attempts751

to migrate it to the cluster that is mapped to the HBM channel752

closest to the cooling system (the upper channels). Similarly,753

a compute-intense application with very few memory accesses754

can be mapped to clusters that use channels in the lower end755

of the HBM stack. When NeuroMap fails to find such an756

ideal application-to-cluster match, it employs DVFS to either757

throttle down or boost the clusters. However, none of these 758

decisions consider the temperature of the cores. 759

NeuroDTPM [4], [34]: As highlighted in Section II, none 760

of the state-of-the-art techniques has targeted the goal of 761

performance maximization under temperature constraints of 762

both the manycore and HBM subsystems. Therefore, we 763

further construct NeuroDTPM, a second comparison technique 764

that combines NeuroMap with DTPM [34], a state-of-the- 765

art DVFS technique. DTPM aggressively boosts the cores 766

under a processor temperature constraint. With this addition, 767

NeuroDTPM now aims at maximizing the overall system 768

performance under the temperature constraints of both the 769

manycore and the HBM similar to our MTCM. 770

In the following evaluation experiments, temperature vio- 771

lations on the HBM trigger the low-power mode on the 772

impacted memory channels, while temperature violations on 773

the manycore lead to throttling down the processor to the 774

minimum VF level, i.e., 1 GHz. 775

C. Evaluation Results 776

We present our evaluation experiments, where we compare 777

our MTCM against the two state-of-the-art techniques in terms 778

of performance, temperature, and thermal efficiency. Fig. 7 779

shows the performance and temperature results. 780

Compared Against NeuroMap: Our MTCM shows a superior 781

performance maximization ability compared to the NeuroMap, 782

scoring a significant improvement of 1x% on average across 783

all the workloads and arrival times, which can be explained as 784

follows. First, NeuroMap periodically sets the clusters to either 785

a low, medium, or high VF level depending on the memory 786

intensity of the running applications at their current execu- 787

tion phase. This coarse-grained approach of setting the VF 788



10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

levels of the clusters misses on the performance optimization789

opportunities that are exploited by our fine-granularity DVFS790

policy. This can also be seen in the box plots on Fig. 7,791

our MTCM better exploits the thermal headroom available792

on both the manycore and the HBM at runtime. Second,793

although the decisions of NeuroMap lead to a thermally safe794

operation of the HBM more than 99.5% of the execution time,795

their technique does not monitor the impact of such decisions796

on the manycore. Consequently, as expected, the temperature797

constraint of the manycore is frequently violated, triggering the798

TCC which throttles down all the clusters to the minimum VF799

level to restore the thermally safe operation. Although it has800

guaranteed a thermally safe operation of the HBM, the DVFS801

decisions of NeuroMap lead to frequent triggers of the TCC802

which suppress the performance gains of their task migration803

policy. This confirms the initial observation we have motivated804

in Section I-A, to consider the thermal effects on both the805

subsystems jointly.806

Compared Against NeuroDTPM: Tackling the weaknesses807

of NeuroMap, NeuroDTPM employs the more advanced808

DTPM DVFS policy, which considers the temperature of809

the cores in its optimization. As expected, the performance810

is significantly improved compared to the NeuroMap, as811

now a thermally safe operation of both the subsystems is812

maintained 99.1% of the execution time. As can bee seen813

in the box plots in Fig. 7, NeuroDTPM manages to better814

utilize the thermal headroom available on the manycore thanks815

to its advanced DVFS policy from DTPM [34], with the816

exception of minor violations in less than 1% throughout the817

execution. The occasional thermal violations are only seen818

less than 1% of the time, on the 99th quantile and some819

upper outliers, which is expected due to sudden bursts in820

power consumption of either the manycore of the HBM.821

This also implies that the TCC is triggered less frequently,822

thus sustaining the performance improvements over time.823

Nevertheless, our MTCM still outperforms NeuroDTPM with824

an average performance improvement of 25.4% across all the825

experiments. This is due to the different application-to-cluster826

mappings, both the task migration policies apply at runtime.827

While NeuroMap does not consider the cache contention828

effects, our MTCM’s migration policy selects mappings that829

lead to the least contention between the corunning applica-830

tions on a cluster, reducing the slowdown observed in their831

execution time, thereby further harnessing the performance832

potentials of the system. These results highlight the initial833

observation in our work that ignoring cache contention effects834

in such architectures leads to suboptimal resource management835

decisions.836

To further analyse the results of the experiments, we present837

in Fig. 8 the thermal efficiency achieved by the three tech-838

niques at runtime, computed as the average number of millions839

of executed IPS per unit of temperature. The previously840

observed trends are maintained, where MTCM demonstrates841

a higher level of thermal efficiency compared to the other842

two techniques. NeuroMap shows the lowest thermal efficiency843

across all the workloads and arrival rates, mainly due to its844

long execution time, low average IPS and high number of845

thermal violations on the manycore side. NeuroDTPM shows a846

(a) (b) (c)

Fig. 8. Compared to the two state-of-the-art comparison techniques, our
MTCM consistently executes more IPS per unit of temperature, thereby
achieving an improved thermal efficiency across all the workloads and arrival
rates. (a) Workload 1. (b) Workload 2. (c) Workload 3.

Fig. 9. With 17 unique applications in the dataset, running a leave-group-
out cross-validation with a 17-fold for NNm and a 50-fold for NNp, where
random groups of applications are excluded in each iteration, shows that the
performance of our models on unseen applications is minimal across the folds
with a mean MAPE that is only marginally higher than the MAPE obtained
with a random split of the training/test dataset. This highlights the application-
independence of our models and their ability to generalize to unseen traces,
which is further demonstrated when the model is used on larger workloads
and unseen scenarios.

significantly better thermal efficiency compared to NeuroMap, 847

thanks to the fine-granularity DTPM DVFS and its thermally 848

safety operation on both the manycore and the HBM. These 849

results demonstrate that the joint consideration of cache con- 850

tention and temperature of both the manycore and the HBM 851

can lead to a better harnessing of the performance potentials 852

of the system without violating its thermal constraints. 853

D. Generalization Analysis 854

As presented in the previous section, MTCM has demon- 855

strated substantial performance gains over NeuroMap and 856

NeuroDTPM, while maintaining a thermally safe operation of 857

both the manycore and the HBM, even when our NN models 858

are faced with unseen workloads and scenarios. We further 859

analyse this generalization aspect by conducting a set of 860

Leave-Group-Out (GroupKFold) cross-validation experiments. 861

In K iterations, our dataset is shuffled and split such that each 862

fold has an unique set of groups of applications. For each 863

fold, a specific portion of the groups is used as the validation 864

set, while the remaining groups form the training set. This 865
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TABLE II
LIGHTWEIGHTNESS, HIGH ACCURACY, AND LOW MEMORY FOOTPRINT OF OUR FOUR NN MODEL ALLOW BOTH OUR POLICIES TO PERFORM

EFFECTIVE RESOURCE MANAGEMENT AT RUNTIME WITHIN THEIR ALLOCATED EPOCH LENGTHS AT A NEGLIGIBLE OVERHEAD

guarantees that the validation set for each fold contains groups866

not seen during training in that fold. It is important to note that867

our NN-based thermal models, i.e., NNcores and NNhbm cannot868

be considered in this generalization analysis through cross-869

validation as their training data is synthetically generated and870

does not contain application-specific per-core and per-bank871

power maps. For NNm and NNp, we use LeaveOneGroupOut872

from the sklearn library to conduct the cross-validation exper-873

iments. Since, the training data of our NNm is limited to single874

applications, we run a 17-fold exploration, corresponding to875

the number of unique applications in the dataset. For NNp,876

we cap the folding to 50 groups with each group having877

up to three applications, corresponding to the number of878

applications involved in a migration scenario, in addition to879

cases where the destination cluster is empty. This leads to the880

exploration of scenarios where up to 24% of the applications881

are unseen during training. In all these experiments, we882

use the final models described in Table I. Fig. 9 shows the883

results of these experiments. For the NNm, a steady error884

distribution is observed across the validation set in all the885

folds, except for one scenario, K = 2, where we observe886

a slightly higher deviation from the mean. This is due to887

the fact that excluding canneal leads to the exclusion of a888

significant number of data slices from the dataset as canneal’s889

execution time is significantly longer than most applications890

in the two benchmark suites. Still, the mean MAPE is 0.49%,891

only marginally higher than the 0.3% observed when training892

with the randomly split dataset in Section IV.893

A similar behavior is observed in the training of NNp. In894

folds like K = 36, we observe a significantly lower MAPE895

compared to the mean MAPE, as that fold comprises less896

complex migration scenarios, where the destination cluster is897

empty. On the other extreme, folds like K = 21 with canneal898

excluded from the training set, show a significantly higher899

MAPE compared to the mean. Nevertheless, the mean MAPE900

is 2.7%, only 0.4% higher than the MAPE observed when901

training with the randomly split dataset in Section IV.902

E. Overhead Analysis903

To analyse the overhead of MTCM, we run additional904

experiments where the technique is bundled as a single-905

threaded application that is mapped to a single core on our906

target platform, and executed at the maximum supported VF907

level. In these additional experiments, the randomly generated908

workloads and arrival rates from the evaluation experiments909

in Section VI-A are reused. Table II shows the average time910

spent per epoch in each phase of our proposed technique across911

all the experiments. MTCM’s DVFS policy takes 24.6 µs on 912

average to boost or throttle clusters, representing 2.46% of 913

the adopted 1 ms DVFS epoch on a single core. MTCM’s 914

migration policy takes 105.5 µs on average to find a migration 915

option and apply it, equivalent to 1.05% of the 10 ms migration 916

epoch on a single core. Therefore, the benefits of our proposed 917

MTCM can be obtained with a negligible overhead on our 918

target 64-core processor. 919

VII. CONCLUSION 920

We presented MTCM, the first resource management tech- 921

nique that considers cache contention in maximizing the 922

system performance, while maintaining thermal safety on 923

the modern systems with a clustered manycore and HBM. 924

Enabled by our fast, yet accurate, lightweight NN models 925

for performance, memory access, and temperature prediction, 926

our task migration and DVFS policies can perform thermally 927

safe resource management at runtime, even when exposed 928

to scenarios that are unseen at design time. As a result, 929

our MTCM achieves substantial performance improvements 930

compared to the state-of-the-art, validating the significance of 931

jointly considering the contention and temperature problems 932

within performance maximization in the systems with many- 933

cores and HBM. 934
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