
SCIMITAR: Stochastic Computing In-Memory In-situ
Tracking ARchitecture for Event-Based Cameras

Wojciech Romaszkan, Jiyue Yang, Alexander Graening, Vinod K. Jacob, Jishnu Sen, Sudhakar Pamarti, Puneet Gupta
(wromaskan@, jyang669@, agraening@, jvinod@, jishnu@, spamarti@ee., puneetg@)ucla.edu

Department of Electrical and Computer Engineering
University of California, Los Angeles

Abstract—Event-based cameras offer low latency and high
dynamic range imaging data in a sparse format that is well-suited
for high-speed object tracking. Processing this sparse data in
the same way as traditional camera data requires a great deal of
unnecessary computation, making it difficult to take advantage
of the high effective frame rate for real-time processing. In this
work, we propose an accelerator for high-speed object tracking on
event-based camera data. SCIMITAR combines digital in-memory
stochastic computing, in-situ stochastic stream generation, and
multiple optimizations for utilizing input sparsity. SCIMITAR
provides unparalleled performance with latency and energy that
scale with sparsity. We demonstrate SCIMITAR performance on
an object tracking application using circuit-level simulations of
custom-designed compute-in-memory macros and digital circuits.
We achieve a frame processing rate of 2.6k frames per second
with 100 Regions-Of-Interest per frame and equivalent or better
than state-of-the-art tracking accuracy. The accelerator achieves a
peak throughput of 71 TOP/S and energy efficiency of 733 to 1702
TOP/S/W demonstrated on a range of event-based vision datasets,
which is 5× higher than other compute-in-memory solutions.

I. INTRODUCTION

Event-based cameras [1] transmit information about
brightness changes as an asynchronous event stream. The
characteristics of these cameras make them preferable to frame-
based cameras for applications such as object tracking [1, 2].

Event-based cameras generate low latency, high data-rate
outputs that enable tracking high-velocity objects without the
motion blur that plagues conventional cameras [3]. However,
general-purpose processing architectures cannot deal with this
low latency and utilize the sparsity presented by this data,
making a strong case for custom accelerators for event-based
data [4, 5].

To push the performance of event-based object tracking, we
propose SCIMITAR: Stochastic Computing In-Memory In-situ
Tracking ARchitecture for Event-Based Cameras. Stochastic
Computing (SC) [6–8] uses logic gates as basic compute units
along with several optimizations to achieve massive parallelism
and extremely high efficiency for sparse data. Compute-In-
Memory (CIM) [9–11] embeds computation inside the memory
to reduce data movement and significantly improve energy
efficiency. SCIMITAR combines the benefits of SC and CIM by
using compact and efficient in-situ stochastic number generators
in the memory to overcome the difficulty of converting binary to
stochastic numbers. Although prior work has proposed Stochas-
tic Compute-In-Memory (SCIM) by storing pre-converted
stochastic numbers, it requires spatial unrolling of SC streams,
which can lead to a large chip area [10]. We show, through the
use of analytical modeling and detailed simulations, that SCIM

with in-situ Stochastic Number Generator (SNG) can deliver
unprecedented energy efficiency for processing event-based
data through combined innovations in microarchitecture and
circuit design. Our contributions are as follows:
• We demonstrate that a tracking pipeline with event-based

cameras based on low-bitwidth Gabor-filter can achieve
state-of-the-art accuracy.

• The first accelerator architecture for event-based object
detection and tracking using scalable in-situ SCIM.

• Scalable in-situ SCIM processing with performance 5×
higher than state-of-the-art.

• A set of microarchitecture techniques, including channel load
skipping, zero detection, and column maximum tracking,
co-designed with the SCIM, to support input sparsity (1.54×
energy-efficiency improvement), coupled with dynamic early
termination scheme (62.8% latency and energy reduction).

• 733 to 1702 TOP/S/W for sparse inputs demonstrated on
a range of event-based datasets.

II. MOTIVATION

A. Event-Based Cameras
Event-based cameras are often referred to as neuromorphic

since their design and data format were inspired by the human
eye [1]. The biological retina produces spikes as individual
cells sense changes in intensity. Similarly, event-based cameras
only transmit pulses, or events, when the brightness of a given
pixel changes. The output from such a camera is a stream of
positive and negative events depending on the polarity of the
change. For a stationary camera, moving objects will cause
events, but background objects will not, thus highlighting the
most critical information in the scene for applications such
as tracking [1, 12, 13]. Figure 1 shows how moving objects
appear while the background disappears. If the event-based
camera is moving, it will highlight the edges of objects, which
can be useful for applications such as localization [1, 14, 15].
Advantages of event-based cameras include:
• Sparse Data Output: Only changing pixels transmit events,

significantly reducing bandwidth compared to transmitting
the entire frame [1].

• Fast Response to Changes: Information about changing
pixels is transmitted immediately since there is no concept
of frame rate. Pixel latency varies from 3 to 120 µs. [1, 16].

• High Dynamic Range: Pixels operate independently and
respond to changes in the log of intensity, so event-based
cameras can have dynamic range on the order of 130-140
dB compared to 60 dB for conventional cameras [1, 16, 17].

Fig. 1. Spinning marker. This image shows data accumulated over a 1 ms
interval, generated from tossing a marker in the air in front of a cluttered
background, which is filtered out by the camera. The white events indicate
an increase, and the black ones indicate a decrease in brightness.

• Very High Temporal Resolution: Existing event-based
cameras support between 1 and 1200 MEPS (Mega-Events
Per Second) [1, 16], providing useful information comparable
to > 10,000 frames per second on a frame-based camera
which is typically 30-120 frames per second.

B. Event-Based Data Processing

1) Background: Data from an event camera typically
consists of a string of x-location, y-location, polarity, and
sometimes timestamp for each event referred to as Address-
Event-Representation (AER). Given this data format, we must
determine the best way of processing such information to
guide our architecture choice. Most approaches fit into two
groups [1]. First are the algorithms that process individual
events [4, 18]. Those event-based methods update their state
on every incoming event, guaranteeing minimum latency while
avoiding the processing of irrelevant data. The second type
of approach processes events in groups [3, 19]. These groups
are typically sparse, reconstructed frames, so we refer to those
algorithms as frame-based. The frame format makes it possible
to employ well-established Computer Vision (CV) algorithms
that are difficult to apply to data event-by-event in AER.

The required compute decreases if we process Regions-Of-
Interest (ROIs) [20–22] or parts of the field of view where we
expect objects to be instead of processing the entire frame. For
frame-based processing, using ROIs allows us to ignore large
parts of the frame while still being able to harness conventional
CV methods. ROI detection, or region proposal, requires less
energy and is faster than convolution [23, 24]. Hence, we
assume its use in all further considerations for our architecture.

At first glance, an event-based method seems like it
should be more efficient than a frame-based method due
to minimizing computations, but this does not account for
memory access requirements, so we conducted the following
analysis that shows when frame reconstruction is better.

We start with a few assumptions. In one iteration, we
process C ROIs of size R×R containing M events. W and
H are the frame width and height and generally R<<W,H.
We divide the duration t of data collection into D bins of
events. We use N spatiotemporal filters of the size K×K×D,
convolved with the image data. The maximum output of each
filter is recorded and used for tracking. Section II-C describes
our assumed algorithm. We assume the computational cost

Fig. 2. Analytical model parameters for frame-based (top) and event-based
(bottom) processing.

TABLE I
ANALYTICAL MODEL METRICS.

Accesses MAC
Input Output Weight

Event 2M K2MN K2DN K2MN
Frame M+R2DC CN K2DN K2DR2CN

of selecting ROIs is negligible as a tracking byproduct. All
parameters of our model are shown in Figure 2.

We consider the performance metrics in Table I. For
simplicity, we assume all memory accesses are of the same
size. For both cases, the number of weight accesses equals
filter size (KKD) times the number of filters (N).

We only need 2M input accesses for event-based processing
- one write and read per event. However, assuming that events
are processed sequentially, many outputs would need to be
updated for each input, leading to M event updates of KK
results for N filters.

For frame-based processing, we need M event writes, and
C ROI reads of size RRD on the input side. For outputs, if
the convolution is completely unrolled spatially, all maxima
per ROI can be determined at the same time, requiring N
output writes per ROI (CN total).

We measure the required computation in Multiply-
Accumulate (MAC) operations. We convolve M events with
N filters of size K × K for event-based processing. For
frame-based, C ROIs of size R×R×D are convolved with N
filters of size K×K×D. Note that this does not account for
optimizations that may be possible in some specific cases.

We assume a R = 64 ROI size, with D = 7 time step
channels. Filters are N = 32, K = 9, D = 7 pre-generated
spatiotemporal filters. These parameters were chosen in
accordance with Section II-C.

Figure 3 (left) shows how memory access and MAC
counts vary with event count for event-based processing
and frame-based with 100 and 1000 ROIs. At a low event
count, event-based processing requires significantly fewer

2

Fig. 3. Input (top) and output (middle) memory accesses along with MAC
count (bottom) for varying event counts (left), and ROI counts (right).

input accesses and less computation, but that advantage is
quickly lost when the event count grows. At the 500k event
mark, event-based compute and input accesses are comparable
to a frame-based version with 100 ROIs. More importantly,
event-based processing requires significantly more output
accesses than frame-based processing.

We then compared the results for a fixed event count
(M =1000) but a varying ROI count and two different sizes
(R = 64 and R = 32). Results are shown in Figure 3 (right).
If the number of ROIs is kept low, frame-based processing
does not significantly increase the computation.

As this analysis shows that the benefits of using an event-
based method would be uncertain, we have chosen to use
frame-based processing for the following reasons. We can use
established computer vision algorithms. We have substantially
smaller output memory requirements due to ROI use and the
option to max pool the outputs (discussed in section III-C). We
can reduce computations due to input noise with early termi-
nation (also discussed in section III-C). Finally, the structured
frame data is much more favorable to parallel processing.

C. Example Tracking Pipeline
While the goal of this work is not to drive algorithmic

improvements, it is necessary to demonstrate that the compu-
tational model described above is indeed representative of a
tracking application, as the insights from this model drive our
architecture design. To do that, we implemented a complete
filter-based object-tracking pipeline in Python using well-
established and widely used algorithms. Spatiotemporal Gabor
filters have been used for tracking in several prior works [25,
26]. They consist of sinusoids multiplied by a Gaussian function.
In our case, we use a 3D Gabor filter where different rotation
angles correspond to different kinds of motion. A block diagram
of the pipeline is in Figure 4. We first accumulate events into
frames given an accumulation interval. We split these frames
into 64×64 pixel ROIs. We choose ROIs by selecting all
regions containing existing tracked objects while taking the
estimated velocities of those objects into account to include the
estimated future location of the objects. Every 30 frames we
process the full frame to detect new objects. We use 3-D filters
with 8 different rotations in the x-y plane corresponding to the

Fig. 4. Object tracking pipeline with the percentage of GPU runtime marked.
Note that we did not include event accumulation in the total runtime.

orientation of the direction of motion and 4 different tilts in the
time dimension that correspond to different speeds for a total of
32 different filters. Our filters have seven time channels, 2 ms
each, so we use the most recent 14 ms period to construct each
ROI. Our filters are 9×9×7. To eliminate inaccuracies due to
zero-padding when processing adjacent ROIs, we consider the
center 56×56 pixels of the output valid and overlap the ROIs
by 8 pixels for full coverage. We then convolve the filters over
them. The resulting output values for each filter are thresholded
and then clustered using the DBSCAN algorithm [27]. We
generate bounding boxes for each cluster and fuse the bounding
boxes into a single set of boxes per frame, using the Weighted
Boxes Fusion algorithm [28]. We pass these fused bounding
boxes to the Norfair tracking algorithm. We use well-established
algorithms since we do not want to tie down our architecture to
insufficiently proven methods. We also measured the execution
time of each part of the pipeline using a CPU (Intel Xeon
E5-2695) and a GPU (NVIDIA GeForce RTX 2080 Ti, 27
TOPS peak performance). As we are considering a stationary-
sensor application, this likely more compute than would be
available for mobile, embedded, or near-sensor processing, but
the general conclusions should be broadly applicable.

As shown in Figure 4, most of the runtime is consumed
by the convolution of the filters, so accelerating this stage
of the pipeline will have the most impact on the overall
tracking speed. Furthermore, the clustering step, which utilizes
DBSCAN, has O(n2) complexity. Using our convolution-based
filtering beforehand reduces the number of candidate points
by a factor of 6 in the “Birds” dataset described below. This
reduction gives a 36×speedup compared to simply clustering
the raw events. Our pipeline achieved 10 fps (frames per
second) (12 for convolutions only) on the CPU and 36 fps
(53 fps for convolutions only) on the GPU.

It is also worth noting that many other applications well
suited to event cameras also use a convolutional kernel and
could be accelerated using our accelerator or one with some
modifications. Some of these possible applications include
particle size monitoring, high-speed counting, edgelet tracking,
and optical flow [29–33].

To show that event-based data does not require high
precision for processing, we compare the relative tracking
accuracy when using floating-point and varying bitwidth
integer filter coefficients in the pipeline. We evaluated
this using an in-house “Birds” dataset collected using the
DVXplorer camera. This dataset shows birds flying from
right to left across the screen. The resolution of the camera
is 640x480 pixels. All inputs are ternary, -1 (decrease), 0
(no change), and +1 (increase). For object tracking, we used

3

TABLE II
TRACKING ACCURACY RESULTS OF THE PIPELINE ON THE BIRDS DATASET

WITH VARIOUS FILTER PRECISION.

Precision MOTA IDF1 HOTA

Floating Point 47.8 72.4 51.7
16-bit Quantized 47.8 72.4 51.7
8-bit Quantized 47.9 72.2 51.4
6-bit Quantized 47.3 72.1 51.3
4-bit Quantized 7.2 52.9 40.3

TABLE III
TRACKING ACCURACY RESULTS OF THE PIPELINE ON THE BIRDS DATASET
WITH VARIOUS EFFECTIVE FRAME RATES. LOWER FRAME RATES SKIP TIME

STEPS IN THE EVENT DATA.

Frame rate (fps) MOTA IDF1 HOTA

500 47.3 72.1 51.3
250 7.1 55.5 41.6
166 10.0 57.0 41.0
62 -46.9 20.1 18.7

metrics MOTA (Multi-Object Tracking Accuracy), IDF1
(Identification F1 score), and HOTA (Higher Order Tracking
Accuracy) described in [34] to evaluate our pipeline using
standardized metrics from the Multi-Object-Tracking (MOT)
Challenge. We observed that the accuracy loss was negligible
down to 6-bit integer weight precision, after which it drops off
sharply, as can be seen in Table II, confirming that convolving
event-based data with Gabor filters does not require high
numerical precision. SC is capable of higher precision, but
we did not need it for our application. In prior works, SC has
been used successfully with up to 8-bit precision [35] [36].

We have tested the accuracy of the pipeline using varying
effective frame rates by skipping events from certain time
steps. Results are in Table III. It shows that for event-based
data it is imperative to maintain high processing throughput,
on the order of at least hundreds of fps, which is beyond
what a CPU or a GPU can handle (as per our results above),
necessitating a custom hardware approach.

To justify our choice of the algorithmic approach, we
compared the 6-bit integer Gabor filter pipeline with the
tracker described in [37], which uses a dataset collected using
a DAVIS camera with a telescope set up to view moving space
junk. We refer to this dataset as “Space Junk”. The pipeline
used in the paper is significantly more computationally
intensive than ours since it uses an exponentially decaying
time surface to represent the history of a given pixel rather
than accumulating events into discrete frames. We used a
subset of the data (by discarding complete videos with no
objects) and used the same accuracy metrics as described in
[37]. The abbreviations are as follows: True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN).

Sensitivity=
T P

T P+FN
and Speci f icity=

T N
T N+FP

(1)

In f ormedness=Sensitivity+Speci f icity−1 (2)
As shown in Table IV our tracking approach achieves

slightly higher accuracy than the feature detector + tracker

TABLE IV
GABOR PIPELINE ACCURACY ON SPACE JUNK DATASET COMPARED TO [37].

Pipeline Sensitivity Specificity Informedness

Gabor Filter (4-bit int) 0.796 0.996 0.792
Gabor Filter (6-bit int) 0.817 0.998 0.815
Gabor Filter (8-bit int) 0.820 0.996 0.816

Gabor Filter (16-bit int) 0.823 0.996 0.820
Feature Detector + Tracker 0.782 0.992 0.775

Fig. 5. Comparison on EBBINNOT “Cars” Dataset. Additional comparisons
beyond SCIMITAR and EBBINNOT are from [38].

method in prior work. We also observe no significant gain
in accuracy by increasing to higher than 6-bit precision.
Given the straightforward computational nature of filter-based
computing (3D convolutions), we build our architecture around
them. It also gives us the flexibility to switch to different types
of filters or tackle other applications based on 2D or 3D filters.

To validate with larger objects, we compared to the car
dataset in [38]. We will refer to this dataset as “Cars”.
In Figure 5 added our results to a comparison from [38]
of detection F1 scores for different detectors for different
intersection over union identification thresholds. See [38] for
a description of the additional traces.

D. Stochastic Computing

Given the above evaluation, for our architecture, we are
looking for technologies that enable low-precision convolutions
in a fast, efficient, and high compute-density manner to sustain
a high effective frame rate. We leverage two techniques that
offer unparalleled compute density: stochastic computing [6,
39] and compute-in-memory [11]. In this section, we will
introduce the first of the two techniques.

A comprehensive overview of SC is presented in [39]. Fig.
6 shows the basic concept of SC. SC represents numbers as the
fraction of 1s in a bit stream instead of as binary. A stochastic
number generator converts binary to stochastic numbers. SC
has been extensively explored for uses in computer vision
applications [40–42] and machine learning [6–8, 10]. Our
application fits the strengths and avoids the typical drawbacks
of SC described below:
• Single Logic Gate Operations: Multiplication arithmetic

uses an AND gate to perform a bit-wise AND and addition
is implemented using an OR gate to perform a bit-wise OR.
A simple counter can convert stochastic to binary numbers.
This compact hardware unit enables many large, dense
MACs in a small area with high spatial reuse [6, 9].

4

Multiplier
axb

Adder
a+b-ab ≈ a+b

0010…

Counter1010…

0010…

0001…

SC-to-Binary

SNG

SNG

Binary
Inputs

Binary-to-SC

Mem
Cell

SNG

1b Sense
Amplifier

SNG SNG

Mem
Cell

Mem
Cell

In-Memory SC MAC Structure (1 Row)

shared by entire array

Fig. 6. (Top) Basic concept of Stochastic Computing (SC). Note that the
AND gate acts as a multiplier and the OR gate acts as an approximate adder
that is accurate when the product ab is small. (Bottom) In-memory SC MAC
structure. This figure shows an implementation of an AND between input
stored in the memory cell and the weight stream generated by the SNG
followed by an OR to add with the other products in the MAC.

• Variable Precision Support: Each cycle of SC approximates
the result. Changing compute precision on the fly through
early termination to take advantage of sparsity reduces the
computation time.

• Accurate Multiplications: The stochastic nature of SC causes
random errors [39]. Since the inputs for our application
are +1, -1, and 0, one full stream is either 1 or 0. Due to
our choice of pseudorandom number sequences (as in [35]),
multiplications are guaranteed to be accurate if they run for
the full stream length.

• Low Precision Requirements: Increasing the precision of SC
requires an exponential increase in stream length (limiting
SC to applications requiring eight or fewer bits of precision),
but that is not a problem here as we have low precision
requirements (1-bit inputs and 6-bit weights). Prior works
have shown SC can match fixed-point precision in this
range efficiently [35].

• Amortized Conversion Cost: SC requires costly conversion
from binary to stochastic streams [6, 7], but the parallelism
in our application allows us to amortize the conversion
costs of filter weights (32-way reuse in our architecture)
while inputs, being binarized, have no stochastic number
generation overhead.

III. SCIMITAR IMPLEMENTATION

Based on the algorithm-driven analysis from Section
II-B, our architecture must support low-precision, sparse 3D
convolutions at high throughput and energy efficiency. Our
hardware requirement based on our tracker is 32 9×9 filters
with up to eight time channels (7 required for our pipeline), a
64×64 ROI, 6-bit filter precision, and 10-bit output precision.

A. Stochastic Computing In-Memory Macro with In-Situ SNG
We use Stochastic Computing In-Memory (SCIM) to

achieve high energy efficiency for processing the sparse
reconstructed event-camera ROIs. Embedding SC computations
in memory has previously been shown to be an efficient way
to implement the AND-OR structure of the large MAC used in
the convolution [9, 10, 43]. Figure 6 shows the structure of an

In
p

u
t

D
ri

ve
r

Tr
ac

ki
n

g
 S

lic
e

CTRL

Slice 1
I2561

Memory
Cells SNG

SC MAC
x32

I2592

RN401

RN405

I1

Memory
Cells SNG

SC MAC
x32

I32

RN1

RN5

SCIM Unit 1

SCIM Unit 81

SCIM
Unit 1

Slice 32

SCIM
Unit 81

CL1 CL32 CL225 CL256 REFCL

R
an

d
o

m
 N

u
m

b
er

 G
en

er
at

o
r

Read Write Circuitry and I/Os

Random
Numbers

S
N

G

SRAM SRAM SRAM

SRAM SRAM SRAM
MAC #1 MAC #32

W+

W-

W+

W-Weight
Inputs

Fig. 7. SCIM unit with 32 MAC reuse and SCIM slice (top), SCIM macro
architecture (bottom).

SC MAC unit in an SRAM-based SCIM macro. Each SRAM
cell stores a stochastic bit of the weight parameters. We add
two transistors next to the cell to perform an AND operation
(multiplication) between the stored bit and the compute word
line. We describe our improvements on this below.

The main challenge of embedding Stochastic Computing
in memory is converting a binary number to a stochastic
bit sequence in memory. Previous works have stored pre-
converted unrolled streams in memory, but this method requires
significant area and hurts the overall energy efficiency [10].
Our recent work uses a simple and compact solution to embed
the binary-to-stochastic conversion in memory [44]. Figure 7
shows an overview of the SCIM macro. The core of the macro
is an array of SCIM units, which are the basic processing
units corresponding to one weight parameter each. The SCIM
unit consists of memory cells for storing one weight in binary
format, an in-situ SNG for number conversion, and multiple
SC MAC units reusing the SNG output. We chose 6 bits as the
precision for weights since the analysis presented previously
indicated that it is sufficient for our target application. The
in-situ SNGs are embedded next to the weight storage cells
to convert them from binary to stochastic bit sequences. An
extremely high weight reuse factor is achieved by sharing
the in-situ conversion output with many in-memory SC MAC
units, amortizing the cost of the in-situ conversion. We embed
32 SC MAC units per weight to maximize weight reuse since
this is the largest number of MAC units that can fit within the
memory cell’s height. An SCIM slice consists of 81 SCIM
units and corresponds to an unrolled 9×9 filter for one of
the eight time channels. We process the left and the right of
the ROI rows sequentially due to the physical limitations of
the macro layout. 32 SCIM slices within the macro share the
same inputs, each implementing a different filter.

The Stochastic Number Generator (SNG) is embedded inside
the memory to achieve in-situ number conversion. During
computation, the in-situ SNGs use random numbers generated
from Pseudo-Random Number Generators (PRNGs) near the
macro to convert the stored binary number to stochastic bits.

5

WSC- = 1, 0, 1, 0, 0, 0, 1, 0 (3/8)
WSC+ = 0, 0, 0, 0, 0, 0, 0, 0 (0/8)
WB = P(WSC+) – P(WSC-) = - 3/8

Split Unipolar
Representation.

Example:
Binary: WB = -3/8

Stochastic:

P(|WSC|) = W4×0.5+ W3×0.52+ … + W0×0.55

PCHB

P(RN4 =1)=0.5

6T
SRAM

MSB (Sign)

WSC+ WSC-

6T
SRAM

LSB

|Wsc|

P(RN0 =1)=0.55 P(RN0 =1)=0.54

6T
SRAM

6T
SRAM

Fig. 8. Split-unipolar stochastic number representation (top) and in-situ
stochastic number generator circuit (bottom).

The PRNG uses shift registers to store the entire output
sequence of an XOR-based, maximal-length Linear Feedback
Shift Register (LFSR) and circularly shifts in each cycle. We
choose the LFSR’s polynomial order to match the bit width of
the weight coefficient, which guarantees accurate conversion
since the LFSR outputs are uniformly distributed over the
stream length. Each PRNG generates unique random numbers
for 32 SNGs. Three PRNGs in each macro store different LFSR
sequences and can support 81 SNGs without correlation. Note
that we use the unrolled sequence for the PRNG since the cost
is shared and to allow testing of non-LFSR sequences. Since the
correlation is limited to the stochastic bits computed within each
MAC unit at each cycle, the minimal number of unique random
numbers should match the dot product’s size (81). We can
reuse this sequence for all 32 slices within the macro. Further,
given convolution’s extensive data reuse for both weights and
inputs, conversion costs, as well as SNG cost itself, are heavily
amortized, as has been shown in prior works [6].

The in-situ SNG is shown in Figure 8. For a 6-bit weight,
the 5th bit is selected by random numbers with a probability of
0.5, the 4th bit is selected with a probability of 0.25, and the
LSB is selected with a probability of 0.55. Each bit cell has two
extra cascaded NMOS transistors beside the 6T SRAM cell to
perform an AND operation between the stored binary bit and
the random number. The output of AND logic in each cell is
connected to form a local bitline, which performs a wired-OR
operation. An inverter amplifies in-situ SNG’s local bit line and
inverts the signal to maintain the correct logic. Using the in-situ
SNG also makes the implementation agnostic to the stream
length, which was not the case for bit-parallel SCIM [10]. A
more detailed presentation of the in-situ SNG macro is in [44].

For event-based object tracking we require supporting
signed inputs (event polarity) and weights (filter coefficients).
We use a split-unipolar representation to support signed
numbers [6]. A number is represented by two SC streams:
WSC+ and WSC− only one of which is enabled at a time by the
sign bit. The value of the number is encoded as the difference
between them: WSC+−WSC−. If the number is positive, WSC+

represents the value’s amplitude, and WSC− is a zero stream,
and vice versa for the negative numbers. A demultiplexer
circuit using pseudo-NMOS logic generates the split-unipolar
streams with an inverter buffer output.

Output values are 10 bits. This is due to 6-bit weights,
eight time channels (+3 bit), and split unipolar (+1 bit). A
split unipolar SC MAC can have activity on both polarities

Fig. 9. SCIMITAR architecture block diagram.

within a stream).

B. SCIM Accelerator Architecture
Given the algorithm and circuit-driven design of the SCIM

macro, we now face the challenge of integrating it into
an accelerator architecture that can also take advantage of
vast event-data input sparsity. Figure 9 shows the overall
architecture of SCIMITAR. Given a limited set of operations,
we implement the control logic as a Finite-State Machine (FSM)
controlled through a set of programmable registers. The I/O
interface transfers ROIs to input SRAMs and outputs/maxima
from the output SRAM. We designed SCIMITAR to process
a single 64×64 ROI at a time with up to eight time channels.
Based on that, we organized the architecture into eight
columns, each consisting of an input SRAM, staging buffer,
and a SCIM bank. We provisioned each input SRAM to
double buffer one time channel of a single ROI. Input SRAM
width is provisioned to hold 64 2-bit (ternary) values.

Values from input SRAM are first read into staging buffers,
then optionally rotated, and passed onto the SCIM banks. Since,
as described in the previous Section, the SCIM macro can only
process half of the row at a time, staging buffers are provisioned
for 36 2-bit values. Within each SCIM bank, we write the input
values to the SNG buffers where they are used to generate SC
streams when the computation starts. Each bank has nine SNG
buffers, which hold nine rows of 36 values, making it possible
to unroll one 9×9 time channel of the convolutional filters
spatially. This spatially unrolled convolutional window is based
on the one used in [6] to maximize convolutional data reuse.

The weights are pre-loaded in the SCIM, and their streams
are generated in situ, as described in the previous Section.
Within each macro, a sliding 9×9 convolution is performed
across nine input rows, generating 32 outputs for each of 32
filters for a total of 1024 outputs per bank. Outputs of each
compute line are fed into counters. After the computation
finishes, counter outputs are sent to the global accumulator
block. SCIMITAR adds outputs of eight counters to implement
the combined 9×9×8 filter size.

We will now describe the architectural optimizations indi-
cated in Figure 9. Those optimizations improve the efficiency of
sparse event-data processing (algorithm-driven) and circumvent
the limitations of SCIM-based computing (circuit-driven).

6

97.5 98.0 98.5 99.0 99.5 100.0

Sparsity [%]

0

10

20

S
to

ra
ge

R
eq

u
ir
em

en
t

[K
B

]

No Compression
Row Compression
Channel Compression

Measured
Average

Fig. 10. ROI memory requirements for different compression schemes.

1 Channel Load Skipping. While ROI processing reduces
memory and computation compared to full frames, individual
ROIs are also highly sparse. To take advantage of this sparsity,
we propose embedding additional information in input memory
to avoid storing and loading rows of the ROI with no events.
Since data in memory is organized in rows, we consider two
levels of granularity: row and channel skipping. The former
will skip any slice of 64×8 pixels (one row across all eight
time channels) that is all zero. The latter will skip any slice of
64 pixels (one row, one time channel) that is all zero.

To support this functionality, input memory contains the
next row id, which indicates the index of the next non-zero
row stored in the subsequent address. In case of row skipping,
the next row index is shared across all eight input SRAMs. For
channel skipping, each SRAM has the index information for
the next row. To evaluate potential storage compression, we
used “Birds” dataset described in Section IV, partitioned it into
64×64×8 ROIs, and calculated the memory required for each
of the ROIs, including next row id information. Results are
shown in Figure 10. Row skipping reduces storage requirements
by 2.36× on average, while channel skipping does so by 8.88×
on average, even including indexing overheads. Given those
results, we opt to implement channel skipping in SCIMITAR.

We implemented channel skipping in local control logic on
a column-by-column basis. Whenever reading a word from
input memory, if next row id is more than current row+1,
where current row is the index of the currently read row, local
control logic skips the next N reads, where N is equal to the
next row id − current row. This is shown schematically in
Figure 11. In other words, local input SRAM control will wait
until global FSM catches up to its next non-zero row. We always
read the first row in an ROI since there is no next row id.

2 Half-Row Multiplexing The SCIM Macro can only
process half of the 64-wide row at a given time. Given the
relatively high energy cost of accessing SRAM, it is prudent
to store half-rows separately in memory to save on accesses.
However, to avoid a gap in convolution coverage, each half
needs to include the same 8-pixel overlap region. Further,
next row id information would need to be stored with each
half-row. Instead of storing 64+6=70 bits, we would need to
store 2×(36+6)=84 bits, a 20% storage overhead. Instead,
we partition each input SRAM into three physical banks: left
(bits 0-27), middle (bits 28-35), and right (bits 36-63), as shown
in Figure 11. A signal from the control FSM (L/R - left/right)
decides which banks are accessed (left-middle or middle-right)
and multiplexes the outputs to appropriate positions of the
staged data SD. This approach avoids storage overheads while

Fig. 11. Channel load skipping and half-row multiplexing using partitioned
input SRAM. Each ROI row is split into three parts (left, middle, right),
placed in their respective SRAM banks. Only two banks are accessed at
a time, depending on which half is being processed (L/R control signal).
next row ID is stored in the middle bank, which is always accessed (overlap
region), and is compared against current row to skip rows containing all zeros.

saving access energy. next row id is stored in the middle bank,
as it is always accessed.

3 Zero Indicator Staging buffers also contain a zero
indicator bit. Upon detecting one or more zero rows, using the
next row id, local control will also set the zero indicator bit
in its staging buffer, as shown in Figure 11. This bit is used
downstream to gate the SNG buffer propagation and the SNG
stream generation for that row. This approach saves energy by
reducing the toggling of unnecessary logic.

4 Time Channel Overlap SCIMITAR supports up to 8
time channels in each ROI. In some applications, subsequent
“frames” can be disjoint, meaning their time channels cover
non-overlapping time windows. For example, if using 1 ms
channels, the first reconstructed frame covers the first 8 ms, the
second one the next 8 ms, etc. However, temporal resolution
can be improved if there is an overlap between subsequent
“frames”. For example, each subsequent reconstruction can
shift by 1 ms, where the remaining 7 ms overlap. Given that
in SCIMITAR, filter time channels are assigned to physical
SCIM macros, each of which is connected to its input SRAM,
naively supporting such overlap would require reloading the
entire ROI, as time channels would need to be physically
moved between input banks. To provide seamless support for
overlapping time-channel ROIs, we propose to connect staging
buffers as a circular buffer, as shown in Figure 12.

Initially, time channels are properly aligned to columns, for
the first 8 time steps. Half-rows can be loaded directly into
staging buffers and passed to their respective SCIM banks. After
processing, time channel t=0 is replaced with time channel
t=8 in column 0. After loading each row to the staging buffers,
they are rotated once, so that channel t = 8 ends in column
7, channel t=7 in column 6, and so on. Using this approach,
time channels can be overlapped with a minimum number of
memory accesses. The latency of rotating staging buffers is
hidden using SC stream processing latency. In the worst-case
scenario, SCIMITAR needs to hide 7 rotation cycles.

Figure 13 shows how energy per computation, for a 64-long
SC stream MAC, is affected by the above optimizations on the
accelerator level. Our use of channel-load skipping, half-row
multiplexing, and time-channel overlap, can reduce the energy

7

Fig. 12. Time channel overlap using circular buffers.

Fig. 13. Impact of proposed optimizations on the computational energy
efficiency of the SCIMITAR architecture. Efficiency calculated on 99% sparse
input data assuming 32×2 bit SC streams (64 cycles).

related to input communication (SRAM, buffers) by up to 55
times, which translates to 1.54× higher energy efficiency for
the entire accelerator.

SCIMITAR can scale well in terms of sensor size and
throughput. Since processing is ROI-based, any sensor size
can be supported, subject to throughput constraints. Additional
arrays can be added to process more ROIs in parallel, improving
throughput. Temporal resolution is adjusted through the number
of SCIM arrays per filter. Certain aspects of the architecture,
like the ROI or filter size, are tightly coupled to circuit design.
However, we argue that tightly coupling microarchitecture and
circuit design allows us to achieve significant performance im-
provements. Larger ROIs can be supported by “stitching” multi-
ple smaller ones. SC also enables flexibility in computation pre-
cision [6] - by adjusting the stream length we can trade off preci-
sion with latency and energy. We leave exploring the interaction
of variable precision with tracking accuracy to future work.
Here, we use equivalent 6-bit precision streams, which guar-
antees good tracking results, as demonstrated in Section II-C.

Since SCIMITAR is built for 3D convolutions, it is similar
to prior works that use SC for Convolutional Neural Networks
(CNNs) [6, 10]. However, there are differences. SCIMITAR
is built for shallow filters, while the ones used in CNNs have
tens or hundreds of channels [45]. Further, SCIMITAR has
a host of optimizations for exploiting very high input sparsity,
uncommon in CNNs. However, concepts like the in-situ SNG
could be used in SCIM accelerators for ML, which we will
explore in future work.

C. Early Termination & Maxima Tracking
Every cycle of SC computation provides an estimate of the

final result. For example, if the first 16 cycles of computation
contain 50% ones, we can expect that at the end of the compu-
tation, the proportion should be similar [7]. Short streams can
give an estimate, and longer streams increase the precision and
reduce the impact of randomness. This progressive convergence
to the final result leads to the concept of Early Termination

Fig. 14. Early termination noise reduction. Early termination helps eliminate
medium to low-valued peaks, which effectively denoises the output.

(ET). Since early partial results from running a computation
approximate the final result, we can judge whether or not we
are likely to care about the result of a computation before
it is complete. While early termination has been proposed
before, it was either static (termination after a fixed number of
profiled cycles)[7, 46], or required complex decision methods
that cannot be easily implemented on an output-by-output basis
[47]. Since we are looking for peaks in our application, we can
rule out negative values and values close to 0 after a certain
number of cycles. This saves power and latency especially
when processing inputs that only contain noise and thus do not
produce peaks above the threshold. Note that early termination
can be used to dampen noise if the threshold is set that will
terminate the values expected from white noise early. As shown
in Figure 14 real peaks are unaffected.

The downside of using partial results is that the shorter the
stream is, the more likely it is to have a large error. An error
of 1 on a 16-bit stream is 1/16 whereas an off-by-1 error for
a 4-bit stream is 1/4, which is significantly more serious. To
reduce the risk of such errors affecting accuracy, we do not
use early termination on the first 16 cycles of computation and
only turn early termination on after that. Since we split the
signed compute streams temporally for inputs, the first 8 bits
of signed compute take 16 cycles, 8+ and 8-. After that, we
periodically check the result of the stream to see if it is below
a threshold that would allow us to discard the pixel. In an ideal
case for early termination, we could check the count against
a threshold every cycle, but in our case, we are constrained
to check after we have computed an equal number of positive
and negative cycles. For a 32-bit stream with 64 cycles of
compute, this gives us the potential to save up to 75% of
compute time, with a high degree of confidence that we will
not lose any peaks that we care about, as shown in Section IV.

Constraining early termination to occur only at cycle 16 or 32
simplifies the hardware and reduces the overhead of switching
between positive and negative compute streams. Since the rele-
vant ET threshold depends on the stream length, only checking
at the power of 2 stream length values allowed us to set a
threshold and use a bit shift to scale the threshold from the 16th
to the 32nd cycle. Figure 15 shows that most early termination
happens at the earliest opportunity. While finer-grained ET is
possible, the benefits we get for earlier checks for ET get pro-
gressively smaller. Terminating after 32 cycles saves about half
the computation time. After only 16 cycles, terminating saves an
additional 25% compared to 32, but terminating after eight cy-
cles would only save an additional 12.5% compared to 16 in an
ideal system. The benefits are small compared to the overheads
of pipelining and loading. The overall reduction in compute cy-

8

Fig. 15. Percentages of early termination at cycles 16 and 32. Computed
over subsets of ROIs from “Birds”, “Space Junk”, and “Cars”. Note that
ET thresholds are dataset-specific.

Fig. 16. Sensitivity and specificity for ET SC ROI peak matching with
floating point. This is computed over a subset of ROIs from each dataset
with ET levels in Fig. 15.

cles we observed over 7000 ROIs from the “Birds” dataset was
62.8%, see Figure 15. The “Space Junk” and “Cars” datasets
showed similar cycle reduction. Sensitivity and specificity for
peak matching with early termination are shown in Figure 16.

Once we compute all the outputs we need to find a maximum
for each filter. However, storing all intermediate results takes a
large amount of memory. For 32 filters, an ROI of 64×64 pixels,
and 10 bits per output, we need to store 64×64×32×10b=
1.28 MB per ROI. To reduce memory size, we do not want to
store all the outputs. A single max will do well if we only have
a single object in an ROI, but multiple objects will fail with
a single max, see Figure 17. One way to solve this issue is to
save the maximum value from each cell in a grid of regions in
the output. This method tracks additional outputs. We instead
decided to keep track of a per-ROI-column maximum on the
fly as shown in Figure 18 (left). This option is straightforward
to implement in hardware, as each column is processed sequen-
tially in the same output counter, requiring only two additional
registers per counter: value (10 bits) and row index (6 bits)
of the current maximum. Beyond the hardware simplicity, we
selected column max instead of a grid option as it showed better
peak retention than the grid option using equivalent storage
as shown in Figure 18 (right). It reduces the output memory
requirement to only 64×32×(10+6) bits =32 KB per ROI.

IV. EVALUATION

A. Object Detection and Tracking

To evaluate the SCIMITAR architecture, we ran RTL emula-
tion using a scaled-down version of our stochastic computing
architecture on the ALVEO U200 FPGA implemented fully in
digital logic. We used functionally equivalent digital logic to
replace the CIM for the test on the FPGA. The mixed-signal

Fig. 17. Example ROI with multiple objects. The left image shows a few
time channels of the input. The right image shows the result after convolving
with a Gabor filter.

Fig. 18. Column max. In column max, we save one maximum from each output
column. This technique substantially reduces storage requirements while catch-
ing peaks when multiple objects are in the ROI. In the table on the right, we look
at different grid options compared to column max for a Gabor filter. Column
max has the same storage requirement as an 8x8 grid while detecting the same
peaks detected by a 16x16 grid and requiring less additional hardware than the
grid options. Tracking results are still reasonable after applying column max
as shown in the lower half of this figure in the chosen metrics for each dataset.

verification of the SCIM macro is described in the next section.
We evaluated 100 consecutive reconstructed frames from the

“Birds” dataset for 7000 total ROIs. We use the same filters as
in Section II-C, converted to 6-bit integer values by scaling
maximum filter values to 31 and then quantizing them. We do
not train or modify filter coefficients to better suit our SC com-
putation in this work. This means existing filter coefficients can
be used directly without modifications other than quantization
to 6 bits. We made no additional modifications to the algorithm
to suit our hardware. By doing this, we verified 3 points: 1)
Close match between peak locations using stochastic computing
and floating point; 2) Little to no loss of peaks due to column
max; 3) Little to no loss of objects due to early termination.

We used the sensitivity and specificity metrics described
earlier treating the peaks from floating-point convolution
results as ground truth and comparing them to the peaks
simulated results using stochastic computing. Sensitivity,
specificity, and informedness are 1 for perfect identification and
0 for entirely incorrect identification. As shown in Figure 16,
the sensitivity is above 85% and the specificity is above 95%.

We set the identification thresholds for floating point and
SC so they produce a similar number of peaks to reduce the
dependency of the result on arbitrary thresholds. This means
we have nearly equal false positive and false negative rates
for the shown results. Here, a correct identification consists of
the same ROI being identified as containing an object by both
floating point and stochastic computing. A false positive is an
ROI identified by stochastic computing but not floating point
and a false negative is an ROI identified by floating point but
not stochastic computing. For the stream length of 32 bits or
64 cycles, the average pixel error in the location of the peak
identification was 3.36 pixels.

9

ROI with the
moving object

Sparsity vs. ROI Location

Fig. 19. Sparsity vs. ROI location of 1 frame. The ROI with the object has
a sparsity of 98.5% compared to the other ROIs with sparsities above 99%.

Column max tracking did not result in any loss of peak
identification accuracy compared to global maximum tracking.
However, the “Birds” dataset always has a relatively small
number of objects in the ROI. The chances of two objects
being located above each other so that all peaks from one
of the objects are blocked by the other are low. Also, there
was no loss of accuracy due to early termination since we
chose a threshold well below the threshold used to identify
peaks. More aggressive ET thresholds could further improve
performance but might start to impact accuracy.

B. Hardware Evaluation

The SCIM macro is custom-designed, laid out, and simulated
in GF 12 nm LP technology using the layout-extracted netlist in
Cadence Virtuoso’s analog design environment. We verified the
functionality of the read/write and computation operations with
input vectors that lead to worst-case timing conditions. The
timing and energy of the macro are characterized in different
PVT corners to generate library files for top-level digital flow.
We reported the energy efficiency of the overall SCIMITAR
accelerator from simulations using Cadence Genus and Synop-
sys PrimeTime. Since sparsity is critical for the system energy
efficiency, the event camera’s data is studied as shown in Fig.
19. When a moving object is flying in front of the event camera,
the ROI containing the object has a sparsity of 98%, while the
other ROIs have a sparsity above 99%. To evaluate the system’s
energy efficiency at different sparsity levels, we generate ran-
domly distributed images with sparsity varying between 0 and
99%. The results are also cross-validated by getting the energy
consumption of each block factoring in its expected switching
activities. For the 0% sparsity case, we assume each input has
a switching activity factor of 0.5. We pessimistically assume
dense outputs that switch 50% of the time. The SCIM macro
runs computation for 64 cycles to generate a full-precision
output, consuming the most energy. The energy breakdown of
the 0%-sparsity case is shown in Figure 20 (bottom left). The
total energy consumption is 11.9 fJ or 83 TOPS/W.

SCIMITAR’s energy efficiency improves with sparsity, a
notable advantage over other Compute-In-Memory solutions.
SC uses combinational circuitry, which naturally consumes
less energy when the switching activity decreases. The energy
of the SCIM macro’s input driver and in-memory MAC unit
scales down proportionally with increasing sparsity levels. 32
SC MAC units within an SCIM unit share each in-situ SNG
and pseudo-random number generator. The SC MAC unit only
consumes 1/4 of the energy in the sparse input case compared
to the dense input case. However, we do not scale the PRNG

Fig. 20. SCIMITAR performance summary (top). Energy breakdowns without
early termination for 0% (bottom, left) and 99% (bottom, right) sparsity in
fJ and normalized by the number of operations.

or in-situ SNG’s energy with sparsity due to the constant
switching activities of PRNG. Flip-flops that are active
every clock cycle dominate the bank output counter’s energy
consumption. The input-based clock gating can significantly
reduce the counter’s energy. The remaining parts that do not
scale with the sparsity are clocking and state machines. The
energy breakdown is shown in Figure 20 (bottom right). The
energy efficiency for the 99%-sparse input is 482 TOPS/W.
We calculate sparse energy efficiency factoring in the “skipped”
computation, similarly to other sparse accelerators [48–50].

Early termination can stop a computation before it reaches
the end of the SC sequence length at 64 cycles, saving both time
and energy. If the computation terminates, all the SCIM banks
will stop and move to the next ROI. Since we skip the remaining
computing cycles, the energy consumption and throughput
improve by the percentage of skipped cycles. The simulation
results show a 2.7× improvement in energy efficiency and peak
throughput. When we enable early termination for the “Birds”
data set, energy efficiency improves from 482 to 1285 TOPS/W
and peak throughput increases from 21 to 56 TOP/S. With early
termination turned on, the object tracking system achieves per-
formance of 1.9×109 ROI/Filter/J and 84.4×106 ROI/Filter/s.
Assuming 32 filters and 100 ROI/frame translates to an equiva-
lent frame rate of 2.6K fps, orders of magnitude higher than the
rate achievable with conventional cameras [1]. It is also much
higher than the 500 fps requirement from our previous evalua-
tion, meaning that SCIMITAR could work in situations requir-
ing processing more ROIs to avoid losing tracking performance,
such as larger frames, more objects, or poor ROI identification.

C. Comparison with Prior Work
Stochastic Compute-In-Memory (SCIM) storing unrolled

bit stream can achieve similar energy efficiency and sparsity

10

scaling as SCIMITAR [10] but has much lower throughput per
area. Since it requires 2N cells to store an N-bit number, it has
an area penalty of 2N/N compared to SCIMITAR. Compute-in-
memory (CIM) based on analog computing is widely studied
for accelerating matrix multiplication in deep convolutional
neural networks [51, 52]. However, few of these works focus on
the object tracking application or event-based cameras [23, 53]
given the relative novelty of this field. As such, no direct
comparison point exists for our chosen application on CIM-style
architectures or other custom accelerators. We compare to prior
art based on the peak performance of ML accelerators. Note
that SCIMITAR is more application-specific than a general
NPU due to features such as column max and early termination,
but the same architecture principles we show could be adapted
to other applications or a more general purpose NPU.

Conventional CIM solutions accumulate analog current or
charges on the memory’s bit line and use Analog-to-Digital
Converters (ADC) to convert analog signals to digital bits.
ADCs are power-hungry and occupy a large area. Although
these solutions have shown significant improvement over non-
CIM digital accelerators on dense inputs, the constant energy
of ADCs prevents further improvement on highly sparse inputs.
Figure 21 (top) shows the normalized energy of different
components of SCIM and charge-based CIM macros scaled
with the number of operations. Most components in SCIM
macros are combinational circuits whose energy consumption
can decrease with increasing input sparsity. The conventional
charged-based CIM requires ADC to convert analog voltage to
digital bits. The ADC requires a Digital-to-Analog Converter
(DAC) to generate a reference voltage and compare it with the
input in each cycle, which does not change based on the input.
The SCIM’s system energy efficiency as a function of input
sparsity is shown in Figure 21 (middle) and a comparison of
energy efficiency of SCIM, charge-based CIM, and standard SC
is shown in Figure 21 (bottom). The CIM numbers are based
on [51], and we estimate the sparsity impact by scaling the
energy drawn from the input driver and switched capacitor with
the input sparsity level. We also compare SCIMITAR to purely
digital SC accelerator GEO [35] to show how much efficiency
can be improved by combining digital SC with CIM. For a
fair comparison, we compare peak energy efficiency, which is
application agnostic, at 6-bit, or equivalent for SC, precision.
The energy efficiency of the SCIM scales with the sparsity
level from 0 to 99%, while the ADC-based CIM solution
only shows negligible improvement when the sparsity level
increases above 50%. Another work has shown an efficient
CIM accelerator for denoising and region proposal applications
for event-based cameras [23]. It performs computation between
pixels but does not allow convolution and filtering by weight
kernels, which is necessary for object-tracking applications.

CIM using non-volatile memory such as RRAM [54] and
MRAM [55, 56] is less efficient than the switch-capacitor-
based analog CIM [51] due to the limitation of the device.
Since the RRAM and MRAM devices have large variations,
the in-memory dot-product size is limited to < 32, while
the switched-cap-based CIM can reach 1024. The proposed
SCIMITAR is a digital CIM solution that is more efficient.

50

100

200

400

800

E
n

er
g

y
E

ff
ic

ie
n

cy
 T

O
P

/S
/W

Input Sparsity

1600

0% 50% 90% 99%

5xSCIMITAR, No Early Termination
SCIMITAR, Early Termination

Charge-Based CIM
SC, GEO

Scaling with Sparsity

1Input Driver

0.02In-Situ SNG+ PRGN

0.25MAC Cell

0.6Counter

Not Scaling with Sparsity

0.2Clocking and FSM

0.06In-Situ SNG

Scaling with Sparsity

1Input Driver

5
MAC Cell

(Switched Cap)

Not Scaling with Sparsity

0.5Clocking and FSM

3.58-bit ADC

Stochastic-CIM Charge-Based CIM

Energy Efficiency vs. Sparsity

T
O

P
/S

/W

Input Sparsity

Fig. 21. (Top) Normalized energy of different blocks in Stochastic-CIM and
charge-based CIM macro scaled with the number of operations; (Middle)
SCIM system energy efficiency vs. input sparsity without early termination’s
help. (Bottom) Comparison of energy efficiency between SCIMITAR with
or without early termination and standard digital stochastic computing or
ADC-Based CIM (Right).

V. CONCLUSION

In this work, we proposed SCIMITAR, an accelerator for
high-speed object tracking using event camera data. By taking
advantage of the sparsity of the event camera data and using
several techniques including early termination with stochastic
computing, we achieve extremely high frame rates. We use
compute in memory to further increase compute density
and energy efficiency. By achieving this energy-efficient and
high-speed data-processing, SCIMITAR enables more fully
utilizing event cameras for real-time tracking of extremely fast
objects. To promote further work, we have made our tracking
pipeline, RTL, and “Birds” dataset available for download
at https://github.com/nanocad-lab/scimitar.

REFERENCES
1. Gallego, G. et al. Event-based vision: A survey. arXiv preprint

arXiv:1904.08405. arXiv: 1904.08405 (2019).
2. Gehrig, D. et al. EKLT: Asynchronous Photometric Feature Tracking

Using Events and Frames. International Journal of Computer Vision.
Publisher: Springer US (2020).

3. Bardow, P. et al. Simultaneous Optical Flow and Intensity Estimation
from an Event Camera en. in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2016).

4. Linares-Barranco, A. et al. A USB3.0 FPGA event-based filtering
and tracking framework for dynamic vision sensors. Proceedings
- IEEE International Symposium on Circuits and Systems. ISBN:
9781479983919 (2015).

5. Serrano-Gotarredona, R. et al. CAVIAR: A 45k neuron, 5M synapse,
12G connects/s AER hardware sensory-processing-learning-actuating
system for high-speed visual object recognition and tracking. IEEE
Transactions on Neural Networks (2009).

11

https://github.com/nanocad-lab/scimitar

6. Romaszkan, W. et al. ACOUSTIC : Accelerating Convolutional Neural
Networks through Or-Unipolar Skipped Stochastic Computing in 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE)
(2020).

7. Wu, D. et al. uGEMM : Unary Computing Architecture for GEMM
Applications. 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). ISBN: 9781728146614 (2020).

8. Hojabr, R. et al. SkippyNN : An Embedded Stochastic-Computing
Accelerator for Convolutional Neural Networks in 2019 56th ACM/IEEE
Design Automation Conference (DAC) (2019).

9. Li, S. et al. SCOPE: A Stochastic Computing Engine for DRAM-
based In-situ Accelerator in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (2018).

10. Yang, J. et al. A 65nm 8-bit All-Digital Stochastic-Compute-In-Memory
Deep Learning Processor en. in 2022 IEEE Asian Solid-State Circuits
Conference (A-SSCC) (2022).

11. Jia, H. et al. A Programmable Neural-Network Inference Accelerator
Based on Scalable In-Memory Computing en. in 2021 IEEE Interna-
tional Solid- State Circuits Conference (ISSCC) (2021).

12. Delbruck, T. & Lang, M. Robotic Goalie with 3ms Reaction Time at
4% CPU Load Using Event-Based Dynamic Vision Sensor. Frontiers
in neuroscience (2013).

13. Glover, A. & Bartolozzi, C. Event-driven ball detection and gaze fixation
in clutter in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) ISSN: 2153-0866 (2016).

14. Rosinol, A. et al. Ultimate SLAM? Combining Events, Images, and
IMU for Robust Visual SLAM in HDR and High Speed Scenarios.
IEEE Robotics and Automation Letters (2018).

15. Kim, H. et al. Real-Time 3D Reconstruction and 6-DoF Tracking
with an Event Camera en. in Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part VI 14 Book Title: Computer Vision – ECCV
2016 Series Title: Lecture Notes in Computer Science (2016).

16. Brändli, C. et al. A 240 × 180 130 dB 3 µs Latency Global Shutter
Spatiotemporal Vision Sensor. Solid-State Circuits, IEEE Journal of
(2014).

17. Rebecq, H. et al. High Speed and High Dynamic Range Video with an
Event Camera. eng. IEEE transactions on pattern analysis and machine
intelligence (2021).

18. Scheerlinck, C. et al. Asynchronous Spatial Image Convolutions for
Event Cameras. IEEE Robotics and Automation Letters (2019).

19. Patel, H. et al. Event Camera Based Real-Time Detection and Tracking
of Indoor Ground Robots. arXiv preprint arXiv:2102.11916. arXiv:
2102.11916 (2021).

20. Yang, J. et al. Aircraft tracking based on fully conventional network
and Kalman filter. IET Image Processing (2019).

21. Liu, H. et al. Combined frame- and event-based detection and tracking
in 2016 IEEE International Symposium on Circuits and Systems (ISCAS)
(2016).

22. Ramesh, B. et al. e-TLD : Event-based Framework for Dynamic
Object Tracking. arXiv preprint arXiv:2009.00855. arXiv: 2009.00855v1
(2020).

23. Bose, S. K. & Basu, A. A 389TOPS/W, 1262fps at 1Meps Region
Proposal Integrated Circuit for Neuromorphic Vision Sensors in 65nm
CMOS en. in 2021 IEEE Asian Solid-State Circuits Conference (A-
SSCC) (2021).

24. Paul, S. et al. A 0.05pJ/Pixel 70fps FHD 1Meps Event-Driven Visual
Data Processing Unit en. in 2020 IEEE Symposium on VLSI Circuits
(2020).

25. Ray, K. S. et al. Object Detection by Spatio-Temporal Analysis and
Tracking of the Detected Objects in a Video with Variable Background
arXiv:1705.02949 [cs]. 2017.

26. Graham, J. et al. Multiple Vehicle Tracking using Gabor Filter Bank
Predictor. in (2009).

27. Ester, M. et al. A density-based algorithm for discovering clusters
in large spatial databases with noise in Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining
(1996).

28. Weighted boxes fusion: Ensembling boxes from different object detection
models - ScienceDirect

29. Applications and Tools — Metavision SDK Docs 4.4.0 documentation
30. Fränzl, M. & Cichos, F. Active particle feedback control with a single-

shot detection convolutional neural network. en. Scientific Reports.
Number: 1 Publisher: Nature Publishing Group (2020).

31. Cao, Q. et al. GhostCount: A lightweight convolution network
based on high-altitude video for vehicle instantaneous counting in
dense traffic scenes. en. IET Intelligent Transport Systems. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1049/itr2.12318 (2023).

32. Arbeláez, J. C. On object recognition for industrial augmented reality
spa. Accepted: 2019-12-11T13:34:54Z. doctoralThesis (Universidad
EAFIT, 2018).

33. Tsao, T.-R. & Chen, V. A neural scheme for optical flow computation
based on Gabor filters and generalized gradient method. Neurocomputing
(1994).

34. Luiten, J. et al. HOTA: A Higher Order Metric for Evaluating Multi-
object Tracking. en. International Journal of Computer Vision (2021).

35. Li, T. et al. GEO : Generation and Execution Optimized Stochastic
Computing Accelerator for Neural Networks in 2021 Design, Automation
& Test in Europe Conference & Exhibition (DATE) (2021).

36. Romaszkan, W. et al. SASCHA—Sparsity-Aware Stochastic Computing
Hardware Architecture for Neural Network Acceleration. en. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (2022).

37. Cohen, G. et al. Event-based sensing for space situational awareness.
The Journal of the Astronautical Sciences. Publisher: Springer (2019).

38. Mohan, V. et al. EBBINNOT: A Hardware-Efficient Hybrid Event-
Frame Tracker for Stationary Dynamic Vision Sensors. IEEE Internet
of Things Journal (2022).

39. Alaghi, A. & Hayes, J. P. Survey of Stochastic Computing. ACM
Transactions on Embedded computing systems (TECS) (2013).

40. Muthappa, P. K. et al. Hardware-based Fast Real-time Image Classi-
fication with Stochastic Computing in 2020 IEEE 38th International
Conference on Computer Design (ICCD) Issue: Iccd (2020).

41. Sehwag, V. et al. A Parallel Stochastic Number Generator with Bit
Permutation Networks. IEEE Transactions on Circuits and Systems II:
Express Briefs. Publisher: IEEE ISBN: 0010101111000 (2018).

42. Budhwani, R. K. et al. Taking advantage of correlation in stochastic
computing. Proceedings - IEEE International Symposium on Circuits
and Systems. ISBN: 9781467368520 (2017).

43. Gupta, S. et al. COSMO: Computing with Stochastic Numbers in
Memory. en. ACM Journal on Emerging Technologies in Computing
Systems (2022).

44. Yang, J. et al. A 278-514M Event/s ADC-Less Stochastic Compute-In-
Memory Convolution Accelerator for Event Camera in Proceedings of
IEEE/ACM International Conference on VLSI Design (2024).

45. Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for
Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556. arXiv:
1409.1556 ISBN: 0950-5849 (2014).

46. Wu, D. et al. Normalized Stability : A Cross-Level Design Metric for
Early Termination in Stochastic Computing in Proceedings of the 26th
Asia and South Pacific Design Automation Conference (2021).

47. Kim, K. et al. Dynamic energy-accuracy trade-off using stochastic
computing in deep neural networks. Proceedings of the 53rd Annual
Design Automation Conference on - DAC ’16. ISBN: 9781450342360
(2016).

48. Park, J.-s. et al. A 6K-MAC Feature-Map-Sparsity-Aware Neural Pro-
cessing Unit in 5nm Flagship Mobile SoC in 2021 IEEE International
Solid-State Circuits Conference-(ISSCC) (2021).

49. Deng, C. et al. GoSPA : An Energy-efficient High-performance
Globally Optimized SParse Convolutional Neural Network Accelerator
in International Symposium on Computer Architecture (ISCA) (2021).

50. Lin, J. et al. Learning the sparsity for RERAM: Mapping and pruning
sparse neural network for ReRAM based accelerator in Asia and South
Pacific Design Automation Conference, ASP-DAC (2019).

51. Jia, H. et al. A Programmable Neural-Network Inference Accelerator
Based on Scalable In-Memory Computing in 2021 IEEE International
Solid-State Circuits Conference-(ISSCC) (2021).

52. Yue, J. et al. A 2.75-to-75.9TOPS/W Computing-in-Memory NN
Processor Supporting Set-Associate Block-Wise Zero Skipping and Ping-
Pong CIM with Simultaneous Computation and Weight Updating en.
in 2021 IEEE International Solid- State Circuits Conference (ISSCC)
(2021).

53. Zhang, X. & Basu, A. A 915–1220 TOPS/W Hybrid In-Memory
Computing based Image Restoration and Region Proposal Integrated
Circuit for Neuromorphic Vision Sensors in 65nm CMOS en. in 2022
IEEE Custom Integrated Circuits Conference (CICC) (2022).

54. Xue, C.-X. et al. 16.1 A 22nm 4Mb 8b-Precision ReRAM Computing-in-
Memory Macro with 11.91 to 195.7TOPS/W for Tiny AI Edge Devices
en. in 2021 IEEE International Solid- State Circuits Conference (ISSCC)
(2021).

55. Deaville, P. et al. A 22nm 128-kb MRAM Row/Column-Parallel In-
Memory Computing Macro with Memory-Resistance Boosting and Multi-
Column ADC Readout en. in 2022 IEEE Symposium on VLSI Technology
and Circuits (VLSI Technology and Circuits) (2022).

56. Jung, S. et al. A crossbar array of magnetoresistive memory devices
for in-memory computing. en. Nature (2022).

12

	Introduction
	Motivation
	Event-Based Cameras
	Event-Based Data Processing
	Background

	Example Tracking Pipeline
	Stochastic Computing

	SCIMITAR Implementation
	Stochastic Computing In-Memory Macro with In-Situ SNG
	SCIM Accelerator Architecture
	Early Termination & Maxima Tracking

	Evaluation
	Object Detection and Tracking
	Hardware Evaluation
	Comparison with Prior Work

	Conclusion

