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Abstract—Exploring the design space of RISC-V processors1

faces significant challenges due to the vastness of the high-2

dimensional design space and the associated expensive simulation3

costs. This work proposes a region of interest (ROI)-driven4

method, which focuses on the promising ROIs to reduce the5

over-exploration on the huge design space and improve the6

optimization efficiency. A tree structure based on self-organizing7

map (SOM) networks is proposed to partition the design8

space into ROIs. To reduce the high dimensionality of design9

space, a variable selection technique based on a sensitivity10

matrix is developed to prune unimportant design parameters11

and efficiently hit the optimum inside the ROIs. Moreover, an12

asynchronous parallel strategy is employed to further save the13

time taken by simulations. Experimental results demonstrate the14

superiority of our proposed method, achieving improvements of15

up to 43.82% in performance, 33.20% in power consumption,16

and 11.41% in area compared to state-of-the-art methods.17

Index Terms—Asynchronous parallel optimization, high-18

dimensional design space exploration (DSE), region of interest19

(ROI), RISC-V microarchitecture, variable selection (VS).20

I. INTRODUCTION21

CUSTOMIZED microprocessors in embedded systems22

are in demand for a wide range of applications,23

such as mobile devices, medical equipment, and automotive24

systems [1]. Application-specific performance requirements25

necessitate tailored microprocessor designs. For instance,26
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battery-powered devices prioritize low-power consumption for 27

extended operation. Besides, the integration of microproces- 28

sors into system-on-chips (SoCs) requires them to harmonize 29

with other system components and achieve target performance 30

within constrained resources. 31

However, a tradeoff between performance metrics exists: 32

enhancements in clock frequency often incur increased power 33

consumption or enlarged die areas. So, when application 34

requirements change, designs should be reoptimized. To 35

address this challenge, multiobjective optimization consid- 36

ering performance, power, and area (PPA) is introduced. 37

Multiobjective optimization empowers designers to select the 38

most suitable solution based on their specific performance 39

requirements. When these requirements change, designers can 40

simply select a different design from the Pareto optimal set 41

without the need for reoptimization. 42

In industry, it is crucial to meet strict and predetermined 43

deadlines for product delivery. In recent years, RISC-V, an 44

emerging instruction set architecture (ISA), has gained lots of 45

attention in both academia and industry because of its open- 46

source licenses and flexibility [2]. To achieve the agile design 47

of the RISC-V SoC, the Berkeley architecture research (BAR) 48

Group develops the Chipyard [3] framework. It uses Chisel [4] 49

hardware construction language to generate the synthesizable 50

and parameterizable processor cores (such as BOOM [5], [6] 51

and Rocket [7]) in the SoC. This enables the generation 52

of corresponding register-transfer level (RTL) designs for 53

processor cores based on specified architecture parameters. 54

So, there is a growing emphasis on identifying the Pareto 55

optimal design parameters, namely, design space exploration 56

(DSE) [1], in the early stages of the design process. By 57

utilizing multiobjective optimization, DSE provides insights 58

for subsequent design iterations. 59

Usually, processor simulators, such as GEM5 [8], are used 60

to obtain the PPA metrics for microarchitectures. However, 61

there exists a disparity between simulations and actual results. 62

To achieve PPA results that closely resemble the actual hard- 63

ware, the Chipyard framework leverages the HAMMER [9] 64

framework for automated VLSI flow. This framework utilizes 65

electronic design automation (EDA) tools for RTL simulation, 66

logic synthesis, power analysis, and other tasks, ensuring 67

the accuracy of PPA results. Chipyard supports automated 68

generation from Chisel to layout. The flow incorporates the 69
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impact of various parameters of EDA tools, resulting in a70

parameter space exceeding 50 dimensions and a design space71

of approximately 1030.72

However, the high dimensionality poses challenges for73

multiobjective optimization algorithms, as their computational74

complexity typically increases linearly or exponentially with75

the number of dimensions. This high dimensionality leads to76

long modeling and optimization time. Moreover, given a flow,77

including RTL netlist generation with Chipyard BOOM gen-78

erator, RTL simulation with Verilator [10], and logic synthesis79

with Cadence Genus, it typically requires 1-6 h of execution80

time. Consequently, the DSE process with hundreds of eval-81

uation would take months of time. Therefore, it is imperative82

to develop high-dimensional microarchitecture DSE methods83

that can achieve satisfactory results with minimal evaluation84

counts.85

Evolutionary-based approaches, such as NSGA-II [11]86

and MOEA/D [12], are commonly used multiobjective87

optimization methods. These methods generate a population88

of candidate solutions and iteratively refine them through89

crossover, mutation, and selection operators. However, they90

require a substantial number of simulation evaluations, which91

is impractical for the DSE based on the VLSI flow. In92

order to conduct the DSE within an acceptable time,93

researchers [13], [14] have utilized Bayesian optimization94

(BO). BO trains surrogate models to approximate the PPA95

results. These models are then used to optimize an acquisition96

function and identify promising candidate solutions for actual97

simulation. This approach significantly reduces the number98

of required simulations and improves sampling efficiency.99

BOOM-Explorer [13] proposes an efficient initial sampling100

method MicroAL via the characteristics of microarchitecture101

and utilizes the Gaussian process with deep kernel learning102

(DKL-GP) as surrogate models. BOOM-Explorer leverages the103

Chipyard framework, making it a valuable tool for exploring104

not only the BOOM core but also other RISC-V cores. GRL-105

DSE [14] introduces graph representation learning, which106

leverages a graph neural network (GNN) to project the107

microarchitecture design space into graph embedding space.108

While these methods effectively model the microarchitec-109

ture design space and reduce simulation requirements, both110

MicroAL and the GNN require training on the entire design111

space. Consequently, they struggle to handle the vast design112

space encountered in high-dimensional DSE problems.113

Recent researches [15], [16], [17], [18], [19] have been114

proposed to address high-dimensional optimization problems.115

Trust region-based methods [15], [16] aim to tackle the vast116

design space. TuRBO [15] employs local models within trust117

regions instead of a global model to mitigate overemphasized118

global exploration. MORBO [16] leverages hypervolume con-119

tribution (HVC) to evaluate data point quality and extends120

TuRBO from single-objective to multiobjective optimization.121

Despite reducing the design space size, these local region-122

based algorithms still face high dimensionality. The modeling123

and optimization time complexity increases linearly or faster124

with the number of dimensions. Moreover, the existing data125

point distribution is not considered when determining the trust126

region size. This can result in trust regions with insufficient127

data points, leading to inaccurate models.128

Embedding-based methods [17], [18] have been proposed 129

to reduce the dimensionality of the search space. REMBO [17] 130

leverages a random embedding matrix to map the high- 131

dimensional space to a lower-dimensional one, resulting in 132

faster optimization. BODi [18] employs dictionary embedding 133

based on Hamming distance for dimensionality reduction and 134

improved optimization efficiency. However, these methods 135

require setting a fixed effective dimension for the embedding 136

space in advance, which can be challenging in practice. 137

Additionally, different microarchitecture design parameters 138

have varying influences on performance outcomes. The afore- 139

mentioned methods only consider the design space when 140

training the embedding matrix, neglecting the correlations 141

between design space and performance space and the dif- 142

ferent importance of different design variables. Recently, 143

REMOTune [19] combines MORBO [16] and REMBO [17] 144

to reduce both size and dimensionality of design space. 145

Nonetheless, it still focuses solely on the design space, 146

overlooking the distribution and performance of existing data 147

points. 148

Moreover, with the popularity of multicore devices and 149

cloud computing, parallel/batch simulation techniques can be 150

used to conduct more simulations within a limited time budget, 151

leading to better solutions. However, the simulation time 152

can vary significantly based on different microarchitecture 153

parameters. Existing batch optimization methods, such as 154

MORBO [16] and REMOTune [19], are synchronous. It means 155

these methods must wait for the slowest simulation in the batch 156

to return before starting the next optimization iteration, which 157

results in idle devices and wasted time. 158

This article proposes ROI-HIT, a region of interest (ROI)- 159

driven high-dimensional microarchitecture DSE algorithm. 160

By focusing on the promising ROIs, we reduce the over- 161

exploration on the vast design space and advance the Pareto 162

front (PF) more quickly. Consequently, we can obtain superior 163

results within a constrained time budget. To further shorten 164

the optimization time, we prune unimportant variables via a 165

sensitivity matrix and reduce the number of dimensions used 166

for modeling and optimization. For time-consuming VLSI flow 167

simulations, an asynchronous parallel strategy is employed. 168

Our contributions are summarized as follows. 169

1) We propose a novel space partitioning method based 170

on a self-organizing map (SOM) tree to address the 171

vast design space of high-dimensional microarchitec- 172

ture DSE. A SOM network maps the high-dimensional 173

design space into a 2-D feature space maintaining 174

neighbor relationships and density. We define the feature 175

regions covering the current Pareto set (PS) as ROIs, 176

which are more promising to advance the PF. By 177

exploiting the ROIs, we reduce the exploration for poor 178

designs on the vast high-dimensional design space and 179

improve the exploration efficiency. 180

2) We propose a variable selection (VS) method based on a 181

sensitivity matrix to address the high dimensionality of 182

DSE. To reduce the number of dimensions for modeling 183

and optimization, a sensitivity matrix is calculated inside 184

an ROI. ROI-HIT identifies important design variables 185

according to the sensitivity matrix and merges unim- 186

portant variables into a 1-D auxiliary variable. Because 187
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of the reduced dimensions, the runtime of ROI-HIT is188

shortened.189

3) We propose an asynchronous parallel/batch framework190

to address the time-consuming simulations of DSE.191

Considering the tradeoffs between the PPA results, the192

expected hypervolume improvement (EHVI) acquisition193

function is optimized to choose the points to be simu-194

lated. Since the simulations based on the VLSI flow are195

independent and spend lots of time, we will simulate196

the next design if there is an idle worker, regardless of197

whether all the simulations have been completed. This198

mechanism further enhances the optimization efficiency.199

The experimental results demonstrate that ROI-HIT outper-200

forms the state-of-the-art methods, achieving 3.47%–9.19%201

improvement of hypervolume (HV) within the same time202

budget and 3.58×–341.68× speed-up of time in reaching203

the same HV. In terms of PPA metrics, ROI-HIT achieves204

improvements of up to 43.82% in performance, 33.20% in205

power consumption, and 11.41% in area. Compared with the206

official designs of RISC-V BOOM and Rocket microarchi-207

tecture, ROI-HIT can obtain 18.13%–30.05% improvement of208

power with higher performance and smaller area.209

The remainder of this article is structured as follows:210

Section II introduces the problem formulation and the basics211

of BO. Section III details the ROI-HIT algorithm. Section IV212

presents the experimental results and compares the per-213

formances of our proposed algorithm with state-of-the-art214

algorithms. Section V concludes this article.215

II. BACKGROUND216

A. Problem Formulation217

The design space of microarchitecture is explored for218

better PPAs. So, the DSE problem can be formulated as a219

multiobjective optimization problem in220

minimize f (1)(x), . . . , f (M)(x) (1)221

where x represents input parameters and f (i)(·) represents222

objective functions. In this article, x involves the design223

parameters, such as FetchWidth and DecodeWidth, while f (i)
224

includes power consumption, area, and the average cycle per225

instruction (CPI).226

For DSE problems, it is not straightforward to determine227

the superiority of one design over another based solely on228

individual objective metrics, such as CPI, power consumption,229

or area. A design with a lower CPI may have higher-power230

consumption and a larger area, while a design with lower-231

power consumption and a smaller area may have a higher232

CPI. To assess the quality of multiobjective optimization, the233

concept of domination is introduced. For arbitrary data points234

a and b, a ≺ b (a dominates b) if235

∀i ∈ {1, . . . , M} f (i)(a) ≤ f (i)(b)236

and ∃i ∈ {1, . . . , M} f (i)(a) < f (i)(b).237

(2)238

The multiobjective optimization yields a PS, as defined in239

PS = {
x ∈ X | � x′ ∈ X, x′ ≺ x

}
(3)240

Fig. 1. Illustration of HV, HVI, and HVC.

where X denotes input space. The entire nondominated 241

performance space is referred to as PF in 242

PF =
{

f (i)(x) | x ∈ PS, i = 1, . . . , M
}
. (4) 243

Namely, all the points in the PS are (Pareto) optimal for DSE 244

problems. 245

To evaluate the quality of PF in multiobjective optimization, 246

HV is a commonly used performance indicator. As Fig. 1 247

illustrates, given a reference point r and a finite PF, the HV 248

is the M-dimensional Lebesgue measure λM of the space 249

dominated by PF, as defined in 250

HV(PF, r) = λM

(⋃|PF|
j=1

[
r, yj

])
(5) 251

where [r, yj] denotes the hyper-rectangle bounded by r and yj, 252

with {yj}|PF|
j=1 comprising the PF. A larger HV corresponds to a 253

better PF, namely a better optimization result. 254

To compare the importance of various points in the PS, 255

HVC is defined as 256

HVC(xi|PF, r) = HV(PF, r) − HV(PF \ f (xi), r). (6) 257

Similarly, to select the best-candidate point, HV improve- 258

ment (HVI) of a candidate point x∗ is defined as follows: 259

HVI
(
x∗|PF, r

) = HV
(
PF ∪ f (x∗), r

) − HV(PF, r). (7) 260

Fig. 1 is an example of a bi-objective optimization. The pur- 261

ple area is the HVC of xi, which is the exclusive contribution 262

of xi to the PF, and the yellow area is the HVI of x∗, which 263

is the improvement brought by x∗ to the PF. 264

B. Bayesian Optimization 265

BO comprises two fundamental components: 1) the sur- 266

rogate model and 2) the acquisition function. The surrogate 267

model integrates existing prior knowledge and newly acquired 268

data points to estimate a posterior distribution with predictive 269

mean and uncertainty. Subsequently, the acquisition function 270

is optimized with respect to the model to identify the most 271

promising candidate for simulation, striking a balance between 272

exploring unknown regions and exploiting local optima. 273

One commonly used surrogate model is Gaussian process 274

regression (GPR) model [20]. Given a d-dimensional input 275
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Algorithm 1: Multiobjective BO Framework
Input: The size of the initial dataset Ninit, and the

maximum number of iterations Niter

1 Generate an initial dataset D0 = {X, Y} by randomly
sampling, where Y = {y(i)|i = 1, ..., M};

2 for t = 0 → Niter − 1 do
3 Construct and train M GPR models with Dt;
4 Select the next candidate point xt by optimizing the

acquisition function α(x; Dt);
5 Simulate the candidate xt and get the result yt;
6 Combine {Dt, {xt, yt}} to form the dataset Dt+1;
7 end

Output: Pareto set PS

vector x, assume that y = f (x) + ε, where ε ∼ N (0, σ 2
n )276

denotes the observation noise. The dataset D = {X, y} is277

formed by N observations, where X is a set of input vectors278

X = {x1, . . . , xN}, and y is the corresponding outputs y =279

{y1, . . . , yN}.280

A Gaussian process (GP) is a collection of random variables,281

any finite number of which have a joint Gaussian distribution.282

A GP is fully characterized by its mean function m(·) and its283

kernel or covariance function k(·, ·). If f follows a GP, the284

GPR model can provide posterior distribution for an arbitrary285

location x∗ as follow [20]:286

{
μ(x∗) = m(x) + k(x∗, X)

[
K + σ 2

n I
]−1

(y − m(x))

σ 2(x∗) = k(x∗, x∗) − k(x∗, X)
[
K + σ 2

n I
]−1

k(X, x∗)
(8)287

where μ(x∗) is the predictive mean, σ(x∗) represents the288

uncertainty estimation, i.e., the standard deviation, k(x∗, X) =289

{k(x∗, xi)|i = 1, . . . , N}, and k(X, x∗) = k(x∗, X)T and K =290

k(X, X). When no prior information about f (x) is available,291

m(x) is always set to zero. In this work, we set m(x) = 0 and292

the kernel function as the Matern52 kernel [20].293

BO optimizes the acquisition function to acquire the next294

simulation point. Several commonly used single-objective295

acquisition functions include lower-confidence bound (LCB),296

probability of improvement (PI), and expected improvement297

(EI) [20]. EHVI [21] is an acquisition function that is specified298

for multiobjective optimization. The EHVI represents the299

expectation of HVI over the posterior of the GPR models,300

typically approximated using Monte Carlo integration [22]301

αEHVI(Xcand|PF, r) ≈ 1

N

N∑

t=1

HVI
(
f t(Xcand)|PF, r

)
(9)302

where f t(·), t = 1, . . . , N are sampled from the GPR models.303

To sum up, a general multiobjective BO framework is shown304

in Algorithm 1.305

III. PROPOSED METHOD306

A. Overview of ROI-HIT Framework307

Our proposed ROI-HIT framework is presented in Fig. 2.308

The green part represents the stage where ROI-HIT acquires309

ROIs in the global design space. The red part represents the310

local BO inside an ROI, and the blue part represents the311

Fig. 2. Framework of ROI-HIT method.

asynchronous parallel strategy. In the global stage, a SOM 312

tree is constructed for space partitioning. At each level of 313

the SOM tree, a SOM network is trained on the current 314

dataset to map the high-dimensional design space into a 2-D 315

feature space. The SOM network ensures that neighboring 316

points in the design space remain adjacent in the feature space. 317

The regions associated with the PS in the feature space are 318

defined as ROIs. By focusing on ROIs, ROI-HIT can reduce 319

the over-exploration in the vast design space and advance the 320

PF faster. Inside each ROI, ROI-HIT calculates a sensitivity 321

matrix via the data points and uses it to prune the unimportant 322

variables. Because of the reduced dimensions for modeling 323

and optimization, the optimization time to choose candidates 324

is shortened. In order to save the simulation time, ROI-HIT 325

supports asynchronous parallel simulation. A new round of 326

optimization will begin when there are idle workers, regardless 327

of the status of the ongoing simulation. After reaching the 328

maximum runtime budget, ROI-HIT returns the optimal PS. 329

The combination of ROI exploitation, unimportant variable 330

pruning, and asynchronous parallel simulation significantly 331

enhances the exploration efficiency. 332

B. SOM-Tree-Based ROI Acquisition Method 333

For the high-dimensional DSE, the simulation points are 334

sparse relative to the vast design space. Besides, the commonly 335

used GPR models have the implicit homogeneity [15], while 336

the design space is heterogeneous. So, it is hard for the global 337

models on simulation results to give accurate estimates of 338

the entire space. At the same time, the space far from the 339

simulated points has a large uncertainty, which makes the 340

optimization method tend to over-explore. To address these 341

problems, ROI-HIT exploits the more promising ROIs to 342

reduce the over-exploration and advance the PF faster. 343

RTL netlists of RISC-V SoCs can be generated by a 344

dedicated generator based on specific architecture parameters. 345

So, significant variations in these parameters can lead to 346

substantial differences in the generated netlists, resulting in 347

considerable changes to the corresponding PPA characteristics. 348

On the other hand, similar design parameters exhibit similar 349

performance, as Fig. 3(a) and (b) show. Meanwhile, models 350

can give more accurate estimates of the regions near the 351

sampled points than the others. As a result, we designate 352

the regions near the PS as ROIs and conduct local BO inside 353

the ROIs to generate the candidates to be simulated. 354
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Fig. 3. Illustration of (a) PPA space, (b) high-dimensional design space, (c) SOM network, and (d) ROIs in 2-D feature space. In (a), we prioritize the
regions near the current PF, shown as orange and blue regions, because they are more promising to advance the PF. These regions correspond to the orange
and blue irregular design spaces in (b). To acquire the ROIs, ROI-HIT employs a SOM network, as shown in (c), to map the original design space in (b) to
a 2-D feature space in (d), while the neighbors in the former are still neighbors in the latter. In (d), the feature regions, including the points in the PS (PS
regions, shown as the regions with stars) and their adjoining areas (Adj. Regions, shown as the regions with circles), are designated as ROIs. If different ROIs
have overlapping feature regions, shown as the regions with triangles, these ROIs will be combined into a single ROI covering all regions. By exploiting the
ROIs, ROI-HIT is able to reduce the over-exploration in the vast design space and advance the PF faster.

1) SOM Network: To acquire the ROIs, a SOM355

network [23], [24] is used to map the high-dimensional356

design space into a 2-D feature space. SOM is an artificial357

neural network commonly utilized for high-dimensional358

visualization. It can ensure that neighbors in the high-359

dimensional space remain neighbors in the low-dimensional360

feature space [24], as shown in Fig. 3.361

Moreover, the existing local BO methods based on trust362

regions [15], [16], [19] solely modify the range of the local363

region without considering the distribution of simulated data364

points. This may result in an insufficient number of simulated365

points in the local region, leading to inaccurate modeling of366

that area. Consequently, more iterations of optimization may367

be required to adjust the range of the trust region, potentially368

wasting time and computational resources. However, SOM369

networks consider the distribution of the dataset and are370

trained to have similar densities in each region [24]. So,371

the ROI-HIT based on SOM networks can provide a better372

guarantee of sufficient local dataset size and accurate modeling373

compared to methods based on trust regions.374

After the SOM network maps the original design space375

to a 2-D space, we label the feature regions, including the376

current PS and their adjacent regions as an ROI, as presented377

in Fig. 3(d). If different ROIs have overlapping regions, they378

are merged into a single ROI covering all regions. Because379

the feature regions obtained by the SOM network maintain380

the neighbor relationships in the design space, ROI-HIT can381

exploit the promising local regions covering the PS.382

Any new point in the high-dimensional input space can be383

categorized by the trained SOM network to a region in the 2-D384

feature space. Candidate points obtained through acquisition385

function optimization should be assessed by the SOM network,386

and only those inside the ROIs are retained for subsequent387

optimization.388

Illustrated in Fig. 3(c), the neurons in a SOM are arranged389

in a 2-D lattice, with each neuron having full connections to390

all the source nodes in the input layer. Each neuron has a391

vector wi of weights associated392

wi = {wij, j = 1, . . . , n} (10)393

where n is the number of source nodes. A SOM involves the 394

concept of a winning neuron. For a input x, the winning neuron 395

is defined as 396

iwin = arg min
i

‖x − wi‖. (11) 397

The weight vector of the winning neuron is more similar 398

to x than the others, and it will undergo weight adjustment 399

to enhance its responsiveness to the input when encountered 400

again. Meanwhile, the weights of the neurons close to the 401

winning one need to be adjusted to produce a stronger response 402

to x in order to preserve the topological order. So the weights 403

of each neuron are adjusted according to the following rule: 404

wi = wi + η(t)h(iwin)(x − wi) (12) 405

where t is the number of iterations, η(t) is a learning rate, 406

which decreases as t increases, and h(iwin) is a neighborhood 407

function which has high values for iwin and the neurons close 408

to iwin on the lattice. Usually, a Gaussian centered on iwin is 409

chosen as the neighborhood function. Algorithm 2 outlines the 410

training process of a SOM. 411

2) SOM Tree: To further improve optimization efficiency 412

and obtain the optimal solutions, we propose a SOM tree. 413

Through the SOM tree, we identify the most suitable ROI 414

for simulation. When optimization results cease to improve, 415

ROI-HIT will choose the most promising ROI for further 416

subdivision and explore inside the smaller ROIs. If ROI-HIT 417

converges to the local optimal, which means the SOM tree 418

reaches the maximum depth, the current ROI will return to 419

its parent node and perform a random restart. As a result, the 420

SOM tree improves optimization efficiency in the early stage 421

and yields a global optimization performance guarantee. 422

As shown in Fig. 4(a), each node in the SOM tree represents 423

an ROI. As the overlapped ROIs should be merged into the 424

same ROI, the ROIs are independent of each other. At each 425

level, all ROIs are acquired by the same SOM network, which 426

is trained during the construction of nodes at that level. The 427

size of this SOM network is determined by the point number 428

and dimension of the dataset. In this work, the initial dataset 429

size is 100, and dimensionality reduction yields a design space 430
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Algorithm 2: Train SOM Network
Input: The dataset X, the maximum iterations Niter

1 Initialize the weights of each neuron at random;
2 for t = 0 → Niter − 1 do
3 Randomly choose an input x ∈ X;
4 Determine the winning neuron by (11);
5 Adapt the weights of each neuron by (12);
6 end

of around 10 dimensions. Since an ROI occupies at least 4431

neighboring feature regions mapped by the SOM network, and432

each feature region contains a similar number of data points,433

we set the SOM network size as 5×5. This ensures that each434

ROI contains at least 16 data points, facilitating subsequent435

BO [25].436

At each level, we select the ROI for optimization based on437

its figure of merit (FOM)438

FOM = NSucc − NFail + HVC/HVCmax (13)439

where NSucc is the number of times that the ROI finds a new440

Pareto point and NFail is the number of times that the ROI441

fails to find a new Pareto point. HVC is the largest HVC of442

the Pareto points inside the ROI, HVCmax is the largest HVC443

among all Pareto points. The SOM tree updates NSucc and444

NFail as follows:445

{
NSucc += 1, NFail = 0, if ROI gets a new PF
NSucc = 0, NFail += 1, otherwise.

(14)446

By the FOM, ROI-HIT favors exploring regions that are more447

likely to improve the PF.448

If an ROI fails to find a new Pareto point for NFailmax449

consecutive times, namely, NFail ≥ NFailmax , we define that the450

ROI is well explored. As Fig. 4(b) shows, when all ROIs at451

the current level are well explored, we will split the best ROI,452

namely, the ROI with HVCmax. A new SOM network will453

be trained inside this ROI, and new ROIs will be acquired.454

These ROIs will be child nodes of the original ROI. In our455

approach, the new SOM network has the same size as the456

original one. To ensure sufficient data points in the new ROI,457

the split is only performed when the number of data points458

in the ROI exceeds the number of data points in the initial459

dataset; otherwise, ROI-HIT continues to select ROIs based460

on the FOM value.461

When the range of ROIs has become sufficiently small, i.e.,462

the depth of the SOM tree has reached Depthmax, and all ROIs463

are well explored, we consider these ROIs to have converged.464

As is shown in Fig. 4(c), ROI-HIT will return to the parent465

node and perform NRS rounds of random search to explore466

unexplored regions. If new Pareto points are found, the ROIs467

will be updated and a new optimization iteration will begin. If468

no new Pareto points are found, the search will proceed to an469

upper-level node until a random search is performed globally.470

C. Variable Selection Based on Sensitivity Matrix471

For high-dimensional DSE, the time complexity for472

modeling and optimization increases linearly or faster with the473

(a)

(b)

(c)

Fig. 4. Illustration of SOM Tree. (a) Each node represents an ROI. Since
the number of ROIs obtained from ROI-HIT is not fixed, the number of child
nodes at each level varies. At the same level, all ROIs are acquired by the
same SOM network. The next ROI to be optimized is selected based on its
FOM value. (b) If all the ROIs at the current level are well explored, the best
ROI will be split. A new SOM network will be trained inside the split ROI,
and the smaller ROIs will be acquired via the new SOM for more detailed
exploration. (c) If the ROIs are small enough and well explored, ROI-HIT will
restart, which means the current ROI returns to its parent node and conducts
a random search.

number of dimensions. The existing methods [17], [18], [19] 474

use embeddings to map the original high-dimensional space 475

to a low-dimensional intrinsic space, thus reducing the 476

dimensionality. However, these methods require specifying 477

the effective dimension number in advance, which can be 478

challenging since determining the accurate intrinsic dimension 479

of the problem is often difficult. 480

Meanwhile, different microarchitecture design parameters 481

have distinct influences on the PPA results. For instance, a 482

modification in DecodeWidth significantly affects the PPA 483

results, whereas the Boolean value of EnableSFBOpt makes 484

a minor impact. However, the embedding-based methods 485

ignore the different importance of design parameters on 486

performances. Moreover, the relative importance of different 487

design parameters varies across applications. Even seasoned 488

design experts face challenges in accurately identifying the 489

key parameters for a specific scenario due to the increasing 490

complexity of RISC-V SoCs and the opaque optimization 491

methods employed by EDA tools. 492

Our proposed ROI-HIT obtains a sensitivity matrix to evalu- 493

ate the importance of different variables according to the input 494

variables and their performances. Unlike existing methods that 495

require specifying the effective dimension number, ROI-HIT 496

eliminates unimportant variables and automatically adjusts the 497

number of dimensions to reduce optimization time. 498

A sensitivity matrix S [26] is calculated to measure the 499

importance of variables 500

S = {
sij | i = 1, . . . , n, j = 1, . . . , M

}
(15) 501

where n denotes the number of variables, namely, the dimen- 502

sion d of input vector x, and M is the number of objectives. 503

The sensitivity coefficient sij is defined as 504

sij = Var
[
E
(
yj|xi

)]

Var
(
yj

) ≈
∑ri

l=1 |Al
i|
[(

ȳj
)l

i − ȳj

]2

∑
x∈X

[
yj(x) − ȳj

]2
505
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Fig. 5. Illustration of the VS based on the sensitivity matrix for RISV-
V BOOM microarchitecture [6]. The maximum importance value (Vmax)

represents the peak importance, and the threshold for VS is determined by
the product of p and Vmax.

ȳj = 1

|X|
∑

x∈X

yj(x),
(
ȳj

)l
i = 1

|Al
i|

∑

x∈Al
i

yj(x) (16)506

where X represents the dataset, and ri represents the number507

of value which xi can be and Al
i represents the set of points508

for which the variable xi is set to its lth value.509

By definition, sij is a value in the range of 0 to 1. The value510

closer to 1 indicates that variable xi has a more significant511

effect on objective yj, whereas the value closer to 0 indicates512

that variable xi has a less significant effect on variable yj.513

For multiobjective optimization, the importance of different514

objectives should be integrated. In order to obtain a better515

PF, we hope to improve the shortcomings of the current516

optimal results. So, the weight to the jth objective wj and the517

importance value Vi of the ith variable are defined as518

wj = yjbest − yjmin

yjavg

, j = 1, . . . , M (17)519

Vi =
m∑

j=1

(
wj · sij

) + Cp

√
1/ni (18)520

where yjbest is the jth objective value of the Pareto point521

with the largest HVC inside the ROI, yjmin is the minimum522

jth objective value among all points, yjavg is the average jth523

objective value of the whole dataset, ni is the number that the524

variable xi has been selected as the important variable, and Cp525

is a hyper-parameter to make a tradeoff between exploitation526

and exploration. For microarchitecture DSE, Cp is set as 0.01.527

A variable is considered important if its importance value Vi528

surpasses the threshold Vth which is determined by the product529

of a hyper-parameter p and the maximum importance value530

observed Vmax, as shown in (19) and Fig. 5531

Dipt = {i | i ∈ D, Vi ≥ Vth}, Vth = p · Vmax (19)532

where D = {i|i = 1, . . . , n}. Moreover, if the number of533

important variables is less than a lower bound NiptL , the largest534

NiptL variables are selected as important variables to ensure535

the effectiveness of modeling. Conversely, if the number of536

important variables exceeds an upper bound NiptU , the NiptU537

variables with the highest-importance values are chosen as538

important variables to avoid excessively long optimization539

time. In this work, the number of important variables is con-540

strained to be between 3 and 20. According to the theoretical541

analysis in [27], the greater the importance of the unselected542

variables, the higher the cumulative regret. Therefore, to543

enhance optimization efficiency, p in (19) is set to 0.5, thereby 544

limiting the importance of the unselected variables. 545

Besides, unimportant variables are fixed to the values of the 546

Pareto points inside the current ROI. As there may be more 547

than one Pareto point, unimportant variables are transformed 548

into a discrete auxiliary variable varaux, which is the index of 549

the closest Pareto point 550

varaux = arg min
k

‖x − xPSk‖. (20) 551

We utilize both the important variables and the auxiliary 552

variable to construct models for subsequent optimization. 553

D. Asynchronous Batch Multiobjective BO 554

To yield precise PPA results for RISC-V processors, a 555

VLSI flow is employed. However, a single VLSI flow can 556

take 1-6 h to complete. Since the simulations are indepen- 557

dent, simulations can be run in parallel. However, various 558

design parameters result in different simulation time, so the 559

synchronous parallel/batch method must wait for the slowest 560

simulation in a batch to complete before starting a new 561

iteration. Consequently, an asynchronous batch strategy is 562

employed to reduce simulation time and further enhance 563

exploration efficiency. 564

The asynchronous parallelism means that a new 565

optimization iteration starts before all the simulation points 566

are returned. Thus, it is essential to carefully select candidate 567

points to avoid repeated simulations. The EHVI [22] 568

acquisition function is utilized to choose the candidate points. 569

When selecting candidates, if the simulation of xi does not 570

return, xi will be placed into the pending point set to create a 571

pseudo PS. The GPR models are left unchanged. At this time, 572

the EHVI value of xi will become 0 according to the definition 573

of EHVI in (9). Then, the next candidate xi+1 will be obtained 574

by the EHVI acquisition function. So, xi+1 is distinct from 575

existing points. 576

Since the SOM network is unable to perform a reverse 577

transformation from the feature space to the design space, hill- 578

climbing local search [18] is employed for acquisition function 579

optimization. When it comes to the auxiliary dimension, the 580

points in the PS are chosen as the corresponding discrete input 581

values to guarantee that the candidate points correspond to the 582

points in the original high-dimensional design space. 583

IV. EXPERIMENTAL RESULTS 584

A. Experimental Setup 585

We explore the design spaces for a RISC-V BOOM [6] 586

core and a Rocket core [7]. Both of them are RV64GC 587

configurations. To assess the PPA results, all circuits in the 588

experiments are SoCs featuring either the BOOM core or 589

Rocket core as their processor cores. The peripheral modules 590

of these SoCs are standard components provided by the 591

Chipyard [3] framework. A 7nm ASAP7 PDK [28] is utilized 592

in the VLSI flow. Since the designs based on ASAP7 are 593

not manufacturable, this article only achieves the front-end 594

design in the experiments. The RTL designs are generated 595

by the Chipyard framework, and the designs are simulated 596
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TABLE I
DESIGN PARAMETERS

via an open-source simulator Verilator [10] to get CPI as the597

performance metric. Cadence Genus Synthesis Solution 19.10598

is employed for logic synthesis. We set the clock frequency to599

250 MHz for low-power embedded system applications. The600

area and power are obtained by Genus. The power metric is601

the total power. In this article, we refer to the time elapsed602

from inputting design parameters to obtaining PPA results603

as simulation time; the time spent running the algorithm is604

referred to as optimization time. The sum of these two time605

constitutes the total time.606

To evaluate the performance of the designs, 13 benchmarks607

are selected, including dhrystone, median, mm, mt-matmul,608

mt-vvadd, multiply, qsort, rsort, spmv, towers, vvadd, fir2dim,609

and whetstone. The first 11 benchmarks are from riscv-610

test,1 a benchmark suite by RISC-V International designed to611

evaluate RISC-V processor performance. These benchmarks612

can well cover the RISC-V instructions and are employed in613

BOOM-Explorer [13] and GRL-DSE [14]. BOOM-Explorer614

also utilizes fir2dim2 and whetstone3 to evaluate digital signal615

processing (DSP) and floating-point performance, respectively.616

So, we adopt them for assessing our processor’s capabilities.617

The optimizations are to minimize the average CPI of bench-618

marks, power consumption, and area of the generated design.619

All experiments take place on a Linux workstation equipped620

with 80 Intel Xeon Gold 6230 CPUs @2.10 GHz.621

As shown in Table I, the design parameters encompass the622

22 parameters of BOOM, the nine parameters of Rocket, and623

the 31 parameters of Genus, all represented as discrete values.624

Namely, the dimension numbers of design spaces for BOOM625

and Rocket are 53 and 40, respectively. The sizes of the design626

space for BOOM and Rocket are around 6.96×1032 and 4.06×627

1025, respectively.628

We compare our ROI-HIT method with five state-of-the-art629

methods: 1) BOOM-Explorer [13], a sequential BO method for630

1https://github.com/riscv-software-src/riscv-tests
2https://www.ice.rwth-aachen.de/research/tools-projects/closed-

projects/dspstone
3https://netlib.org/benchmark/whetstone.c

TABLE II
ABLATION STUDY OF ROI-HIT BASED ON RISC-V BOOM

MICROARCHITECTURE DSE

microarchitecture DSE based on an efficient initial sampling 631

method MicroAL; 2) GRL-DSE [14], another sequential BO 632

method for microarchitecture DSE that utilizes a GNN to map 633

the design space into graph embedding space; 3) BODi [18], 634

a BO method for high-dimensional discrete optimization 635

problem that employs dictionary embedding; 4) MORBO [16], 636

an efficient multiobjective BO method that is based on trust 637

regions; and 5) REMOTune [19], a recent BO method for high- 638

dimensional DSE that combines the trust regions and random 639

embedding. Since the MORBO and REMOTune support the 640

parallel simulation in a batch, these two methods are compared 641

in both sequential mode and batch mode. For clarity, we 642

label the batch size after the name of the algorithms. In these 643

experiments, the batch size is set as 4. All algorithms are 644

implemented in Python. 645

Due to the untraversable high-dimensional design space, 646

BOOM-Explorer and GRL-DSE randomly select 15 000 sam- 647

ple points from the entire design space to train MicroAL and 648

GNN. Additionally, we extend the original BODi from single- 649

objective optimization to multiobjective optimization by using 650

the EHVI acquisition function [22]. In order to gain an insight 651

into the high-dimensional design space, we set the initial 652

dataset size to 100. Since the points in the initial dataset are 653

independent, they can be simulated in parallel. Consequently, 654

through a 10-process parallel execution, the initial dataset can 655

be acquired in one day. For a fair comparison, all algorithms 656

are initiated with an identical set of designs sampled from 657

the design space utilizing the MicroAL algorithm in [13]. 658

The maximum time budget for the experiments is one day 659

(86400s). The reference point to calculate the HV is set as the 660

maximum CPI, power, and area values in the initial dataset. 661

The experiments are conducted five times, and the average 662

results are reported. 663

B. Ablation Study 664

To verify the effectiveness of the ROI acquisition method 665

and VS, we first conduct ablation experiments of our 666

ROI-HIT method on the RISC-V BOOM microarchitecture 667

DSE problem. We conduct a comparison between a vanilla 668

BO, a BO method with ROI (BO+ROI), a BO method based 669

on VS (BO+VS), a sequential ROI-HIT-1, a synchronous 670

batch ROI-HIT-4S, and an asynchronous batch ROI-HIT-4. 671

The experimental results are presented in Table II. 672

1) Effectiveness of ROI and VS: ROIs offer a more promis- 673

ing local scope, while VS focuses on important variables, such 674

as DecodeWidth and IntIssueWidth, and mitigates interference 675
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Fig. 6. Optimization results obtained by adjusting the EDA tool parameters while keeping the architecture parameters unchanged. The blue points denote the
original official designs (SmallBoom and MediumBoom are from [6]. BigRocket and MedRocket are from [7].) The orange points denote the Pareto-optimal
designs from optimizing the EDA tool (Genus) parameters by ROI-HIT-4. The original design and the optimized designs have the same architecture parameters,
so their RTL netlists and CPIs are the same.

TABLE III
OPTIMIZATION RESULTS AND CORRESPONDING TIME FOR RISC-V BOOM MICROARCHITECTURE DSE

from noncritical dimensions during ROI-driven optimization.676

ROIs and VS improve, respectively, 0.30% and 1.89% HV677

compared with vanilla BO. The combination of ROIs and VS678

thus greatly enhances the results of ROI-HIT. The sequential679

ROI-HIT-1 achieves 3.76%, 3.45%, and 1.83% improvement680

in HV compared with vanilla BO, BO with ROI, and BO681

with VS.682

2) Effectiveness of Batch Simulation: The synchronous and683

asynchronous batch simulation methods, through increased684

exploration points, further enhance the exploration results685

within the limited time budget. The asynchronous ROI-HIT-4686

with a batch of 4 achieves, respectively, 6.61%, 2.75%, and687

2.02% improvement in HV compared with vanilla BO, sequen-688

tial ROI-HIT-1, and synchronous ROI-HIT-4S. By exploiting689

the idle time gap between different simulations in a batch,690

asynchronous ROI-HIT-4 explores 1.20× more points than691

synchronous ROI-HIT-4S.692

3) Optimization Time: The VS notably reduces the693

optimization time by significantly reducing the dimensions and694

obtains a speedup of 72.51× in optimization time compared to695

vanilla BO. Benefiting from the VS, the sequential ROI-HIT-1696

achieves optimization time speedups of 26.83× compared to697

vanilla BO. However, due to asynchronous batch simulation,698

where simulation time overlaps with optimization time, it is699

not feasible to quantify the optimization time for asynchronous700

ROI-HIT-4.701

Fig. 7. Optimization results for RISC-V BOOM microarchitecture DSE.

4) Effect of EDA Tool Parameters: Although the CPI of the 702

design is determined by the RTL netlist generated by the archi- 703

tecture parameters, differing EDA tool configurations result 704

in variations in power and area. This is illustrated in Fig. 6, 705

where the blue points represent the power and area resulting 706

from logic synthesis using default parameters, while the orange 707

points represent the PF achieved by utilizing ROI-HIT-4 to 708

optimize EDA tool parameters. The experiment suggests that 709

optimizing EDA tool parameters achieves 21.81%–28.77% 710

improvement in power and 0.79%–1.68% improvement in 711

area. 712

C. RISC-V BOOM Microarchitecture DSE 713

The optimization results are shown in Table III and Fig. 7. 714

Min. CPI, Min. Power, and Min. Area in the table denote 715
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Fig. 8. Optimization results for rocket microarchitecture DSE.

the minimum values of CPI, power, and area achieved by the716

optimization. In addition to HV, we also use average distance717

to reference set (ADRS) to provide a comprehensive evaluation718

of optimization results719

ADRS(�,�) = 1

|�|
∑

γ∈�

min
ω∈�

d(γ, ω) (21)720

where d is the Euclidean distance function. � is the real PF721

and � is the optimized PF. However, due to the vastness of722

our design space, it is not feasible to obtain a real PF. To723

address this issue, we consider all the points evaluated in the724

experiments as the total dataset, utilizing the PF derived from725

it as the reference set to calculate the ÂDRS. Compared with726

the state-of-the-art methods, ROI-HIT obtains the largest HV727

and the least ÂDRS in both sequential and batch mode. The728

sequential ROI-HIT-1 achieves 3.47%–3.76% improvement in729

HV compared with sequential baselines, while asynchronous730

batch ROI-HIT-4 achieves 4.67% and 6.51% improvement731

in HV compared with MORBO-4 and REMOTune-4. ROI-732

HIT-1 improves ÂDRS by 16.19%–46.53% over sequential733

baselines, while ROI-HIT-4 improves ÂDRS by 43.22% and734

61.54% over MORBO-4 and REMOTune-4. In terms of PPA735

metrics, ROI-HIT-4 gains improvements of 4.16%–43.82% in736

CPI, 3.88%–33.20% in power, and 0.65%–11.41% in area,737

compared to other methods. Besides, ROI-HIT-1 takes the738

least optimization time among all methods, and ROI-HIT-739

4 explores the most points within the limited time budget.740

As shown in Fig. 7, compared to state-of-the-art methods,741

ROI-HIT-4 achieves a speed-up of 3.58×–13.52× in reaching742

the maximum HV that the baselines achieve. Fig. 9(a) shows743

the PFs obtained from a sole run of MORBO-4, REMOTune-744

4, and ROI-HIT-4. ROI-HIT-4 gains the best PF compared to745

MORBO-4 and REMOTune-4.746

To verify the effectiveness of the optimization, we compare747

the Pareto-optimal designs obtained from the experiment748

with the official BOOM designs (Small BOOM and Medium749

BOOM) from [6]. As Table IV shows, ROI-HIT-4 achieves750

improvements of 19.21% in CPI, 25.52% in power, and751

1.61% in area compared to Small BOOM, while ROI-HIT-4752

achieves improvements of 0.30% in CPI, 30.05% in power,753

and 2.71% in area compared to Medium BOOM. Through the754

VS, we identify the eight most important design parameters: 1)755

decodeWidthB; 2) BPDB; 3) intIssueWidthB; 4) fetchWidthB;756

5) numIntPhysRegistersB; 6) memIssueWidthB; 7)757

(a) (b)

Fig. 9. PFs obtained by, respectively, MORBO-4 [16], REMOTune-4 [19],
and our proposed ROI-HIT-4. (a) BOOM. (b) Rocket.

numRasEntriesB; and 8) leakage_power_effortG. Parameters 758

with a superscript B belong to BOOM parameters, while 759

the parameter with a superscript G belongs to Genus 760

parameters. Increasing the decodeWidthB can significantly 761

improve CPI but at the cost of higher-power consumption 762

and area. Similarly, the choice of prediction branch (BPDB) 763

affects CPI, power consumption, and area. In terms of 764

EDA tool parameters, logic synthesis with a higher- 765

leakage_power_effortG yields significantly better-power 766

optimization results compared to the official design at the 767

default setting. 768

D. Rocket Microarchitecture DSE 769

The optimization results are shown in Table V and Fig. 8. 770

Compared with the state-of-the-art methods, ROI-HIT obtains 771

the largest HV and the least ÂDRS in both sequential and 772

batch mode. The ROI-HIT-1 improves HV by 5.49%–6.54% 773

over sequential baselines, while ROI-HIT-4 achieves HVIs of 774

8.24% and 7.72% compared to MORBO-4 and REMOTune-4. 775

ROI-HIT-1 improves ÂDRS by 39.11%–46.97% over sequen- 776

tial baselines, while ROI-HIT-4 improves ÂDRS by 63.95% 777

and 59.53% over MORBO-4 and REMOTune-4. In terms of 778

PPA metrics, ROI-HIT-4 achieves improvements of 0.00%– 779

16.27% in CPI, 3.87%–22.72% in power, and 0.16%–0.57% 780

in area, compared to other methods. Besides, ROI-HIT-1 takes 781

the least optimization time among all methods, and ROI-HIT- 782

4 explores the most points within the limited time budget. As 783

shown in Fig. 8, compared to state-of-the-art methods, ROI- 784

HIT-4 achieves a speed-up of 16.13×–17.23× in reaching the 785

maximum HV that the baselines achieve. Fig. 9(b) shows the 786

PFs obtained from a sole run of MORBO-4, REMOTune-4, 787

and ROI-HIT-4. ROI-HIT-4 gains the best PF compared to 788

MORBO-4 and REMOTune-4. 789

We also compare the Pareto-optimal designs obtained from 790

the experiment with the official Rocket designs (BigCore 791

and MedCore) from [7]. As Table VI shows, ROI-HIT-4 792

improves CPI by 0.32%, power by 18.13%, and area by 0.81% 793

compared with BigCore, while ROI-HIT-4 improves CPI by 794

18.04%, power by 25.32%, and area by 0.01% compared with 795

MedCore. Through the VS, we identify the eight most impor- 796

tant design parameters: 1) nDCacheWaysR; 2) divUnrollR; 797

3) nICacheWaysR; 4) mulUnrollR; 5) syn_opt_effortG; 798

6) leakage_power_effortG; 7) nICacheTLBWaysR; and 8) 799

dp_analytical_optG. Parameters with a superscript R belong 800

to Rocket parameters, while the parameters with a superscript 801
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TABLE IV
PARETO-OPTIMAL DESIGNS FOR RISC-V BOOM MICROARCHITECTURE

TABLE V
OPTIMIZATION RESULTS AND CORRESPONDING TIME FOR ROCKET MICROARCHITECTURE DSE

TABLE VI
PARETO-OPTIMAL DESIGNS FOR ROCKET MICROARCHITECTURE

G belong to Genus parameters. Increasing the number of802

nWaysR and UnrollR improves CPI, but also increases power803

consumption and area. But, logic synthesis tool parameters can804

be adjusted to mitigate these tradeoffs, resulting in a design805

that achieves better-power consumption and area results.806

E. Discussion807

Due to the time-consuming optimization of DKL-GP in808

high dimensions, BOOM-Explorer’s optimization time signifi-809

cantly lags behind other methods. GRL-DSE exhibits mediocre810

HV because training an accurate GNN for the entire high-811

dimensional design space is challenging. BODi outperforms812

BOOM-Explorer and GRL-DSE by employing dictionary813

embedding, which is more suitable for high-dimensional814

problems. However, it disregards the varying importance of815

design parameters, resulting in inferior performance com- 816

pared to ROI-HIT. BODi’s hill-climbing local search requires 817

more acquisition evaluations than sampling methods in 818

GRL-DSE, MORBO, and REMOTune, leading to a longer 819

optimization time. Although MORBO and REMOTune are 820

designed for high-dimensional multiobjective optimization, 821

they achieve worse results than ROI-HIT in both sequen- 822

tial and batch modes because they ignore the relationship 823

between design parameters and PPA results, ignoring the 824

different importance of variables. Additionally, these trust 825

region-based methods exhibit limited robustness, as demon- 826

strated in experiments for RISC-V BOOM and Rocket 827

microarchitectures. 828

Our proposed ROI-HIT achieves better PPA results by 829

focusing on promising ROIs and important variables. The 830

asynchronous batch technique in ROI-HIT enables it to explore 831
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more points within the limited time budget. Moreover, our832

approach provides designers with valuable insights into RISC-833

V SoCs by identifying the important variables (key design834

parameters). This information is beneficial for microarchitec-835

ture DSE.836

V. CONCLUSION837

In this article, we propose an ROI-driven microarchitec-838

ture DSE method called ROI-HIT. This method exploits839

ROIs acquired by a SOM Tree and then prunes unimpor-840

tant variables based on a sensitivity matrix. By optimizing841

inside the more promising ROIs and reduced dimensions,842

this approach greatly improves the exploration efficiency843

in high-dimensional DSE. For time-consuming VLSI flow844

simulation, an asynchronous parallel strategy is employed845

to make ROI-HIT explore more points in the limited time846

budget. Experimental results conducted on the RISC-V BOOM847

and Rocket microarchitectures demonstrate that our proposed848

method achieves a 3.47%–9.19% improvement of HV within849

the same time budget and 3.58×–341.68× speed-up of time850

in reaching the same HV compared to the state-of-the-851

art methods. In terms of PPA metrics, ROI-HIT achieves852

improvements of up to 43.82% in performance, 33.20%853

in power consumption, and 11.41% in area. By leveraging854

SOMT-based space partitioning, sensitivity matrix-based VS,855

and an asynchronous parallel strategy, ROI-HIT can effec-856

tively handle black-box optimization problems with large857

parameter space, high dimensionality, and expensive simula-858

tions. We believe that ROI-HIT can find broader applications859

in future research. The code of ROI-HIT is available at860

https://github.com/zxy6541/ROI-HIT.861
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