
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPTEMBER 2024 1

FIRM-tree: a Multidimensional Index Structure for
Reprogrammable Flash Memory

Shin-Ting Wu, Pin-Jung Chen, Po-Chun Huang, Wei-Kuan Shih, Yuan-Hao Chang, Fellow, IEEE

Abstract—For many emerging data-centric computing appli-
cations, it is a key capability to efficiently store, manage, and
access multidimensional data. To achieve this, many multidimen-
sional index data structures have been proposed. However, when
existing multidimensional index data structures are maintained
on modern nonvolatile memories such as NAND flash memory,
they often face challenges in effective management of multidimen-
sional data and handling of memory medium peculiarities, such
as the write-once property and the need for block reclamation
of NAND flash memory. Without appropriate management, these
challenges often result in serious amplification of the read/write
traffic, which degrades the performance of multidimensional data
structures. Motivated by the urgent needs of efficient multidimen-
sional index data structures on modern nonvolatile memories, we
propose the FIRM-tree, a time-efficient and space-economic index
data structure for multidimensional point data on NAND flash
memory. Unique to the prior work, the FIRM-tree holistically
utilizes RAM and flash memory space, and dedicatedly leverages
the page reprogrammability of modern NAND flash memory,
to enhance data access performance and flash management
overheads. We then verify our proposal through analytical and
experimental studies, where the results are quite encouraging.

Index Terms—Multidimensional index structure, flash memory,
reprogrammable flash, write amplification.

I. INTRODUCTION

W ITH the rapid development of data-centric comput-
ing scenarios, a high-performance data structure has

become a must-have to handle massive data. Furthermore,
many applications demand the capability to store, manage, and
access the data of multiple or many dimensions. According to
the different flavors of data, multidimensional index structures
may be further classified as point access methods (PAMs)
or spatial access methods (SAMs) [1]. While PAMs target
data points, SAMs are able to handle region data of different
geometries in the multidimensional space. Different from one-
dimensional data, multidimensional data often exhibit sparsity
in the multidimensional space. How to suppress the loss of
performance and space utilization due to the data sparsity thus
becomes a design focus on multidimensional index structures.

There have been a number of brilliant proposals of multidi-
mensional index structures. Taking PAMs for example, there
are four major classes of multidimensional index structures,
such as the grid files [2], R-trees [3]–[5], kd-trees [6], [7], and
quadtrees [1], [8]. The diversified designs of multidimensional
index structures are driven by sophisticated trade-offs and joint
design considerations over the data distributions and access
operations. Specifically, how to strike a proper design trade-off

This article was presented in the International Conference on Hard-
ware/Software Codesign and System Synthesis 2024 and appears as part of
the ESWEEK-TCAD special issue. (Corresponding authors: Y.-H. Chang and
P.-C. Huang).

S.-T. Wu, P.-J. Chen, and W.-K. Shih are with National Tsing Hua
University, Taiwan.

P.-C. Huang is with Taiwan Tech, Taiwan. (Email: pch.ntust@gmail.com)
Y.-H. Chang is with Institute of Information Science, Academic Sinica,

Taiwan. (Email: johnson@iis.sinica.edu.tw)

between the latency and throughput of query operations in dif-
ferent flavors and those of update operations in different flavors
is a key question. On the other hand, whether the data points
scatter in a large key range or clustered in a small key range
also affects the designs of multidimensional index structures.
What is worse, the design complexity of multidimensional
index structures exacerbates as the intrinsic characteristics of
specific memory media—such as NAND flash memory—are
also considered, which motivates this work.

When a multidimensional index structure is maintained on
a NAND flash memory device, undesirable amplification in
the read and write traffic might be encountered, resulting in
unfortunate performance degradation. For instance, when a
node of an R-tree overflow and is split, the data points in
the node will be migrated to the child nodes. Consequently,
some data points in the R-tree might be repetitively migrated,
incurring serious write amplification and performance degra-
dation. The reliance on NAND flash memory on garbage
collection, which erases block to free up the space of invalid
pages, exacerbating the issue of write amplification. This is
because that, prior to the erasing of a block, all its valid
pages must be moved to other blocks. On the other side,
due to the page-based accesses of NAND flash memory, the
space utilization of certain pages might be unacceptably low,
which wastes the space of flash memory and amplifies the
read/write traffic on query/update operations of the R-tree.
This urgently motivates the designs of a new multidimensional
index structure, which takes full advantages of NAND flash
memory to satisfy the performance criteria of modern index
structures. In this work, we present the FIRM-tree, an index
data structure for multidimensional point data on NAND flash
memory. Our technical contributions:

• A selective data migration strategy is proposed to avoid
writing the few scattered data points into a flash page,
thereby improving the space utilization of flash memory
and mitigating the performance overheads due to the
read/write amplifications on query/insert operations (Sec-
tion III-B). To avoid aggressively collecting and rewriting
the few scattered data points in a FIRM-tree node, these
data points are simply left in situ, until eventually rear-
ranged by the incremental compaction (Section III-D).

• A level skipping strategy is proposed to further miti-
gate the long-term write amplification for redistributing
the data points to lower-level nodes in the FIRM-tree
(Section III-C). The strategy leverages the non-negligible
RAM space to maintain a mega-root node which keeps
the topmost levels of the FIRM-tree. Due to the aligned
key ranges of nodes with the uniform partitioning policy
(Section II-B), the data points may be directly flushed to
lower-level nodes in the FIRM-tree, effectively skipping
some levels and mitigating the write amplification

• A node compaction strategy is proposed to exploit the
page reprogramming capability of modern TLC flash
memory to reduce the frequency and overhead of garbage



2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPTEMBER 2024

collection of flash blocks (Section III-D). With the help of
page reprogramming, the data compaction can be realized
in an incremental manner to reduce the instantaneous
latency of garbage collection, which is a serious issue
on future flash memory with larger block sizes.

The rest of this paper is organized as follows. First of all,
Section II presents the background and considered system
architecture, so as to motivate this work. Afterward, Section III
presents the proposed FIRM-tree, a bucketed tree structure for
multidimensional point data on modern NAND flash memory
with page reprogramming supports. To evaluate the efficacy
of the FIRM-tree, a series of analytical and experimental
studies are performed in Sections IV and V, respectively. In
Section VI, we discuss the important prior work, followed by
Section VII which concludes this work.

II. SYSTEM ARCHITECTURE AND MOTIVATIONS

A. Background
1) Nonvolatile Memories (NVMs): Recently, various

high-performance and energy-economic nonvolatile memo-
ries (NVMs) have become powerful competitors of classical
memory and storage media in diversified computing systems.
Depending on the unit of data accesses, NVMs may be further
classified into byte-addressable persistent memories (PMs),
e.g, phase-change memory (PCM) [9], [10] or magnetoresis-
tive random-access memory (MRAM) [9], [11], and block-
based NVMs, e.g., NAND flash memory [12], [13]. While
various PMs can replace RAM as the main-memory media,
NAND flash memory is a promising alternative to mechanical
hard disks as the secondary storage devices.

With the unique characteristics of NVMs, the existing
hardware/software components of a computer system need to
be redesigned to fully optimize the access performance and
energy efficiency. For example, index data structures such
as red–black tree and B-tree [14] are a core component in
modern databases like key–value (KV) stores. When these data
structures are maintained on NAND flash memory, they must
consider the intrinsic characteristics of NAND flash memory,
such as the page-based access (i.e., each flash page is read
or written at once, prohibiting random accesses) and write-
once property (i.e., each page can be written only once before
its residing block is entirely erased and reclaimed by garbage
collection). Thus, the space utilization of NAND flash memory
is directly related to the read and write amplification of the
data structures, because writing a nearly empty page might
seriously amplify the write traffic and subsequent read traffic.

2) Multidimensional Index Data Structures: Classical index
data structures, such as the red–black tree and B-tree [14],
often rely on scalar keys, which are simply integers or real
numbers. However, some applications might rely on the data in
multidimensional space, which motivates the proposal of diver-
sified multidimensional index data structures. According to the
data formats, multidimensional index data structures may be
classified as point access methods (PAMs) for managing point
data, or spatial access methods (SAMs) for managing regional
data [1]. Up to now, there are four major clans of PAMs,
namely the k-dimensional trees (kd-trees) [6], R-trees [3]–
[5], grid files [2], and quadtrees [1], [8]. However, although
different multidimensional index data structures are proposed
for different application scenarios with different design trade-
offs, the curse of dimensionality is a common problem that

Fig. 1. Generic system architecture of a hybrid flash device.

might lead to abrupt degradation of space efficiency or access
performance, which must be solved [1].

3) Multidimensional Index Data Structures on NVMs: The
access granularity is a major difference between the main
memory and secondary storage. That is, while the media for
main memory must be byte-addressable to allow in-place code
execution, those for secondary storage are often accessed in
large blocks, such as hard disk sectors or flash memory pages,
to reduce management costs. For such block devices, there
have been some bucketed multidimensional index structures,
such as R∗-tree [4] and bucket PR quadtree [1], where each
node can accommodate more than one multidimensional data
items and occupies one or more blocks. Unfortunately, NAND
flash memory is not an ideal block device, and its unique
characteristics (Section II-A1) often demand dedicated designs
of index data structures to prevent performance degradation or
space waste on common tree operations such as insertion and
querying of data points. There are two promising approaches to
such designs: leveraging the unique features of flash memory
or integrating the strengths of other media, such as RAM.

To manage multidimensional point data on NAND flash
memory, several flash-friendly index data structures have been
proposed, such as the F-KDB [15]–[18] and LB-Grid [19].
Both F-KDB and LB-Grid perform log-structured writes to
buffer new data points until there are sufficiently many of them
to be flushed together into one or more pages, alleviating the
write amplification effect. On the other hand, proposals for
the hybrid of flash memory and 3D XPoint memory [10] also
exist, such as the HyR-tree [20], which utilizes unsupervised
learning to identify the hot nodes, and allocates the hot (/cold)
nodes in the 3D XPoint memory (/NAND flash memory)
to enhance access performance. However, prior work neither
takes advantage of the unique features of modern flash memory
nor holistically manages both RAM and flash memory, leaving
much room for further optimization and motivating this work.

B. System Architecture & Motivation
Figure 1 shows the generic system architecture of a hybrid

device with NAND flash memory and SRAM/DRAM. As
compared to the flash memory, the SRAM/DRAM is faster in
accesses, smaller in capacity, and can be randomly accessed
in the unit of a byte. In contrast, the NAND flash memory
comprises a number of fixed-sized blocks, each of which
has a number of consecutive fixed-sized pages. Typically,
the size of a page and that of a block are 4 KB–16 KB
and 256 KB–8 MB, respectively [13]. While a page is the



WU et al.: FIRM-TREE: A MULTIDIMENSIONAL INDEX STRUCTURE FOR REPROGRAMMABLE FLASH MEMORY 3

unit of read or write (/program) operations, a block is the
unit of erase operations. Classical NAND flash memory is
limited by the write-once property, with which a page can
be written/programmed only once unless its residing block is
entirely erased and the contents of all pages are cleared.

To avoid performing a time-consuming block erase opera-
tion for updating a page, the updated data should be out-place
updated to other free pages. Due to the out-place updates,
the pages with the latest and obsolete data are referred to as
the live and dead pages, respectively. To reclaim the space
occupied by dead pages, the garbage collection activity is
triggered to select and erase one or more victim blocks. Before
a block can be erased, the contents of its valid pages must be
migrated to other blocks to prevent data losses, referred to as
live data copying. As a block typically has hundreds of pages,
the overheads of live data copying might be high. Thus, it is
important to avoid unnecessary garbage collection and select
the appropriate victim blocks for reclamation.

This work is motivated by the design challenges of main-
taining existing multidimensional index data structures on the
hybrid of NAND flash memory and SRAM/DRAM. Specif-
ically, when a node bucket has too many data points and
overflows, how to partition the data points and redistribute
them to appropriate child nodes is a key question.

• With the balanced partitioning policy such as in the R∗-
tree [5], the data points of the node will be evenly par-
titioned into the child nodes, which guarantees balanced
structure of the tree but leads to misaligned key ranges
of different nodes, which exacerbates the management
complexity and access overheads of the data structures.

• In contrast, with the uniform partitioning policy such as
in the bucket PR quadtree [1], the key range of the over-
flowing node will be divided into equal-sized subranges,
and the data points of the node will be redistributed into
the child nodes according to the subranges. However, due
to the dimensionality curse [1], multidimensional data
points are often unevenly distributed in the key space.
Consequently, few scattered data points might be written
as a whole page, which degrades the space utilization of
flash memory, exacerbates the write amplification on in-
sert operations, increases the tree height, and exacerbates
the read amplification on subsequent query operations.

• Specifically, for d-dimensional data, each multidimen-
sional tree node has up to 2d child nodes, each uses
exactly a page of space. Suppose that a page can keep up
to f data points, the flash space utilization could be as
low as 1

2d
+ 2d−1

2d
· 1
f , when the distribution of the data

points are extremely skewed. This result suggests that,
with a larger size gap between a page and a data point,
or higher dimensionality of data, the worst-case flash
space utilization will be lower. With a typical setting of
f = 100 and d = 4, the worst-case space utilization will
be only 115

1600 ∼ 7.19%. Although the space utilization
would be higher in practice, it might still impact the space
economicity and access performance of the tree.

Modern NAND flash memory devices are often equipped
with some RAM space, which can be randomly accessed and
leveraged to resolve the dilemma between the balanced and
uniform partitioning policies. This motivates us in seeking for
novel approaches to optimally leverage the RAM space in the
designs of multidimensional index data structure on modern
flash memory devices. Unlike existing buffering/caching ap-

Fig. 2. Architecture of the FIRM-tree.

proaches, the RAM space should be holistically utilized to
maintain the multidimensional index data structures.

Garbage collection is a major source of performance over-
heads for NAND flash memory. When a multidimensional
index data structure is maintained on flash memory, frequent
insertion of data points will lead to frequent node splitting.
As data points are repetitively redistributed across different
nodes, a lot of obsolete data will be generated, which magnifies
the garbage collection overheads. Fortunately, modern 3D
TLC NAND flash memory supports page reprogramming
operations [21] and allows each page to be programmed up to
thrice before the erasure of its residing block, which is hopeful
to suppress the garbage collection overheads. However, how
to leverage the page reprogramming capability in efficient
designs of multidimensional index data structures remain an
unanswered question, which also motivates this work.

III. DESIGNS OF THE FIRM-TREE

A. Basic Structure & Working Principles of the FIRM-tree

The FIRM-tree is proposed for reprogrammable NAND
flash memory with extra RAM space (Fig. 2). Unlike the prior
work that treats RAM as a log buffer of flash memory [15],
[19], the FIRM-tree holistically utilizes the RAM and flash
memory space to mitigate the write amplification due to the
flushing of scattered multidimensional data points. Specifi-
cally, the FIRM-tree is maintained simultaneously on RAM
and flash memory, where the part on RAM and that on flash
memory are called the RAM part and flash part, respectively.
Each part is an augmented bucketed quadtree managed by
uniform partitioning policy [1], where the up to 2d children
of each node is associated with an equal-sized subrange of
the key range of the node (d is the dimensionality of data).
With uniform partitioning policy, the key range of the nodes in
the two parts are aligned, which simplifies the coordination of
the two parts. In addition, the aligned key ranges help reduce
the interference among different nodes and potentially benefit
concurrent accesses of the tree. To close the size gap of the
access units of RAM and flash, the RAM space is managed in
the unit of a frame, which is as large as a flash page. From the
database system view, the FIRM-tree is a flash-friendly drop-
in replacement for existing multidimensional data structures.
However, the FIRM-tree must work on open-channel solid-
state disks (OCSSDs) or collaborate with flash translation
layers (FTLs) to exploit the unique features of modern flash
memory, such as page reprogramming capability.



4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPTEMBER 2024

When a new data point is inserted into the FIRM-tree, it
will be inserted into the deepest compatible node in the RAM
part, whose key range covers the coordinate of the point (➀
of Fig. 2). Besides the coordinate, a data point may have
other satellite data, which will be inserted together into the
node. When a node exhausted its space, a new frame will be
allocated for the node, until the node becomes too large and
must be split. When that happens, all or a part of the data
points in the node will be selectively migrated to their deepest
compatible offspring nodes (Section III-B). When the RAM
has exhausted its frames, no more frames can be allocated and
each frame of the deepest leaf node and its direct ancestors
will be flushed to a flash page (➁). With aligned key ranges
of the nodes in the RAM and flash parts, these frames may be
flushed to some non-root nodes of the flash part, effectively
skipping some levels of the flash part and alleviating long-term
data migration overheads (Section III-C).

To facilitate efficient management of the FIRM-tree, a sepa-
rate metadata area (➂) is maintained in RAM. In the metadata
area, the mapping between each RAM or flash part node and
the corresponding RAM frames or flash blocks will be kept in
a node mapping table (➃). Like in the RAM part, when a node
in the flash part becomes too large and overflows, it will be
split with its data points redistributed to appropriate offspring
nodes. To achieve that, the data points in the overflowing node
will first be read into a rearrangement buffer (➄), rearranged
in the buffer, and written back to the block of the overflowing
node or that of the deepest compatible offspring nodes. With
the reprogramming capability, a flash page may be written
up to thrice after its residing block is erased [21]. After
all pages in a block have been programmed in order, they
can be reprogrammed from the first page of the block over
again. Thus, to keep track of the reprogramming status of
flash blocks, the FIRM-tree also keeps a reprogramming state
table (➅) to keep the number of reprogramming operations
done since the last erasure of each block. Besides the metadata
introduced by the FIRM-tree, other metadata needed by flash
management are also kept in the metadata area.

B. Selective Data Migration Strategy
When a flash page is considerably larger than a data point,

writing few data points into the entire page might reduce the
space utilization of the page. This amplifies not only the write
traffic of insert operations but also the read traffic of subse-
quent read operations, which affects the access performance.
The problem is especially serious on multidimensional data
points, which are often distributed in a highly biased manner
in the multidimensional key space. To solve the problem,
the FIRM-tree is equipped with a selective data migration
strategy, which migrates the data points of an overflowing
node in a certain key subrange (determined by the uniform
partitioning policy) to the corresponding child node, only when
there are enough of them to do so. In this way, the leaf nodes
of the quadrants with only few scattered data points in the
RAM or flash part will not be created at all. Instead, these
data points will remain in the overflowing node, awaiting to
be migrated together with subsequently inserted data points.
As the space utilization of newly created nodes is guaranteed,
read/write amplification can be alleviated.

When there are enough data points that are migrated to-
gether to the same child of the overflowing node, the space
utilization of the written frames/pages is guaranteed at least as

Fig. 3. Deriving the lower bound s∗ of the # of data points for migration.

high as a threshold µ∗ (0 ≤ µ∗ < 1) determined by the appli-
cations. To determine the corresponding lower bound of the
number s∗ of data points that provides such a guarantee (Point
x in Fig. 3), we consider the resulting space utilization when
different numbers of data points are written together into one
or more frames/pages. For simplicity of discussion, we assume
that a frame/page can accommodate exactly f (∈ Z+) data
points without internal fragmentation. Also, we assume that
kf < s∗ ≤ (k + 1)f for some k ∈ Z+, i.e., we need to write
at least s∗ data points together into (k + 1) frames/pages to
guarantee the space utilization of at least µ∗ of the written
frames/pages. According to Fig. 3, we have that k−1

k < µ∗ ≤
k

k+1 , which gives that µ∗

1−µ∗ ≤ k < 1
1−µ∗ . Since k ∈ Z+, we

have k =
⌈

µ∗

1−µ∗

⌉
(Eq. 1). In addition, to derive s∗, we know

that (s∗ − kf):
(
µ∗ − k−1

k

)
= ((k + 1)f − s∗):

(
k

k+1 − µ∗
)

,
which gives that s∗ = (1 + µ∗k) f (Eq. 2). Combining Eqs. 1
and 2 then gives s∗ =

(
1 + µ∗

⌈
µ∗

1−µ∗

⌉)
f (Eq. 3).

With an appropriate setting of s∗, the node split operation
works as follows. When a node n overflows and is to be split:
(1) If n is in the flash part, the existing data points of n and the
to-be-inserted data point will be read into the rearrangement
buffer first, due to the write-once property of flash memory.
(2) All data points in the buffer will be classified according to
the key subranges obtained by the uniform partitioning policy.
(3) Finally, if there exist any key subranges with s∗ or more
data points, the child nodes of such key subranges will be
created to store their corresponding data points. To prevent
interference between the management of different nodes, each
node may be allocated an integer number (typ. 1) of flash
blocks (for flash-part nodes) or the same size of RAM space
(for RAM-part nodes). When a block has b pages, it can
accommodate up to bf data points. For sufficiently large
blocks such that bf ≥ 2d ·s∗, there will be at least one among
the 2d quadrants where sufficient data points may be written,
according to the pigeonhole principle. With the node splitting
operation, any leaf node in either part of the FIRM-tree always
has at least s∗ data points; however, some internal nodes in
either part might still have few scattered data points that still
cannot have their dedicated nodes.

When the RAM space is exhausted, the entire RAM part
of the FIRM-tree will be flushed into the flash memory to
release the RAM space for subsequently inserted data points.
Like the migration of data points, the flushing of data points
also adheres to the same limitation. That is, the flushing will be
done with one or more write operations, each writing at least
s∗ data points into at least k =

⌈
µ∗

1−µ∗

⌉
consecutive pages in

the block of the same deepest compatible node in the flash
part. Specifically, we will repetitively (1) select a leaf node



WU et al.: FIRM-TREE: A MULTIDIMENSIONAL INDEX STRUCTURE FOR REPROGRAMMABLE FLASH MEMORY 5

in the RAM part, (2) flush all its data points together with a
write operation, and (3) remove the node from the RAM-part
quadtree, until the entire RAM part has been flushed. (Note
that any non-root leaf node in the RAM part has at least s∗ data
points and can be flushed. The root node in the RAM part does
not seriously amplify the read/write traffic.) Note that, once all
children of an internal node have been removed, the internal
node will become a leaf node. At this time, if the node does
not have sufficient (≥ s∗) data points, (1) its data points shall
be merged back to its parent node, and (2) it will be removed
from the RAM-part quadtree, until the resulting leaf node has
at least s∗ data points after merging and may be flushed.

C. Level Skipping Strategy

Due to the write-once property of flash memory, the data
structures maintained on flash memory often suffer from the
write amplification due to repetitive migration of data points
across different nodes. With the help of the RAM part, newly
inserted data points may be preclassified, and directly migrated
to their deepest compatible nodes in the flash part, effectively
skipping some levels and mitigating write amplification. With
larger RAM space, the RAM-part quadtree can grow higher,
and more levels may be skipped when the RAM part is
flushed. As compared to the existing approaches that leverage
the RAM as buffers/caches, the FIRM-tree further considers
the distribution of data points and more effectively reduces
the write traffic of data point migration. However, how many
levels of the FIRM-tree may be skipped depends on the actual
distribution of the data points in the multidimensional space.

When there is abundant RAM space, one may guarantee
the minimum number of levels of the FIRM-tree that can
be skipped when the RAM part is flushed. By recursively
prepartitioning the key universe into 2d·ℓ equal-sized quadrants
for some predetermined skipping parameter ℓ ∈ Z+, the RAM
part now has 2d·ℓ quadtrees, each handling the data points
in a quadrant. The root node of each quadtree is actually
a level-ℓ node of the FIRM-tree, and all such root nodes
are maintained by a RAM-resident root node table with 2d·ℓ

entries, effectively skipping the topmost ℓ levels of the FIRM-
tree (Fig. 4). (Note that the quadtrees with no data points
will still be created; however, they will not be allocated any
frames to save the RAM space.) In the eye of the flash part,
the 2d·ℓ roots of the quadtrees in the RAM part form a much
larger root node, termed as the mega-root of the FIRM-tree.

Everything has its price. Since the RAM part does not
guarantee sufficient data points in the root node, when there
are more quadtrees, the more root nodes might degrade the
space utilization of flash memory and exacerbate future read
amplification on query operations. Fortunately, the problem is
temporary and will be implicitly resolved as the data points
are reclassified and migrated to deeper nodes in the flash part.
As the mega root is larger, the finer-grained prepartitioning
is also potentially beneficial for query performance, as more
irrelevant data points may be quickly excluded. The optimal
size of the mega root is a design trade-off among space
utilization of the flash memory, write amplification of insert
operations, and read amplification of query operations; how to
determine it from the distributions of data points and mixture
of insert/query operations will be an interesting future work.

Fig. 4. With the mega root design, the topmost levels of the flash-part
quadtrees are skipped for write reduction.

D. Full/Incremental Data Compaction Strategies

When a node in the flash part becomes too large, it
overflows and must be split. That is, all pages in the block(s)
allocated for the node have been written, and there are already
too many such blocks so that no more may be allocated. At
this time, the data points of the to-be-split node will be read
to the rearrangement buffer and rearranged. The data points
that belong to each quadrant of the to-be-split node will be
sequentially written into the free pages in the block(s) of the
corresponding child node, if there are sufficiently many (≥ s∗)
of them to do so. (If the child node does not yet exist, it will
be created and allocated a free block first.) In prior work,
the blocks of the to-be-split node must be reclaimed, and the
remaining scattered data points that cannot be migrated to the
child nodes must be synchronously rewritten back into the to-
be-split node. In contrast, with the page reprogrammability of
modern NAND flash memory [21], the FIRM-tree allows the
scattered data points to remain in situ, so that the to-be-split
node may be lazily compacted until it is necessary to do so.

With page reprogrammability of modern flash memory, the
FIRM-tree does not need to erase the block(s) of a node
every time when the node is being split. Instead, the pages
in a block of the node can be rewritten with the node’s
scattered data points that cannot be migrated and the data
points migrated to the node, for up to thrice [21]. There are
two possible approaches to node compaction in the FIRM-tree,
namely, full and incremental compaction, with different design
trade-offs. With full compaction, all scattered data points that
cannot be migrated will be identified, compacted in RAM, and
synchronously written with page reprogramming operations
from the beginning of the block. When a block has reached
its maximum number of reprogramming operations, it will be
erased as normal. In contrast, to reduce the long instantaneous
latency of the possibly many page reprogramming operations,
incremental compaction temporarily leaves all such scattered
data points in situ. Later, when new data points are inserted
into the node, the minimum necessary number of the beginning
pages of the block will be read, and the scattered data points
in the pages will be identified, compacted, and written back
along with the new data points using page reprogramming
operations. Note that incremental compaction requires extra
metadata to distinguish the scattered data points that have not
yet been migrated to the child nodes.

To clarify how incremental compaction works, a working
example would be useful (Fig. 5). When some node n× is
being split (Steps ➀ and ➁), its block(s) will not be immedi-
ately reclaimed. Instead, the data points in each quadrant of n×
are classified in the rearrangement buffer (Step ➂), and either



6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPTEMBER 2024

Fig. 5. Incremental compaction of data points in the FIRM-tree.

migrated to the corresponding child nodes, such as n0 and n3

(if there are sufficiently many of them), or stay in situ in n×
(if there are only few scattered data points in the quadrants of
a child node, say n1 or n2) (Step ➃). Such a node splitting
strategy is considered conservative because only when there
are sufficient data points in a quadrant will they be migrated
into the corresponding child node. Later on, when some new
data points are to be inserted into n×, we shall search it for
any remaining scattered data points and write them along with
the new data points through page reprogramming operations
(Steps ➄ and ➅, and then Steps ➆ and ➇). Once a block
has reached its maximum reprogramming threshold, it will
be erased by the garbage collector as normal. Note that the
exploitation of page reprogrammability of flash memory is ap-
plicable to both full and incremental compaction approaches.

E. Collaboration of Different FIRM-tree Components
As compared to the existing approach, our FIRM-tree

design offers several unique technological advantages. First
of all, the FIRM-tree exploits the page reprogrammability
to reduce garbage collection activities of used blocks. While
page reprogrammability has potentials in different application
scenarios, however, it is especially suitable for the maintenance
of metadata of data structures, which often undergo more
frequent updates than data, as in the case of the FIRM-tree. In
the high-dimensional space, the curse of dimensionality further
worsens the issue of frequent updates, demanding technologies
such as page reprogrammability to solve the problem. To
our best knowledge, the FIRM-tree is an early effort that
exhibits how to exploit page reprogrammability for efficient
(multidimensional) search tree maintenance.

Next, the FIRM-tree provides a conservative split strategy
to address the read/write amplification due to the mismatched
sizes of a data point, tree node, flash page, and flash block.
Concerning the scattered distribution of data points in a
multidimensional space, the FIRM-tree allows a small number
of scattered data points to stay in situ in the original block of
a split node, deferring their demotion to the child nodes in the
tree. In this way, the considerable overheads of node splitting
and flash block reclamation may be effectively amortized over
multiple insertion of data points, which reduces the worst-case
latency. Moreover, with the deferred demotion of data points,
some nodes might never be compacted, which also reduces
the long-term management overheads of the FIRM-tree.

As astute readers might point out, different components of
the FIRM-tree bear different responsibilities for enhancing the
tree performance. Specifically, selective data migration avoids
the write amplification (and subsequent read amplification) to
demote the data points to the buckets of the child nodes at
the next lower level of the FIRM-tree. Thus, selective data
migration suppresses the read/write amplification occurring

in individual flash pages at every level of the tree, which
is similar to the internal fragmentation problem in memory
management in operating system designs. However, when the
tree becomes sufficiently tall, the level-by-level data migration
might still incur read/write amplification across multiple levels
of the FIRM-tree. Fortunately, modern computer systems are
often equipped with quite some RAM space (albeit still smaller
than the flash memory itself) that can accommodate a large
number of data points until the data points are flushed to the
flash. When we can buffer decently many data points, with the
page and block sizes fixed, we can skip multiple levels of the
flash part of the FIRM-tree, directly flushing the data points to
the deepest node while controlling the space utilization, write
amplification, and subsequent read amplification.

From the discussions, level skipping regards the RAM part
of the FIRM-tree as a single large mega-root node, which
internally performs data point classification in RAM without
incurring any flash writes. When the RAM is sufficiently
utilized, data points may skip multiple levels of the FIRM-
tree, compensating the extra write amplification due to the
imbalanced tree structure due to the uniform partitioning. Last
but not least, the incremental compaction intends to reduce the
worst-case latency of insert operations, instead of addressing
the read/write amplifications. It collects the leftover data points
in a node, combines them with the data points demoted from
the parent, and rewrites the combined data points back to the
node with page reprogramming operations. By postponing the
rewriting of written data points, the maintenance overheads of
the FIRM-tree can be remarkably reduced.

F. Implementation Remarks

1) Multi-channel Architecture Supports: To enhance access
performance, modern flash devices often have multiple chan-
nels that can be accessed in parallel. By default, a node in
either part of the FIRM-tree can grow up to the size of a
block, and the space utilization is guaranteed on a page basis.
To take the performance advantages of multi-channel accesses,
the FIRM-tree can be slightly modified by increasing its node
size to as large as a block set, which comprises all blocks with
the same offset within their residing channels. Moreover, the
guaranteeing of space utilization is now provided on the basis
of a page set, which comprises all pages with the same offset
within their residing blocks, which also come with the same
offset in the residing channels. Note that a page set (/block set)
is the unit of multi-channel read and write (/erase) operations;
all pages (/blocks) in the set may be read or written (/erased)
in parallel to significantly increase throughput and alleviate
the impacts of read and write amplifications.

The augmentation of the FIRM-tree also comes with the
corresponding increase in the RAM demands. When the flash



WU et al.: FIRM-TREE: A MULTIDIMENSIONAL INDEX STRUCTURE FOR REPROGRAMMABLE FLASH MEMORY 7

device has c channels1, a page set (/block set) is also c times
larger than a page (/block). As a FIRM-tree node takes a fixed
number of flash blocks, it is also c times larger. Since the
rearrangement buffer is always as large as a node, it must be
c times larger as well. However, the size of the other two
tables, node mapping table and reprogramming state table,
are unaffected because their sizes are determined by the total
number of nodes in (both parts of) the FIRM-tree and the
flash memory capacity, instead of the node size. On the other
hand, the RAM space taken up by the RAM part should also
be larger on multi-channel flash devices, so as to provide the
same level of effects for read/write reduction.

2) Support of Delete Operations: Besides insert and query
operations, delete operations are also common in application
scenarios. Unlike RAM or mechanical hard disks, NAND flash
memory must be read or written in the unit of a page, and a
written page cannot be updated before its residing block is
entirely erased. Thus, unlike the data points in the RAM part
that can be in-place deleted at very low overheads, those in the
flash part must adopt alternative approaches such as to insert
deletion records, a.k.a., tombstones [22], into the FIRM-tree.
When the RAM part is being flushed to the flash memory
or the high-level node buckets are merged into lower-level
ones, the tombstones in the RAM part and the corresponding
obsolete data points in the flash part will be merged, thereby
removing the data points from the FIRM-tree.

The default design of the FIRM-tree is ephemeral in the
sense that old versions of the updated or deleted data will
disappear [23]. However, specific applications demand the
capability to store and manage multiple versions of the same
data. To make the FIRM-tree persistent, we keep all historical
data when the data are updated or deleted. Upon receiving a
purge operation, which requests to remove all versions prior
to a specified purged version, only the number of the latest
purged version will be globally kept. During the incremental
compaction of data points, all data points older than the latest
purged version can be removed, thereby maximally postponing
purge overheads. However, there are still missing pieces in the
design of multiversioned and multidimensional data structures
on flash memory, leaving opportunities for future studies.

From a macroscopic point of view, the insertion and deletion
of data points often become a performance trade-off of index
data structures, especially on NAND flash memory with the
write-once property. In practice, the optimal designs of index
data structures of multidimensional data should be determined
by the different distributions of inserted keys in the multidi-
mensional space. The optimization of multidimensional index
data structures for applications with different access patterns
is yet another interesting topic of future studies.

3) Page Reprogrammability on Higher-level-cell Flash
Memories: In the existing work of page reprogrammability, a
page of TLC flash memory is programmed in the MLC mode,
allowing up to two times of reprogramming per page [21].
However, page reprogramming is enabled by reusing cell
states, which also has potentials on QLC and higher-level-cell
flash memories [24]. As the designs of page reprogramming
are orthogonal to those of the FIRM-tree, if page reprogram-
ming is feasible on QLC and high-level-cell flash memory, it
can also work with the FIRM-tree there. However, the adoption

1For commodity flash storage devices, we often have that 1 ≤ c ≤ 16.

TABLE I
PARAMETERS USED IN ANALYTICAL STUDIES

Parameter Symbol Unit

RAM capacity R Frames
Flash capacity F Blocks
Flash block size B Pages
Flash page size / RAM frame size P Bytes
Length of a frame or block address δ Bytes
Maximum node size N Blocks
Length of a programming/reprogramming counter 2 Bits

of page reprogrammability also confront extra challenges, such
as the reliability of data.

As reported in [21], page reprogramming might consider-
ably increase the bit error rates. Concerning the already higher
bit error rates of high-level-cell flash memory such as QLC
and beyond, stronger error-correcting code (ECC) is needed to
guarantee data integrity. Meanwhile, when QLC flash memory
is programmed, it may be programmed in the MLC or TLC
mode, which exhibits different design trade-offs between the
maximum allowed number of reprogramming operations and
the reliability of written data. However, currently there are
few results of page programmability on higher-level-cell (QLC
and beyond) flash memory. Once page reprogrammability is
available on higher-level-cell flash memory, how it integrates
into the designs of the FIRM-tree and other flash-resident data
structures would be an interesting topic of investigation.

4) Supports for Regional Data: While the FIRM-tree is
suitable for serving intensive insert operations of multidi-
mensional point data, its designs also make it a fit for
more sophisticated data formats, such as regional data in the
multidimensional space. Specifically, to augment the FIRM-
tree for regional data, we allow a regional object to be stored in
the bucket of only the tree nodes whose quadrants completely
cover the regional object in the multidimensional space. Thus,
unlike point data, which can be repetitively demoted in the
FIRM-tree structure, regional data may be demoted only to
a certain level in the tree structure, according to its size and
position in the multidimensional space. Since the quadrant of
every node at each level of the tree structure may be statically
determined, it is more efficient to search regional data in the
augmented FIRM-tree. However, in extreme cases where too
many large data regions are stored in the bucket of the same
node, one might need to allow larger node buckets, which
results in the degradation of access operations of the FIRM-
tree. As the optimal management of regional data is more
challenging than that of point data, we leave the augmentation
details as a key future work.

IV. ANALYTICAL STUDIES

In this section, we analyze the minimum RAM usage of the
FIRM-tree. The parameters used in our analytical studies are
listed in TABLE I for convenience. The size of the RAM part
of the FIRM-tree determines the effectiveness of data point
classification, but may be adjusted according to the available
RAM space in the target application scenarios. However, the
smallest allowed size of the RAM part should be as large as
the maximum size of a RAM- or flash-part node, which is as
large as a block. Thus, the minimum RAM demands of the
RAM part would be Srmpa = B · P bytes, where B is the
number of pages per block and P is the page size in bytes.



8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPTEMBER 2024

Next, the node mapping table is responsible for mapping
every node to its corresponding frames or blocks. In the
worst case, every frame of RAM and all blocks of flash
memory2 are allocated. Suppose that the address of a frame
or a block is δ = 4 bytes, the node mapping table takes
up to Snmap = (R + F · B) · δ bytes of RAM space in
total. On the other hand, the rearrangement buffer must be
able to accommodate all data points in a node, and is thus
made as large as Srebu = N · F · B bytes, where N is
the maximum number of blocks that may be allocated to
a node in the flash part. (Recall that we often let N = 1
in practice because a block is often sufficiently large, as
compared to a data point.) Moreover, the reprogramming state
table keeps the number of program/reprogram operations and
the offset of the last written page of every block, and takes
Srepg = F ·(⌈lg(B + 1)⌉+ 2) bits of RAM because each block
can be programmed/reprogrammed up to thrice before being
erased and 2 bits suffice to keep a program/reprogram counter.
On a generic flash storage device with (R,F,B, P,N) =
(214, 217, 28, 212, 1), the total size of the RAM part and the
size of flash memory are 64 MB and 128 GB, respectively.
The total RAM usage S∗ of the metadata area is thus given as
S∗ = Srmpa +Snmap +Srebu +Srepg = (212 ·28)+((214+217) ·
22)+(212 ·28)+(217 ·2) ∼ (220)+(216+219)+(220)+(218) <
3 MB, which is reasonable for modern flash memory devices.

V. EXPERIMENTAL STUDIES

A. Experimental Settings
In this section, we performed experimental studies to com-

pare the FIRM-tree to two representative multidimensional
tree structures, namely the bucket PR quadtree [1] and R∗-
tree [5], for block devices such as NAND flash memory.
The bucket PR quadtree and R∗-tree are selected because of
their distinct choices for data point classification, i.e., uniform
and balanced partitioning. By addressing the shortcomings
of uniform partitioning, the FIRM-tree can get out of both
approaches in terms of insert/query performance. To ensure
a fair comparison, the control groups are equipped with the
same size of RAM space managed as LRU buffers/caches.

Our experiments have four parts, namely Part D (w.r.t.
different datasets of different data dimensionality and distribu-
tions), Part U (w.r.t. different space utilization criteria), Part B
(w.r.t. different block sizes or node capacities), and Part L
(w.r.t. different levels of the mega root). First of all, Part D,
we evaluate the total erase counts, total write counts, total read
counts, overall space utilization, and total number of node
splitting operations of FIRM-tree, bucket PR quadtree, and
R∗-tree under nine realistic/synthetic workloads with different
dimensionality (2, 4, and 8) and distributions of data points
in the multidimensional space. The basic statistics of the con-
sidered datasets are listed in TABLE II for the convenience of
discussion. Afterward, Part U compares the same performance
metrics of the three trees, with respect to different space
utilization criteria m−1

m , where m = 2, . . . , 5. (The case with
m = 1 has no criteria on the space utilization and is omitted.)
Next, in Part B, we repeat the experiments with respect to
different block sizes. While we assume that each node is as
large as a flash block, Part B of the experiments observes the
performance impacts of different page and block sizes. The
number of skipped levels, ℓ, is fixed at 2 in Parts D, U, and

2The spare blocks are reserved for garbage collection and not counted in.

TABLE II
BASIC STATISTICS OF THE WORKLOADS IN THE EXPERIMENTAL STUDIES

Workload Type d # data points Source

Real1 Realistic 2 6,429,191 SpatialHadoop
(TIGER 2015—AREALM) [26]

Real2 Realistic 2 360,177 UCI Machine Learning Repository
(UrbanGB Accidents) [27]

Real3 Realistic 2 1,048,575 Kaggle
(GeoNames Database) [28]

Real4 Realistic 2 303,735 Urban Institute
(311 Calls in New Orleans) [29]

Real5 Realistic 4 110,204 UCI Machine Learning Repository
(Sepsis Survival) [27]

Real6 Realistic 4 434,874 UCI Machine Learning Repository
(3D Road Network) [27]

Syn1 Synthetic 4 10,000,000 Synthesized w/ uniform distribution
Real7 Realistic 8 199,835 UCI Machine Learning Repository

(Query Analytics) [27]
Syn2 Synthetic 8 10,000,000 Synthesized w/ uniform distribution

B of the experiments. In the last part, Part L, we consider
the FIRM-tree with different ℓ (= 1, . . . , 4) to evaluate the
impacts of level skipping of the mega root. All the experiments
are done on the SSDsim trace-driven simulator [25], with the
environmental settings in TABLEs III and IV.

B. Experimental Results

1) Part D: Impacts of Different Dimensionality and Distri-
butions of Data Points: In this section, the FIRM-tree is com-
pared to the bucket PR quadtree and R∗-tree under different
workloads, so as to quantize the impacts of the dimensionality
and distributions of data on different performance metrics.
The space utilization criterion µ∗ of the FIRM-tree is fixed
at 1

2 . The experimental results of the total erase counts, write
counts, read counts, space utilization, and node split counts are
then shown as in Figs. 7–10. Regarding to write amplification,
the FIRM-tree effectively reduces the number of data points
rewritten due to tree maintenance by averagely 33.77% and
47.43% as compared to the bucket PR quadtree and R∗-tree,
respectively. However, due to the working principle of repro-
grammable flash, the effective capacity of a page is smaller
for the FIRM-tree than that for the bucket PR quadtree or R∗-
tree. Such a difference in storage density cancels out a part
of the advantages of the FIRM-tree in terms of the number of
pages written (Fig. 6). Fortunately, as reported in [21], the page
programming/reprogramming latency of reprogrammable flash
is slightly better than that of normal TLC flash (∼ 2,700 µs
vs 3,000 µs), which also enhances the relative performance of
the FIRM-tree accordingly.

On the other hand, in different workloads, the FIRM-tree
remarkably reduces the number of block erases by averagely
78.48% and 71.13% than the bucket PR quadtree and R∗-
tree, respectively, which implies slower device wearing and
reduced garbage collection overheads (Fig. 7). Next, the read
traffic and space utilization of the FIRM-tree are similar to
those of the control groups (Figs. 8 and 9). Last but not
least, due to its conservative node splitting strategy, the FIRM-
tree occasionally incurs slightly more node splitting than the
control groups in some cases (Fig. 10). Overall, with the
flash performance statistics of [21], the page read latencies
are 53 µs and 66 µs for reprogrammable flash and normal
flash, respectively, while the write latencies are the same as
above. Based on these statistics, in terms of the extra read
and write time (other than the necessary time to write the data
points themselves), the FIRM-tree outperforms the bucket PR



WU et al.: FIRM-TREE: A MULTIDIMENSIONAL INDEX STRUCTURE FOR REPROGRAMMABLE FLASH MEMORY 9

0.0×100

5.0×104

1.0×105

1.5×105

2.0×105

2.5×105

3.0×105

3.5×105

Real1 Real2 Real3 Real4 Real5 Real6 Syn1 Real7 Syn2

W
ri

te
 c

ou
nt

Datasets

R*-tree
Bucket PR quadtree

FIRM-tree

Fig. 6. Part D: total write counts.

 0

 50

 100

 150

 200

 250

Real1 Real2 Real3 Real4 Real5 Real6 Syn1 Real7 Syn2

E
ra

se
 c

ou
nt

Datasets

R*-tree
Bucket PR quadtree

FIRM-tree

Fig. 7. Part D: total erase counts.

0.0×100

2.0×104

4.0×104

6.0×104

8.0×104

Real1 Real2 Real3 Real4 Real5 Real6 Syn1 Real7 Syn2

R
ea

d 
co

un
t

Datasets

R*-tree
Bucket PR quadtree

FIRM-tree

Fig. 8. Part D: total read counts.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Real1 Real2 Real3 Real4 Real5 Real6 Syn1 Real7 Syn2

S
pa

ce
 u

ti
li

za
ti

on

Datasets

R*-tree
Bucket PR quadtree

FIRM-tree

Fig. 9. Part D: space utilization.

 0

 50

 100

 150

 200

 250

 300

Real1 Real2 Real3 Real4 Real5 Real6 Syn1 Real7 Syn2

S
pl

it
 c

ou
nt

Datasets

R*-tree
Bucket PR quadtree

FIRM-tree

Fig. 10. Part D: total node split counts.

TABLE III
ENVIRONMENTAL SETTINGS OF THE TRACE-DRIVEN SIMULATION

Processor Intel i5-11400
Memory 16 GiB
Operating system Linux 5.15.0-88-generic (Ubuntu 20.04.3LTS)
Programming language & compiler C++17, GCC version 9.4.0
SSDsim version [25] 2.x

TABLE IV
SSD SIMULATOR CONFIGURATIONS

1 SSD=4 channels 1 channel=4 chips 1 chip=2 dies 1 die=2 planes
1 plane=211 blocks 1 block=28 pages 1 page=4 KB

quadtree and R∗-tree by averagely 20.75% and 15.81% among
all workloads, respectively.

2) Part U: Impacts of the Space Utilization of New Writes:
In the second part of our experiments, namely Part U, we
compare the FIRM-tree to the control groups with different
space utilization criteria of the FIRM-tree, which is controlled
by the parameter m = 2, . . . , 5 and the corresponding space
utilization criteria µ∗ = 1

2 , . . . ,
4
5 . (The FIRM-tree can guar-

antee arbitrary space utilization criteria between 0 and 1.
However, only the most common space utilization criteria are
used in the experiments.) Throughout this part of experiments,
we used a realistic workload Real6 and a synthetic workload
Syn1, both with 4D data points. As can be observed, the
five performance metrics of the FIRM-tree are only slightly
affected by µ∗ (Figs. 12–15). Interestingly, although the re-
sulted average space utilization of the FIRM-tree increases
accordingly with m, that of the bucket PR quadtree and R∗-
tree also provide good space utilization (Fig. 14). Notably, the
number of block erases of the FIRM-tree is considerably lower
than that of the control groups, as in Part D.

3) Part B: Impacts of the Flash Block Size and Node
Capacity: In Part B of the experiments, the impacts of the
flash block size on the performance of the FIRM-tree and the
control groups are measured. While the size of a node is fixed
and is as large as a block, we adjust the number of fixed-sized
pages in a block from 64 to 512. Two realistic workloads,
Real5 and Real6, as well as a synthetic workload Syn1, are
used in this part. All three workloads are with 4D point data.

In the bucket PR quadtree and R∗-tree, each 4 KB page can
keep up to

⌊
4 KB
4·8 B

⌋
= 128 data points; however, in the FIRM-

tree, each page can only keep
⌊
128 · 2

3

⌋
= 85 data points, due

to the enabling of page reprogramming capability. The space
utilization criterion is fixed at 1

2 .
As Figs. 16 and 18 show, the write and read traffic of the

FIRM-tree is close to those of the bucket PR quadtree and
R∗-tree, due to the joint effects of skewness in data point
distributions, frequency of garbage collection, and different
ways to handle the data points in the to-be-split node. Due
to the the exploitation of page reprogramming operations, in
average, the FIRM-tree yields relatively 67.20% and 65.78%
fewer block erases than the bucket PR quadtree and R∗-tree
do, respectively (Fig. 17). Furthermore, due to the conservative
node splitting strategy, the space utilization of the FIRM-tree
is higher than that of the bucket PR quadtree and R∗-tree by
averagely 15.82% and 5.43%, respectively (Fig. 19). Last but
not least, the number of node splitting of the FIRM-tree is
close to the bucket PR quadtree, as shown in Fig. 20.

4) Part L: Impacts of the Number of Levels Skipped by
the Mega Root: In the last part of the experimental studies,
Part L, we consider the effects of level skipping of the mega
root design of the FIRM-tree. Intuitively, a larger size of the
mega root implies that more levels are skipped by the flash-
part of the FIRM-tree. As reported by Figs 22–25, the size
of the mega root only has a minor effect on all performance
metrics of the FIRM-tree, and can be scaled freely according
to the available RAM buffer size.

VI. RELATED WORK

A. Emerging Nonvolatile Memories (NVMs)
Classical memory and storage media, such as SRAM,

DRAM, and mechanical hard disks (HDDs), face greater
challenges in fulfilling the requirements of next-generation
applications, e.g., IO performance, energy efficiency, and
storage density. To address this problem, much research effort
has been dedicated to developing diverse types of NVMs,
such as block-based non-volatile memories (NVMs) and byte-
addressable persistent memories (PMs). However, considering
the increasing number of data-centric computing scenarios, in-
novative NVMs have widely become comparative candidates,



10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPTEMBER 2024

0.0×100

5.0×104

1.0×105

1.5×105

2.0×105

Real6 Syn1

W
ri

te
 c

ou
nt

Datasets

R*-tree
Bucket PR quadtree

FIRM-tree w/ m=2
FIRM-tree w/ m=3

FIRM-tree w/ m=4
FIRM-tree w/ m=5

Fig. 11. Part U: total write counts.

 0

 50

 100

 150

 200

 250

Real6 Syn1

E
ra

se
 c

ou
nt

Datasets

R*-tree
Bucket PR quadtree

FIRM-tree w/ m=2
FIRM-tree w/ m=3

FIRM-tree w/ m=4
FIRM-tree w/ m=5

Fig. 12. Part U: total erase counts.

0.0×100

2.0×104

4.0×104

6.0×104

Real6 Syn1

R
ea

d 
co

un
t

Datasets

R*-tree
Bucket PR quadtree

FIRM-tree w/ m=2
FIRM-tree w/ m=3

FIRM-tree w/ m=4
FIRM-tree w/ m=5

Fig. 13. Part U: total read counts.

 0

 0.2

 0.4

 0.6

 0.8

 1

Real6 Syn1
S

pa
ce

 u
ti

li
za

ti
on

Datasets

R*-tree
Bucket PR quadtree

FIRM-tree w/ m=2
FIRM-tree w/ m=3

FIRM-tree w/ m=4
FIRM-tree w/ m=5

Fig. 14. Part U: space utilization.

 0

 50

 100

 150

 200

 250

Real6 Syn1

S
pl

it
 c

ou
nt

Datasets

R*-tree
Bucket PR quadtree

FIRM-tree w/ m=2
FIRM-tree w/ m=3

FIRM-tree w/ m=4
FIRM-tree w/ m=5

Fig. 15. Part U: total node split counts.

0.0×100

5.0×104

1.0×105

1.5×105

2.0×105

2.5×105

3.0×105

3.5×105

Real5-64
Real5-128

Real5-256
Real5-512

Real6-64
Real6-128

Real6-256
Real6-512

Syn1-64
Syn1-128

Syn1-256
Syn1-512

W
ri

te
 c

ou
nt

Datasets

R*-tree
Bucket PR quadtree

FIRM-tree

Fig. 16. Part B: total write counts.

 0

 200

 400

 600

 800

 1000

Real5-64
Real5-128

Real5-256
Real5-512

Real6-64
Real6-128

Real6-256
Real6-512

Syn1-64
Syn1-128

Syn1-256
Syn1-512

E
ra

se
 c

ou
nt

Datasets

R*-tree
Bucket PR quadtree

FIRM-tree

Fig. 17. Part B: total erase counts.

0.0×100

5.0×104

1.0×105

1.5×105

2.0×105

Real5-64
Real5-128

Real5-256
Real5-512

Real6-64
Real6-128

Real6-256
Real6-512

Syn1-64
Syn1-128

Syn1-256
Syn1-512

R
ea

d 
co

un
t

Datasets

R*-tree
Bucket PR quadtree

FIRM-tree

Fig. 18. Part B: total read counts.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Real5-64
Real5-128

Real5-256
Real5-512

Real6-64
Real6-128

Real6-256
Real6-512

Syn1-64
Syn1-128

Syn1-256
Syn1-512

S
pa

ce
 u

ti
li

za
ti

on

Datasets

R*-tree
Bucket PR quadtree

FIRM-tree

Fig. 19. Part B: space utilization.

 0

 200

 400

 600

 800

 1000

Real5-64
Real5-128

Real5-256
Real5-512

Real6-64
Real6-128

Real6-256
Real6-512

Syn1-64
Syn1-128

Syn1-256
Syn1-512

S
pl

it
 c

ou
nt

Datasets

R*-tree
Bucket PR quadtree

FIRM-tree

Fig. 20. Part B: total node split counts.

including flash memory [30], resistive random-access memory
(ReRAM) [9], spin-torque transfer magnetic random-access
memory (STT-RAM) [31], phase-change memory (PCM) [9],
and skyrmion racetrack memory (SK-RM) [32]. Among var-
ious media choices, NAND flash memory is the dominant
choice of storage media in different devices, e.g., memory
cards, USB flash disks, and solid-state disks (SSDs) [13], [30].

To optimize the access performance and memory lifetime,
dedicated management facilities are indispensable for ad-
dressing the intrinsic characteristics of flash memory, such
as the page-based data accesses, write-once property, bulk
erase property, and worn-out effect [13]. These management
facilities are often implemented as a firmware layer called
the flash translation layer (FTL), which comprises an address
translator [33], [34], garbage collector [33], [35], and wear-
leveler [33], [35]. The address translator keeps track of the
current physical page that stores each logical block of data,
so as to efficiently serve read requests even when the data are
out-place updated and moved in the flash space from time
to time. To address the write-once and bulk erase properties,
the garbage collector is responsible for selecting and erasing
certain physical blocks to release the invalid pages within.

Last but not least, the wear-leveler equalizes the wearing of
different physical blocks to prevent early bad blocks and ex-
tend the flash lifetime. Due to their tremendous impacts on the
performance and endurance of the flash storage devices [13],
these facilities should be carefully designed, possibly with the
knowledge of operating systems or user applications.

To economically store a growing volume of data on flash
storage devices, the storage density is a factor that must be
considered. There are two common approaches to enhancing
the storage density, shifting from 2D planar flash memories to
3D flash memories or increasing the cell levels of flash mem-
ory. Conceptually, 3D flash memory stacks multiple layers of
2D flash cell arrays to improve storage density and access
performance, at the price of degraded data reliability due to
the interference across different layers [12], [13], [30], [36].
On the other hand, storing more than one bit of data in each
cell can also effectively extend the storage density by several
times. While the classical single-level-cell (SLC) flash memory
stores only 1 b of data per cell, each cell of the multi-level-cell
(MLC), triple-level-cell (TLC), and quad-level-cell (QLC) flash
memory can store 2, 3, and 4 b per cell, thereby enhancing
the storage density by 2×, 3×, and 4×, respectively [12],



WU et al.: FIRM-TREE: A MULTIDIMENSIONAL INDEX STRUCTURE FOR REPROGRAMMABLE FLASH MEMORY 11

0.0×100

5.0×104

1.0×105

1.5×105

2.0×105

2.5×105

3.0×105

3.5×105

Real1 Real2 Real3 Real4 Real5 Real6 Syn1 Real7 Syn2

W
ri

te
 c

ou
nt

Datasets

l=1 l=2 l=3 l=4

Fig. 21. Part L: total write counts.

 0

 50

 100

 150

 200

Real1 Real2 Real3 Real4 Real5 Real6 Syn1 Real7 Syn2

E
ra

se
 c

ou
nt

Datasets

l=1 l=2 l=3 l=4

Fig. 22. Part L: total erase counts.

0.0×100

2.0×104

4.0×104

6.0×104

8.0×104

Real1 Real2 Real3 Real4 Real5 Real6 Syn1 Real7 Syn2

R
ea

d 
co

un
t

Datasets

l=1 l=2 l=3 l=4

Fig. 23. Part L: total read counts.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Real1 Real2 Real3 Real4 Real5 Real6 Syn1 Real7 Syn2

S
pa

ce
 u

ti
li

za
ti

on

Datasets

l=1 l=2 l=3 l=4

Fig. 24. Part L: space utilization.

 0

 50

 100

 150

 200

 250

 300

Real1 Real2 Real3 Real4 Real5 Real6 Syn1 Real7 Syn2

S
pl

it
 c

ou
nt

Datasets

l=1 l=2 l=3 l=4

Fig. 25. Part L: total node split counts.

[37]. Like cross-layer interference of 3D flash memories, the
narrowing gap between adjacent reference voltages in higher-
level-cell flash memories also leads to potential reliability
problems that must be treated with care [13].

The choice of different levels of flash memory cells is
not just a trade-off among the storage density, access per-
formance, and data reliability [21]. Instead, it introduces
new opportunities for acrobatic optimization techniques, such
as the SLC-mode write buffering [38] and reprogramming
capability [21]. The SLC-mode write buffering allows a part
of MLC/TLC/QLC-mode flash space to be written as in the
SLC mode, which trades some storage capacity for enhanced
write performance [38]. When the residual space is used
up, the SLC-mode write buffer will be converted back into
MLC/TLC/QLC mode to release more residual space for
serving subsequent writes. On the other hand, a higher-level
flash cell may also be programmed in a lower-level mode,
thereby trading storage capacity for the capability to relax
the write-once property and allow reprogramming a previously
written page for a limited number of times [21]. For specific
application scenarios like the FIRM-tree, the reprogramming
capability might be helpful for reducing the garbage collection
overheads and enhancing the overall system performance.

B. From Unidimensional to Multidimensional Data Structures
To efficiently store and access data, index data structures

play a key role in diversified application scenarios, such as
real-time systems, database systems, geographic information
systems, data mining, and image processing. Driven by the
trade-off among the performance of various access operations,
such as insert, update, query, and delete operations, the design
of different index data structures often vary a lot. While many
common data structures exist, such as the stacks, queues,
heaps, hash tables, skip lists, and search trees [14], they may
be classified as unidimensional or multidimensional, according
to the dimensionality of data [1]. Taking search trees for
example, the binary search tree, red–black tree, and B-tree are
representative unidimensional data structures [14], while the
quadtree [1], [8], kd-tree [6], octree [39], R-tree [3], and SR-
tree [40] are all milestones of multidimensional data structures.

Now let us take a closer look at multidimensional index data
structures, which may be further classified into kd-trees [6],

[7], [15], [16], quadtrees [8], [41], grid files [2], [19], and R-
trees [3]–[5], according to the different ways that data points
are organized. First of all, the kd-tree alternately selects a
dimension from the k dimensions of the keys at each level
to partition the data points [6]. Based on the kd-tree, the
KDB-tree incorporates the idea of B-tree to allow multiple
data points to be stored in the same node [7]. In contrast to
the kd-tree, the quadtree partitions its data points from all
k dimensions at every level [8], and each internal node of a
quadtree will have up to 2k children3. Based on the quadtree,
the skip quadtree integrates a deterministic skipped list into a
quadtree to enhance the search performance [41]. To improve
scalability, the bucket PR quadtree uses large buckets and
allows storing multiple data points in the same bucket [1]. As
a variant of both kd-tree and quadtree, the PK-tree adaptively
creates new parent nodes only when there are too many child
nodes, so as to facilitate efficient range and kNN queries [42].

Next, the grid file is a pioneering work that extends con-
ventional sequential or hashed file organizations to improve
the performance of multidimensional data operations, such as
inserts, queries, or deletes, on hard disks [2]. To adapt to
dynamically shifting access patterns, the balanced and nested
grid (BANG) file introduces the self-balancing idea of B-
tree into the grid file, to maintain a balanced tree structure
for the performance enhancement of queries [43]. Last but
not least, R-tree and its variants have been recognized as an
efficient multidimensional index data structure for range and
kNN queries [1], [3]–[5]. By partitioning the data points of
an overflowing node into subsets of approximately the same
sizes, the R-tree guarantees the absence of nodes with few
data points, thus ensuring satisfactory space utilization [3].
Based on the R-tree, the R+-tree [4] and R∗-tree [5] strives to
optimize the geometries of the minimum bounding rectangles
(MBRs) of nodes in terms of different metrics, such as the
overlapping area of the MBRs.

Recently, the emergence of novel memory and storage
media has driven the development of medium-specific index
data structures. For example, as an extension of the KDB
tree, F-KDB utilizes a logging buffer in the main memory
to alleviate the write amplification due to random insertion

3In this paper, we use the more intuitive symbol d to denote the dimension-
ality of data, instead of k used by the original literature of the kd-tree [6].



12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPTEMBER 2024

of data points on NAND flash memory [15], [16]. On the
other hand, as a variant of the grid file, the log bucket
grid file (LB-Grid), has been proposed for flash memory
based SSDs [19]. To suppress inefficient random writes to
flash memory, LB-Grid exploits a log buffer to make reads
and writes parallel across multiple channels of the SSDs,
significantly improving the throughput of inserts and queries.
Moreover, there exist index data structures for hybrid storage,
such as the HyR-tree [20] for a hybrid of Intel 3D XPoint
memory [44], [45] and NAND flash memory. HyR-tree makes
use of an unsupervised learning approach to identify the
hotness of all nodes, and arbitrate which nodes should be kept
in the faster, byte-addressable 3D XPoint memory and which
should be stored in the NAND flash memory. While many
brilliant designs of medium-specific multidimensional index
data structures have been proposed, however, there are still
missing pieces in exploiting the unique access operations of
NAND flash memory, such as the reprogramming capability of
multilevel cell flash memory [21], which motivates our work.

VII. CONCLUSION AND FUTURE WORK

The widespread use of multidimensional data highlights the
significance of multidimensional data structures. While there
have been many work of multidimensional data structures,
they do not thoroughly consider the characteristics of modern
storage media, e.g., NAND flash memory. In this work, we
present the FIRM-tree, a novel data structure for multidi-
mensional point data on NAND flash memory. By holistic
management of RAM/flash space and dedicated exploitation of
page reprogrammability of modern flash memory, the FIRM-
tree alleviates read/write amplification and garbage collection
overheads for tree maintenance and data point reclassification.
Moreover, the FIRM-tree presents a conservative node split-
ting strategy to improve flash space utilization. Experimental
results show the performance superiority of the FIRM-tree.

REFERENCES

[1] H. Samet, Foundations of multidimensional and metric data structures.
Morgan Kaufmann, 2006.

[2] J. Nievergelt, H. Hinterberger, and K. C. Sevcik, “The grid file: An
adaptable, symmetric multikey file structure,” ACM Transactions on
Database Systems (TODS), vol. 9, no. 1, pp. 38–71, 1984.

[3] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in ACM SIGMOD Int. Conf. Manag. Data (SIGMOD), 1984, pp. 47–57.

[4] T. Sellis, N. Roussopoulos, and C. Faloutsos, “The R+-Tree: A Dynamic
Index for Multi-Dimensional Objects.” in Intl. Conf. on Very Large Data
Bases (VLDB), 1987, pp. 507–518.

[5] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R∗-tree:
An efficient and robust access method for points and rectangles,” in ACM
SIGMOD Int. Conf. Manag. Data (SIGMOD), 1990, pp. 322–331.

[6] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[7] J. T. Robinson, “The K-D-B-Tree: A Search Structure for Large Multi-
dimensional Dynamic Indexes,” in ACM SIGMOD Int. Conf. Manag.
Data (SIGMOD), 1981, pp. 10–18.

[8] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval
on composite keys,” Acta Informatica, vol. 4, pp. 1–9, 1974.

[9] S. Hong, O. Auciello, and D. Wouters, Emerging non-volatile memories.
Springer, 2014.

[10] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Ra-
jendran, M. Asheghi, and K. E. Goodson, “Phase change memory,”
Proceedings of the IEEE, vol. 98, no. 12, pp. 2201–2227, 2010.

[11] Y. Huai et al., “Spin-Transfer Torque MRAM (STT-MRAM): Challenges
and Prospects,” AAPPS bulletin, vol. 18, no. 6, pp. 33–40, 2008.

[12] S. Aritome, NAND flash memory technologies. Wiley-IEEE Press, 2015.
[13] R. Micheloni et al., 3D Flash Memories. Springer, 2016.
[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 4th Edition. MIT press, 2022.

[15] G. Li, P. Zhao, S. Gao, and J. Du, “F-KDB: An K-D-B Tree Implemen-
tation over Flash Memory,” in 2010 10th IEEE International Conference
on Computer and Information Technology. IEEE, 2010, pp. 635–642.

[16] G. Li, P. Zhao, L. Yuan et al., “Efficient implementation of a multi-
dimensional index structure over flash memory storage systems,” Journal
of Supercomputing, vol. 64, pp. 1055–1074, 2013.

[17] A. Fevgas, L. Akritidis, P. Bozanis, and Y. Manolopoulos, “Indexing in
flash storage devices: a survey on challenges, current approaches, and
future trends,” The VLDB Journal, vol. 29, pp. 273–311, 2020.

[18] A. C. Carniel and C. D. de Aguiar, “Spatial index structures for modern
storage devices: A survey,” IEEE Transactions on Knowledge and Data
Engineering, 2023.

[19] A. Fevgas and P. Bozanis, “LB-Grid: an SSD efficient grid file,” Data
& Knowledge Engineering, vol. 121, pp. 18–41, 2019.

[20] A. Fevgas, L. Akritidis, M. Alamaniotis, P. Tsompanopoulou, and
P. Bozanis, “HyR-tree: a spatial index for hybrid flash/3D XPoint
storage,” Neural Computing and Applications, pp. 1–13, 2021.

[21] C. Gao, M. Ye, C. J. Xue, Y. Zhang, L. Shi, J. Shu, and J. Yang,
“Reprogramming 3D TLC Flash Memory based Solid State Drives,”
ACM Transactions on Storage (TOS), vol. 18, no. 1, pp. 1–33, 2022.

[22] S. Sarkar et al., “Lethe: A tunable delete-aware LSM engine,” in ACM
SIGMOD Int. Conf. Manag. Data (SIGMOD), 2020, pp. 893–908.

[23] A. Fiat and H. Kaplan, “Making data structures confluently persistent,”
Journal of Algorithms, vol. 48, no. 1, pp. 16–58, 2003, aCM-SIAM
Symposium on Discrete Algorithms (SODA).

[24] B. Kim and M. Kim, “LazyRS: Improving the performance and relia-
bility of high-capacity TLC/QLC flash-based storage systems using lazy
reprogramming,” Electronics, vol. 12, no. 4, 2023.

[25] Y. Hu et al., “Performance Impact and Interplay of SSD Parallelism
through Advanced Commands, Allocation Strategy and Data Granular-
ity,” in International Conference on Supercomputing, 2011, pp. 96–107.

[26] A. Eldawy and M. F. Mokbel. (2015) SpatialHadoop: A Mapreduce
Framework for Spatial Data. [Online]. Available: http://spatialhadoop.
cs.umn.edu/datasets.html

[27] D. Dua and C. Graff, “UCI Machine Learning Repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[28] “Geonames database,” https://www.kaggle.com/datasets/geonames/
geonames-database/data, Accessed: 2024-05-28.

[29] “Urban Institute,” https://datacatalog.urban.org/dataset/resource/
4c9440ba-d711-46d9-8b85-8a11c3224966, Accessed: 2024-05-28.

[30] H. Maejima et al., “A 512Gb 3b/Cell 3D flash memory on a 96-
word-line-layer technology,” in IEEE International Solid-State Circuits
Conference (ISSCC). IEEE, 2018, pp. 336–338.

[31] J.-G. Zhu, “Magnetoresistive random access memory: The path to
competitiveness and scalability,” Proceedings of the IEEE, vol. 96,
no. 11, pp. 1786–1798, 2008.

[32] R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, and
G. Finocchio, “A strategy for the design of skyrmion racetrack memo-
ries,” Scientific reports, vol. 4, no. 1, pp. 1–7, 2014.

[33] T.-S. Chung et al., “A survey of flash translation layer,” Journal of
Systems Architecture (JSA), vol. 55, no. 5, pp. 332–343, 2009.

[34] D. Ma, J. Feng, and G. Li, “A survey of address translation technologies
for flash memories,” ACM Comput. Surv., vol. 46, no. 3, jan 2014.

[35] M.-C. Yang et al., “Garbage collection and wear leveling for flash
memory: Past and future,” in 2014 International Conference on Smart
Computing. IEEE, 2014, pp. 66–73.

[36] K.-T. Park et al., “Three-Dimensional 128 Gb MLC Vertical NAND
Flash Memory With 24-WL Stacked Layers and 50 MB/s High-Speed
Programming,” IEEE Journal of Solid-State Circuits, vol. 50, no. 1, pp.
204–213, 2014.

[37] Y. Takai et al., “Analysis on heterogeneous SSD configuration with
quadruple-level cell (QLC) NAND flash memory,” in IEEE International
Memory Workshop (IMW). IEEE, 2019, pp. 1–4.

[38] K. Kwon, D. H. Kang, and Y. I. Eom, “An advanced SLC-buffering
for TLC NAND flash-based storage,” IEEE Transactions on Consumer
Electronics, vol. 63, no. 4, pp. 459–466, 2017.

[39] D. Meagher, “Geometric modeling using octree encoding,” Computer
Graphics and Image Processing, vol. 19, no. 2, pp. 129–147, 1982.

[40] N. Katayama and S. Satoh, “The SR-tree: An index structure for high-
dimensional nearest neighbor queries,” ACM Sigmod Record, vol. 26,
no. 2, pp. 369–380, 1997.

[41] D. Eppstein, M. T. Goodrich, and J. Z. Sun, “The skip quadtree: a simple
dynamic data structure for multidimensional data,” in Annual Symposium
on Computational Geometry, 2005, pp. 296–305.

[42] W. Wang, J. Yang, and R. Muntz, “PK-tree: a dynamic spatial index
structure for large data sets,” UCLA Computer Science Department
Technical Report, vol. 970039, 1997.

[43] M. Freeston, “The BANG file: a new kind of grid file,” ACM SIGMOD
Record, vol. 16, no. 3, pp. 260–269, 1987.

[44] F. T. Hady, A. Foong, B. Veal, and D. Williams, “Platform storage
performance with 3D XPoint technology,” Proceedings of the IEEE,
vol. 105, no. 9, pp. 1822–1833, 2017.

[45] I. Koltsidas and V. Hsu, “IBM storage and NVM express revolution,”
IBM RedBooks, 2017.


