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Abstract—Along with the increasing popularity of deep learn-1

ing (DL) techniques, more and more Artificial Intelligence of2

Things (AIoT) systems are adopting federated learning (FL) to3

enable privacy-aware collaborative learning among the AIoT4

devices. However, due to the inherent data and device hetero-5

geneity issues, the existing FL-based AIoT systems suffer from6

the model selection problem. Although various heterogeneous7

FL methods have been investigated to enable collaborative8

training among the heterogeneous models, there is still a lack9

of 1) wise heterogeneous model generation methods for the10

devices; 2) consideration of uncertain factors; and 3) performance11

guarantee for the large models, thus strongly limiting the12

overall FL performance. To address the above issues, this article13

introduces a novel heterogeneous FL framework named FlexFL.14

By adopting our average percentage of zeros (APoZ)-guided15

flexible pruning strategy, FlexFL can effectively derive best-fit16

models for the heterogeneous devices to explore their greatest17

potential. Meanwhile, our proposed adaptive local pruning18

strategy allows the AIoT devices to prune their received models19

according to their varying resources within uncertain scenarios.20

Moreover, based on the self-knowledge distillation, FlexFL can21

enhance the inference performance of the large models by22

learning the knowledge from the small models. Comprehensive23

experimental results show that, compared to the state-of-the-art24

heterogeneous FL methods, FlexFL can significantly improve the25

overall inference accuracy by up to 14.24%. Our code can be26

found here https://github.com/mastlab-T3S/FlexFL.27

Index Terms—Artificial Intelligence of Things (AIoT), APoZ,28

heterogeneous federated learning (FL), model pruning, uncertain29

scenario.30
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I. INTRODUCTION 31

ALONG with the prosperity of artificial intelligence (AI) 32

and the Internet of Things (IoT), federated learning 33

(FL) [1], [2], [3], [4], [5], [6] is becoming a mainstream 34

distributed deep learning (DL) paradigm in the design AI 35

of Things (AIoT) systems [7], [8], [9], since it enables col- 36

laborative learning among the devices without compromising 37

their data privacy. So far, FL has been widely investigated in 38

various AIoT applications, such as edge-based mobile com- 39

puting [10], [11], real-time control [12], [13], and healthcare 40

systems [14], [15]. Typically, an FL-based AIoT system is 41

based on a client-server architecture involving a cloud server 42

and numerous AIoT devices. In each FL training round, 43

the cloud server first dispatches the latest global model to 44

multiple selected (activated) devices for local training and 45

then aggregates the trained local models to update the global 46

model. Since, the communication between the cloud server and 47

devices is based on the model gradients, FL enables the knowl- 48

edge sharing among the AIoT devices without the privacy 49

leaks. 50

Although the existing FL methods are promising for sharing 51

the knowledge among the devices, they are not well-suited for 52

the large-scale AIoT applications involving various heteroge- 53

neous devices with different available resources [16]. This is 54

because the traditional FL methods assume that all the device 55

models are of the same architecture. According to the Cannikin 56

Law, only the models best fit for the weakest devices can be 57

used for FL training. Typically, such models are of small sizes 58

with limited inference capability, thus strongly suppressing 59

the potential FL learning performance. To maximize the 60

knowledge learned on the heterogeneous devices, various 61

heterogeneous FL methods have been investigated to use 62

heterogeneous models for local training, which can be mainly 63

classified into two categories, i.e., completely heterogeneous 64

methods and partially heterogeneous methods. Specifically, 65

completely heterogeneous methods [17] apply the knowledge 66

distillation (KD) strategies [18], [19], [20] on the heteroge- 67

neous models with totally different structures for knowledge 68

sharing, while the partially heterogeneous methods [21], [22], 69

[23], [24] derive heterogeneous models from the same large 70

global model for local training and knowledge aggregation. As 71

an example of partially heterogeneous methods, for a given 72

large global model, HeteroFL [21] can generate heterogeneous 73

models to fit the devices by pruning the parameters of each 74

model layer. 75
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When dealing with real-world AIoT applications, the76

existing heterogeneous FL methods greatly suffer from the77

following three problems.78

1) Low-performance heterogeneous models derived by79

unwise model pruning strategies.80

2) Inefficient or ineffective local training within uncertain81

scenarios.82

3) Low inference performance of large models caused by83

resource-constrained scenarios.84

Specifically, the existing methods generate heterogeneous85

models coarsely by pruning the parameters of each model86

layer with the same ratio or directly removing the entire layer.87

Without considering the different functions of parameters88

within layers, such unwise pruning strategies severely limit89

the performance of the heterogeneous models. Meanwhile,90

when encountering various uncertainty factors, such as91

hardware performance fluctuations caused by process varia-92

tions [13], [25], dynamic resource utilization (e.g., available93

memory size), the traditional FL may fail in local training94

since they assume static device resources during FL train-95

ing. Due to the inaccurate estimation of available device96

resources, the overall training performance can be deteri-97

orated. Furthermore, within a large-scale AIoT application,98

typically large models cannot be accommodated by most99

resource-constrained devices. As a result, the small amount of100

training data will inevitably influence the inference capability101

of the large models. Therefore, how to wisely generate102

high-performance heterogeneous models to fit for uncertain103

scenarios is becoming an urgent issue in heterogeneous FL104

design.105

Intuitively, to achieve high-performance pruned models,106

a model pruning method should delete the least significant107

neurons first. As a promising measure, activation information108

can be used to evaluate the importance of neurons, where the109

neurons with more activation times have greater importance.110

In other words, if a model layer consists of more neurons111

with fewer activation times, it has more parameters to be112

pruned. According to [26], the activation percentage of zeros113

(APoZ) can be used to measure the percentage of zero114

neuron activation times under the rectified linear unit (ReLU)115

mapping. Therefore, the higher the APoZ score of a model116

layer, the higher the pruning ratio we can apply to the117

layer. Based on this motivation, this article proposes a novel118

heterogeneous FL approach named FlexFL, which utilizes the119

APoZ scores of the model layers to perform finer-grained120

pruning to generate high-performance heterogeneous to best fit121

their target devices for high-quality local training. To accom-122

modate various uncertain scenarios, FlexFL allows devices123

to adaptively prune their received models according to their124

available resources. Meanwhile, based on a self-KD-based125

training strategy, FlexFL enables large models to learn from126

the small models, thus improving their inference performance.127

Note that in FlexFL, the small models are derived from the128

large models, and the self-KD-based training is only performed129

by devices. In this way, FlexFL can effectively explore the130

greatest potential of devices, thus improving the overall FL131

training performance. This article makes the following four132

major contributions.133

1) We propose an APoZ-guided flexible pruning strategy to 134

wisely generate the heterogeneous models best for the 135

devices. 136

2) We design an adaptive local pruning strategy to enable 137

devices to further prune their local models to adapt to 138

varying available resources within uncertain scenarios. 139

3) We present a self-KD-based local training strategy that 140

utilizes the knowledge of the small models to enhance 141

the training of the large models. 142

4) We perform extensive experiments based on the simu- 143

lation and real test-beds to evaluate the performance of 144

FlexFL. 145

II. BACKGROUND AND RELATED WORK 146

A. Background 147

1) Federated Learning: FL is a distributed machine learn- 148

ing approach that addresses the data privacy protection and 149

decentralization issues. Traditional FL framework usually con- 150

sists of a server and multiple devices. In FL training, the server 151

maintains a global model and dispatches it to the selected 152

devices for local training in each round. Each device then 153

trains locally on its own data and uploads the trained model to 154

the server after training. Finally, the server aggregates all the 155

received models to generate a new global model. Specifically, 156

the optimization objective of FL is based on FedAvg [1], which 157

is defined as follows: 158

min
w

F(w) = 1

|D|
|D|∑

k=1

fk(w), s.t., fk(w) = 1

|Dk|
|Dk|∑

i=1

�(w, 〈xi, yi〉) 159

where |D| denotes the number of devices and the function 160

fk(w) is the loss value of the model on the device k, |Dk| 161

denotes the data set size in the device k and � denotes the loss 162

function (e.g., cross-entropy (CE) loss), and w is the model 163

parameter as well as optimization objective, and xi and yi, are 164

the samples and the corresponding labels, respectively. 165

2) Model Pruning: In the field of machine learning and 166

DL, model pruning is a technique to reduce the model com- 167

plexity and computational resource requirements by reducing 168

the redundant parameters and connections in neural network 169

models. The main objective of model pruning is to achieve 170

a more compact and efficient model without significantly 171

sacrificing its performance. Initially, the trained model is 172

analysed to identify parameters or connections that contribute 173

less to the overall model performance. These parameters 174

are considered redundant and can be pruned without affect- 175

ing the model’s performance. Common approaches include 176

magnitude-based pruning [27], which removes parameters 177

with small weights; sensitivity-based pruning [28], which 178

measures the impact of each parameter on the model’s output; 179

and structured pruning [29], which removes entire neurons or 180

channels. 181

APoZ [26] is a metric used in the model pruning to quantify 182

the sparsity level of neural network activations. It measures 183

the percentage of zero activations in a layer or network after 184

applying a pruning technique. A high APoZ score indicates 185

that a large proportion of activations in the network are zero, 186

indicating that the network has achieved significant sparsity. In 187
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Fig. 1. Framework and workflow of FlexFL.

the essence, APoZ provides a quantitative measure of sparsity,188

allowing us to assess the impact of pruning methods on the189

neural network architectures and optimize pruning strategies190

to achieve the desired tradeoff between the model size and191

performance.192

B. Model Heterogeneous Federated Learning193

Model heterogeneous FL [21], [22], [24], [30] has a natural194

advantage in solving the systemic heterogeneity. Different195

from the traditional FL, model heterogeneous FL usually main-196

tains some models of different sizes on the cloud server, so197

as to better deal with the heterogeneous resources of different198

devices. The current model heterogeneous FL methods can199

be classified into three categories, i.e., width-wise pruning,200

depth-wise pruning, and 2-D pruning. For the width-wise201

pruning, Diao et al. [21] proposed HeteroFL, which alleviated202

the problem of the device system heterogeneity by tailoring203

the model width and conducted parameter-averaging over the204

heterogeneous models. Similarly, Horváth et al. [31] proposed205

FJoRD, which used the ordered dropout mechanism to extract206

the lower footprint submodels. For the depth-wise pruning,207

DepthFL [22] prunes the later parts of deeper networks to208

reduce the number of network parameters. In InclusiveFL209

Liu et al. [32] proposed a layer-wise model pruning method210

with momentum KD to better transfer knowledge among211

submodels. For 2-D pruning, in ScaleFL Ilhan et al. [24]212

introduced a pruning method that scales from both the width213

and depth dimensions, aiming to balance the proportions of214

the model width and depth. Additionally, it incorporates skip215

connections to facilitate connections between the shallower216

models and the network’s classification layers. However,217

the existing approaches seldom consider the characteristics218

of each model and the differences in neuronal activation219

distribution on different datasets, and most of them adopt220

a fixed pruning method while ignoring the different model221

architectures. Moreover, the existing methods largely lack 222

consideration of device-related resource uncertainties in real- 223

world environments. Most of them are studied under the 224

assumption of fixed device resources, which deviates from the 225

dynamic nature of AIoT scenarios. 226

To the best of our knowledge, FlexFL is the first attempt 227

to utilize a flexible pruning strategy to generate the heteroge- 228

neous models in FL under the resource uncertainty scenarios. 229

Using APoZ scores and the number of parameters of each 230

layer, FlexFL can generate higher-performance heterogeneous 231

models for local training. To deal with various uncertain and 232

resource-constrained scenarios, FlexFL integrates an adaptive 233

local pruning mechanism and self-KD-based local training 234

strategy, which enables the devices to adaptively prune their 235

received model according to their available resources and 236

effectively improves the performance of FL training. 237

III. OUR FLEXFL APPROACH 238

A. Overview of FlexFL 239

Fig. 1 presents the framework and workflow of FlexFL, 240

which consists of two stages, i.e., the preprocessing stage 241

and the FL training stage. FlexFL maintains a large model 242

as the global model and generates multiple heterogeneous 243

models for local training based on the global model. The 244

preprocessing stage aims to calculate the APoZ scores of 245

each layer, which are used for the model pruning to generate 246

the heterogeneous models. The FL training stage aims to 247

train the multiple heterogeneous models, which are pruned 248

from the global model. 249

As shown in Fig. 1, in the preprocessing stage, the cloud 250

server maintains a proxy dataset to pretrain the global model 251

and calculates the APoZ scores for each layer according to the 252

neuron activation. Since, APoZ calculation does not require 253

the model to be fully trained, the proxy dataset requires only 254

a small amount of data compared to the training dataset. The 255
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cloud server then prunes the global model to generate multiple256

heterogeneous models based on the calculated APoZ scores.257

Specifically, the workflow of the preprocessing stage consists258

of three steps as follows.259

1) Step 1 (Pretraining): Since, the APoZ scores are calcu-260

lated based on a trained model, the cloud server uses a261

proxy dataset to train the global model. Note that, the262

proxy dataset consists of two parts, i.e., a training part263

and a test part.264

2) Step 2 (APoZ Score Calculation): The cloud server265

inputs the test part of the proxy dataset into the pre-266

trained model and records the activation of each neuron.267

Then, the could server calculates the APoZ scores of268

each layer based on the activation of its neurons.269

3) Step 3 (Heterogeneous Model Generation): The cloud270

server first specifies multiple levels of heterogeneous271

models with varying parameter sizes. For example, the272

cloud server can specify to generate the three levels of273

heterogeneous models with 25% (small), 50% (medium),274

and 100% (large) parameters of the original global275

model, respectively. For each heterogeneous model,276

the cloud server calculates the pruning ratio for each277

layer according to its APoZ score, adjustment weight,278

and target model pruning ratio. The cloud server then279

generates multiple heterogeneous models by pruning280

the global model according to its calculated pruning281

ratio. Our pruning strategy ensures that a small model282

is a submodel of any model larger than it. The gen-283

erated heterogeneous models are stored in the model284

pool.285

The FL training stage consists of multiple FL training286

rounds. As shown in Fig. 1, the cloud server maintains a table287

to record the device resource configuration, which can be288

requested directly from each device. In each FL training round,289

the cloud server selects multiple devices for local training290

according to their resources. Then, the cloud server dispatches291

the heterogeneous models in the model pool to the selected292

AIoT devices. Note that, each device is dispatched with a293

model coupled with its APoZ scores to guide local pruning.294

Here, the APoZ score is an array with the length of the number295

of global model layers, whose communication overhead is296

negligible. The device adaptively prunes the model according297

to its currently available resources before conducting local298

training. To improve the performance of the large model, the299

devices perform a self-KD-based training strategy, which uses300

the output of the small models to guide the training of the large301

model. Note that, since small models are pruned from the large302

model, devices can directly obtain small models from their303

dispatched model. After local training, devices upload their304

trained model to the cloud server. The cloud server aggregates305

all the local models to update the global model and uses the306

new global model to update the models in the model pool.307

Specifically, as shown in Fig. 1, the workflow of each FL308

training round consists of seven steps as follows.309

1) Step 1 (Model and Device Selection): The cloud310

server selects devices for local training and assigns a311

model from the pool to each device according to their312

resources.313

2) Step 2 (Model Dispatching): The cloud server dis- 314

patches models from the model pool to its corresponding 315

selected devices for local training. Note that, the cloud 316

server also sends the APoZ scores to devices for local 317

pruning. 318

3) Step 3 (Adaptive Local Pruning): Due to various uncer- 319

tain factors, the available resources of a device may not 320

be sufficient to enable training of the dispatched model. 321

To facilitate local training, a device prunes its received 322

models when its available resources are insufficient. 323

FlexFL enables a device to prune partial parameters 324

based on its received model. If the device cannot train 325

the model, it will be pruned directly to a smaller model. 326

4) Step 4 (Self-KD-Based Local Training): Each device 327

uses its local data to train the pruned model. Since, a 328

small model is the subset of any larger model, the pruned 329

model includes all the parameters of the small models. 330

Small models can be trained on more devices, which 331

means that small models are more adequately trained. 332

To improve the performance of large models, devices 333

calculate the loss for the large model training using the 334

soft label of the small models together with the true label 335

of the data samples. 336

5) Step 5 (Model Uploading): Each device uploads its 337

trained model to the cloud server for aggregation. 338

6) Step 6 (Model Aggregation): The cloud server aggregates 339

the corresponding parameters of the local models to 340

generate a new global model. 341

7) Step 7 (Model Pool Updating): The cloud server uses 342

the new global model to update the parameters of each 343

model in the model pool. 344

B. APoZ-Guided Model Generation 345

FlexFL generates multiple heterogeneous models by pruning 346

the global model. To generate high-performance heteroge- 347

neous models for local training, FlexFL aims to assign a higher 348

pruning ratio to the layers with more redundant parameters. 349

Based on this motivation, FlexFL adopts the APoZ [26] score 350

as a metric to guide the model generation. 351

1) APoZ Score Calculation (APoZCal(·)): APoZ is a metric 352

that measures the number of neuron activations after the ReLU 353

layer. For each ReLU layer i, APoZ is defined as 354

Ai =
∑|Dtest

p |
j=1

∑N
k=1 f (hi

k(Sj) = 0)

|Dtest
p | × N

(1) 355

where f (δ) is a Boolean function, which returns 1 356

when the Boolean statement δ |= �, N denotes the dimension 357

of the output feature map after the ReLU layer, |Dtest
p | denotes 358

the total size of the test part of the proxy dataset, and hi
k(Sj) 359

denotes the kth output feature map of the jth sample Sj after 360

the ith ReLU layer. 361

For models consisting of multiple residual blocks, e.g., 362

ResNet [33] and MobileNet [34], we adjust the number of 363

channels between the blocks. When a block contains multiple 364

ReLU layers, we average its APoZs as the APoZ score of 365
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Algorithm 1: Heterogeneous Model Generation
Input: i) SAPoZ, the set of APoZ scores for each layer;

ii) M, global model, iii) Lp, list of target model
pruning ratios.

Output: P, the model pool.
1 P← {}
2 s[i][j]← 1 for i ∈ [1, len(Lp)], j ∈ [1, len(SAPoZ)]
3 for i = 1, . . . , len(Lp) do
4 γ ← 0
5 pi ← Lp[i]× size(M)

6 M′ ← M
7 while |pi − size(M′)| > ε do
8 for j = 1, . . . , len(SAPoZ) do
9 〈lj, Aj〉 ← SAPoZ[j]

10 AdjWj ← AdjWCal(lj, M)

11 s[i][j]← (1− Aj × AdjWj)× γ

12 s[i][j]← max(min(s[i][j], 1), 0.01)

13 end
14 M′ ← prune(M, s[i])
15 γ ← γ + ξ //ξ = 0.01 is the iteration step.
16 end
17 P← P ∪ {M′}
18 end
19 return P

this block. Specifically, if the ith block contains the Ki ReLU366

layers, the block APoZ is calculated as367

Ai = 1

Ki

Ki∑

t=1

∑|Dtest
p |

j=1

∑N
k=1 f (ht

k(Sj) = 0)

|Dtest
p | × N

. (2)368

2) Adjustment Weight Calculation (AdjWCal(·)): Typically,369

the model layers with more parameters often contain more370

redundant neurons, diminishing the significance of individual371

neurons within the layers. When pruning a specific number372

of neurons, prioritizing the layers with more parameters is373

likely to have less impact on the overall model performance374

compared to the layers with fewer parameters. Therefore, we375

calculate the adjustment weight as follows to adjust the APoZ376

scores:377

AdjWCal(li, M) = log size(li)

log max
(
size(l1), . . . , size(llen(M))

) (3)378

where li is the ith layer of M, the function size(li) calculates379

the number of parameters of the ith layer, and len(M) denotes380

the number of layers of the model M.381

3) Heterogeneous Model Generation (ModelGen(·)):382

Based on the calculated APoZ scores and adjustment383

weights, FlexFL can prune the global model to generate the384

heterogeneous models. Note that, the heterogeneous model385

generation is performed on the server side and only once386

upon initialization. Algorithm 1 presents the process of the387

heterogeneous model generation. Lines 1 and 2 initialize the388

model pool P and the pruning ratios s for each target model.389

Lines 3–18 generates the multiple models according to the390

target model pruning ratios in Lp. Lines 4–6 initialize the391

pruning control variable γ , the target model size pi, and392

the target model M′, respectively. Line 7 evaluates the gap393

between the size of M′ and a target model size pi. Line 10 394

uses (3) to calculate the adjustment weight AdjWj for the 395

layer lj. Line 11 generates pruning ratio s[i][j] based on the 396

APoZ score Aj and the adjustment weight AdjWj. In line 12, 397

we set the minimum pruning ratios of each layer to 0.01 to 398

avoid the parameters of a layer being completely pruned. In 399

line 14, according to the pruning ratios s[i][] generated, we 400

prune the global model M to M′. Specifically, for the layer lj, 401

yj and xj represent the numbers of output and input channels, 402

according to the pruning ratios s[i][], we prune it to a model 403

M′ with xj × s[i][j− 1] input channels and yi × s[i][j] output 404

channels. Note that, if Wi ∈ R
yj×xj is the hidden weight 405

matrix of the global model M in the layer lj, after pruning, 406

W ′i ∈ R
(yj×s[i][j])×(xj×s[i][j−1]) is the new hidden weight matrix 407

of the pruned model M′ in the layer lj. In line 17, for M′ 408

with an error less than or equal to ε, we add M′ to the model 409

pool P as the pruned model corresponding to the target model 410

pruning ratio Lp[i]. 411

C. Adaptive Local Model Pruning (AdaPrune(·)) 412

To address the problem of insufficient available resources 413

within uncertain scenarios, FlexFL enables devices to adap- 414

tively prune their received models to the adaptive models for 415

local training, focusing on the memory resource constraints. 416

Specifically, when a device does not have sufficient memory 417

resources for training its received model, it first prunes � × 418

size(M) parameters to generate an adaptive model for local 419

training, where � is the adaptive pruning size and size(M) is 420

the number of parameters of the global model M. Note that, 421

our approach requires that the size of the pruned parameters 422

(i.e., � × size(M)) should be smaller than the smallest size 423

of the parameter differences between any two models. When 424

its available resources are still insufficient to train the pruned 425

model, the device directly prunes it to a smaller model that 426

best fits the device. For example, assume that M1, M2, and M3 427

denote the small, medium, and large models, respectively. Let 428

M′2 and M′3 be the adaptive models of M2 and M3, respectively. 429

If a model of type M3 is dispatched to some device with 430

insufficient resources, the client will adaptively prune the 431

model in the order of M′3, M2, M′2, and M1 until the pruned 432

model can be accommodated by the device. 433

Similar to Algorithm 1, the adaptive pruning is still based 434

on our calculated APoZ scores. Since, our APoZ scores are 435

calculated before FL training and are not updated within the 436

training process, the cloud server can directly send the APoZ 437

scores to all the devices. In addition, since all the heterogeneous 438

models in FlexFL are pruned from the same global model 439

without any extra exit layers, and a smaller model is a submodel 440

of a larger model, the devices can prune the received model 441

according to the corresponding pruning scheme. 442

D. Self-Knowledge Distillation-Based Local Training 443

In resource-constrained scenarios, the majority of devices 444

cannot train the large models, which results in inadequate 445

training for the large models. To improve the performance 446

of the large models, FlexFL adopts a KD [19], [35] strategy. 447

Since, small models are the submodel of the large models, the 448

devices can utilize adequately trained small models to enhance 449
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the training of large training. Specifically, during the model450

training, the device can obtain the outputs (i.e., soft labels) of451

the large model and small models. Then, the device calculates452

the CE loss using the output of the large model and true labels453

and calculates the Kullback–Leibler (KL) loss based on the454

outputs of the large and small models. Finally, the device uses455

both the CE and KL losses to update the model. Assume that456

Mi is a large model, ŷi is the soft labels of the model Mi and457

yi is ground truth, the CE loss of Mi is defined as458

LCE = − log h
(
ŷi

)[
yi

]
459

where h(·) is the softmax function. Assume that, M1, M2, . . . ,460

Mi−1 are the smaller models for Mi and ŷ1, ŷ2, . . . , ŷi−1 are461

the soft labels of these models. The KL loss can be calculated462

as follows:463

LKL = 1

i− 1

i−1∑

j=1

sum
(
h(ŷj)/τ

) · τ 2 log
h
(
ŷj

)

h
(
ŷi

)464

where τ is the temperature to control the distillation process.465

Note that, a higher value of τ leads to smoother probability466

distributions, making the model focus more on relatively467

difficult samples, and a lower value of τ makes the probability468

distribution sharper, making the model more confident and469

prone to overfitting.470

According to the CE and KL losses, we can obtain the final471

loss L of the model Mi as follows:472

L = LCE + λLKL (4)473

where λ is a hyperparameter that controls the training pref-474

erence for the two types of losses. Note that, a large value475

of λ makes the model training more influenced by the KL476

divergence loss. On the contrary, a small value of λ guides the477

training to focus more on the CE loss.478

E. Heterogeneous Model Aggregation (Aggr(·))479

When all the local models are received and saved in Supload,480

the cloud server can perform the aggregation. Since, all the481

heterogeneous models are pruned from the global model, the482

cloud server generates a new global model by aggregating483

the corresponding parameters of the models in Supload with the484

weights determined by the number of its trained data.485

Assume that p is a parameter in the global model M, and486

σ(p, Supload) extracts the model in the set that contains the487

corresponding parameter of p and the numbers of their training488

data. Let θ be the parameters of the aggregated global model489

M, which can be calculated as follows:490

∀p ∈ θ, p =
∑

m∈σ(p,Supload) pm × dm

∑
m∈σ(p,Supload) dm

491

where pm denotes the corresponding parameter of p in m and492

dm is the number of training data of m.493

By applying the above equation to aggregate all the param-494

eters of models in Supload, the cloud server can generate an495

updated global model. Subsequently, the cloud server updates496

all the heterogeneous models in the model pool P by assigning497

the parameter values of the aggregated global model to their498

corresponding parameters.499

Algorithm 2: Implementation of FlexFL
Input: i) T , training rounds; ii) D, the set of devices;

iii)f , fraction of selected devices; iv) M, global
model; v) Dp, proxy dataset, vi) Lp, list of
pruning ratios of heterogeneous models.

1 Tr ← ResConfRequest(D)

2 SAPoZ ← APoZCal(M,Dp)

3 Reset(M)

4 {M1, M2, . . . , Mp} ← ModelGen(SAPoZ, M, Lp)

5 P← {M1, M2, . . . , Mp}
6 for epoch e = 1, . . . , T do
7 K ← max(1, f |D|)
8 Sd ← DevSel(D, P, K)

9 Supload ← {}
10 /*parallel for*/
11 for 〈dk, mk〉 in Sd do
12 rdk ← ResRequest(dk)

13 m′k ← AdaPrune
(
rdk , mk

)

14 L← L(m′k,Dk)

15 θ ′mk
← θ ′mk

− ∂L
∂θ ′mk

16 Supload ← Supload ∪ {〈m′k, |Dk|〉}
17 end
18 M← Aggr(Supload)

19 P← update(P, M)

20 end

F. Implementation of FlexFL 500

Algorithm 2 presents the implementation of our FlexFL 501

approach. Lines 1–5 denote the operations of preprocessing. 502

Line 1 initializes the resource configuration table, where 503

the function ResConfRequest(·) requests all the devices to 504

upload their available resource information. In line 2, the 505

function APoZCalculate(·) pretrains the global model M using 506

the training part of the proxy dataset Dtrain
p and calculates 507

the APoZ scores for each layer of M using the test part 508

of the proxy dataset Dtest
p , where SAPoZ is a set of two-tuples 509

〈li, Ai〉, li denotes the ith layer of M, and Ai denotes the 510

APoZ score of the ith layer. Line 3 resets the global model. 511

Line 4 generates len(Lp) heterogeneous models according to 512

the calculated APoZ scores. Line 5 stores the generated models 513

in the model pool P. Lines 6–20 present the process of the FL 514

training stage. Line 7 calculates the number of devices needed 515

to participate in local training. In line 8, the function DevSel(·) 516

selects K devices and their respective trained models, where 517

Sd is a set of two tuples 〈d, m〉, d ∈ D is a selected device, and 518

m ∈ P is a model that will be dispatched to d. Line 9 initializes 519

the model set Supload, a set of two tuples 〈m, num〉, where 520

m is a local model and num is the number of data samples 521

used to train m. Lines 11–17 present the local training process. 522

Line 12 requests the current resources of dk and Line 13 uses 523

our adaptive local pruning strategy to prune the received model 524

mk according to rdk . Line 14 employs (4) to calculate the loss 525

L and line 15 updates the parameters of m′k according to L, 526

where θ ′mk
denotes the parameters of m′k. In line 16, the device 527

uploads its trained model m′k together with the number of data 528
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TABLE I
DEVICE UNCERTAINTY SETTINGS

samples |Dk| to the model set Supload. Line 18 aggregates all529

the models in Supload to update the global model M. Line 19530

updates the models in P using the global model M.531

IV. PERFORMANCE EVALUATION532

To evaluate FlexFL performance, we implemented FlexFL533

using PyTorch. For all the investigated FL methods, we534

adopted the same SGD optimizer with a learning rate of 0.01535

and a momentum of 0.5. For local training, we set the batch536

size to 50 and the local epoch to 5. We assumed that |D| = 100537

AIoT devices were involved in total, and f = 10% of them538

were selected in each FL training round. All the experiments539

were conducted on an Ubuntu workstation with one Intel i9540

13900k CPU, 64 GB memory, and one NVIDIA RTX 4090541

GPU.542

A. Experimental Settings543

1) Device Heterogeneity Settings: To evaluate the544

performance of FlexFL in uncertain and resource-constrained545

scenarios, we simulated various devices with different dynamic546

resources (available memory size). Specifically, we employed547

the Gaussian distribution to define dynamic device resources548

as follows: r = rM − |u|, where rM is the maximum memory549

capacity of the device and u ∼ N (0, σ 2).550

In our experiment, we adopted three levels of devices, i.e.,551

weak, medium, and strong. We set the ratio of the number552

of devices at these three levels to 40%, 30%, and 30%,553

respectively. The distribution of their available memory size554

across these devices is uncertain as shown in Table I. If the555

device memory is smaller than its received model m, i.e., r ≤556

(size(m)/size(M))×100, our approach will not train m due to557

insufficient memory resources. In this case, m will be pruned558

to be an adaptive model to fit the device. For example, if r559

is 30, the number of parameters of a pruned model cannot560

exceed 30% of its original counterpart.561

2) Data Settings: In our experiments, we utilized three562

well-known datasets, i.e., CIFAR-10 [36], CIFAR-100 [36],563

and TinyImagenet [37]. To investigate the performance on non-564

IID scenarios, we adopted the Dirichlet distribution Dir(α) to565

assign the data to the devices involved. By controlling the566

hyperparameter α of the Dirichlet distribution, we managed567

the degree of the IID bias in the data, where the smaller values568

of α indicate higher data heterogeneity.569

3) Model Settings: To validate the generality of our570

method, we conducted experiments under the models of571

different sizes and different architectures, i.e., VGG16 [38],572

ResNet34 [33], and MobileNetV2 [34].573

We adopted p = 3 and uniformly set the list of target574

model pruning ratios Lp to [25%, 50%, 100%] for all the575

methods, yielding a model pool P = {M1, M2, M3} with three576

Fig. 2. Comparison of submodels (VGG16 on CIFAR10). (a) FlexFL.
(b) ScaleFL. (c) HeteroFL.

(a) (b)

(c) (d)

Fig. 3. Learning curves of FlexFL and three baselines. (a) CIFAR10, IID.
(b) CIFAR10, α = 0.3. (c) CIFAR100, IID. (d) CIFAR100, α = 0.3.

models, where the model M3 is the largest model and also 577

the global model. Fig. 2 presents an example to visualize the 578

pruned models based on different FL methods. In the case 579

of FlexFL, the adaptive models are M′2 and M′3, which are 580

obtained by pruning �×size(M3) parameters from M2 and M3, 581

respectively, where � = 10%. For self-KD hyperparameters, 582

we set τ = 3 and λ = 10. 583

B. Performance Comparison 584

In our experiment, we compared three methods to our 585

method: 1) decoupled [1]; 2) HeteroFL [21]; and 3) ScaleFL 586

[24]. Decoupled follows a strategy similar to FedAvg [1], 587

where large, medium, and small models are trained on the 588

devices capable of hosting them without considering the model 589

aggregation. HeteroFL generates corresponding models based 590

on the width-wise pruning. ScaleFL, on the other hand, the 591

prunes models based on both the width and depth proportions 592

to create their corresponding models. Fig. 3 illustrates the 593

comparison between the accuracy of our method and three 594

other baselines. The solid line in the middle represents the 595

average accuracy of the 25%, 50%, and 100% models, and 596

the boundaries filled with corresponding colors represent the 597

highest and lowest accuracies among all the models. 598

1) Large Model Performance Analysis: In Table II, we use 599

the notation “x/y” to specify the test accuracy, where x 600

denotes the average accuracy of the 25%, 50%, and 100% 601

models and y indicates the accuracy of the 100% model. 602
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TABLE II
TEST ACCURACY (%) OF AVERAGE AND LARGE MODELS. THE BEST RESULTS ARE SHOWN IN BOLD

It is evident that FlexFL consistently achieves an accuracy603

improvement ranging from 1.75% to 13.13% in terms of large604

model accuracy, regardless of whether in the IID or non-IID605

scenarios. This indicates that our method performs better in606

obtaining high accuracy on the larger models. This discrepancy607

can be attributed to the greater flexibility in pruning offered608

by VGG16 and MobileNetV2. Specifically, VGG16 permits609

pruning of up to the first 15 layers, whereas MobileNetV2610

allows for pruning of up to nine blocks. In contrast, due to611

the inability to disrupt the internal structure of residual blocks612

in ResNet34, we can only prune five blocks, resulting in a613

relatively smaller improvement compared to the baselines.614

2) Average Model Performance Analysis: Our experiment615

also evaluated the average model accuracy as shown in616

Table II. Based on our observations of the datasets, our617

approach demonstrates an accuracy improvement ranging from618

0.92% to 7.65% compared to ScaleFL. We also observe that in619

most datasets, the accuracy of the largest model is higher than620

the average model. Conversely, in the ScaleFL, HeteroFL, and621

decoupled approaches, the accuracy of the largest model is622

lower than that of the average model. This indicates that in our623

approach, large models can effectively leverage their greater624

number of parameters, while in the other methods, the large625

models exhibit a paradoxical scenario where they possess more626

parameters but lower accuracy compared to the smaller or627

medium-sized models. This phenomenon arises from the fact628

that the small models can be trained on all the devices, whereas629

the large models can only be trained on the devices with630

ample resources. Consequently, the small models encapsulate a631

broader spectrum of knowledge. In our approach, by distilling632

knowledge from the large models to smaller ones, the larger633

models can enhance accuracy by assimilating knowledge from634

the other models.635

C. Impacts of Different Configurations636

1) Proxy Dataset Size: To evaluate the impact of the637

pruning ratio s on different proxy dataset sizes, we used the638

training datasets of sizes 100%, 50%, 20%, 10%, 5%, and639

1% as the proxy datasets, where 80% of the proxy dataset640

was used as the training set for pretraining. After training641

for 100 rounds, the remaining portion was used as the test642

set to calculate the APoZ scores. Based on Algorithm 1, we643

compared the similarity of pruning ratio sp%[i] obtained from644

the model Mi in the model pool P, where p% represents the645

Fig. 4. Model pruning ratios similarity with different proxy dataset sizes.

TABLE III
TEST ACCURACY (%) IN DIFFERENT PROXY DATASET SIZE

proxy dataset size. The similarity is defined as 646

sim(p%,Mi) = 1− avg

( |sp%[i]− s100%[i]|
s100%[i]

)
. 647

Fig. 4 shows the similarity for each level model Mi. We can 648

observe that even with only 1% of the data, FlexFL achieves 649

pruning ratios similar to those using the full dataset. 650

We conducted heterogeneous FL training using different 651

model pools P generated by different proxy dataset sizes. As 652

shown in Table III, FlexFL achieves inference accuracy similar 653

to that of the full dataset when using only 1% data as a proxy 654

dataset. Therefore, FlexFL can achieve good performance only 655

by using a very small proxy dataset. 656

2) Numbers of Involved Devices: To investigate the scala- 657

bility of our approach in various heterogeneous FL scenarios, 658

we studied the impact of varying numbers of involved devices 659

on the inference accuracy. Specifically, we conducted experi- 660

ments based on CIFAR10 and VGG16 within the IID scenarios 661

involving |D| = 50, 100, 200, and 500 devices, respectively. 662

In each training round, 10% of the devices were selected. 663

Fig. 5 shows that our method consistently improves the 664

performance across different numbers of devices. Moreover, as 665

|D| increases, the accuracy of all the methods decreases. And 666
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(a) (b)

(c) (d)

Fig. 5. Learning curves for different numbers of involved devices. (a) |D| =
50. (b) |D| = 100. (c) |D| = 200. (d) |D| = 500.

(a) (b)

(c) (d)

Fig. 6. Learning curves for different ratios of selected devices. (a) f = 5%.
(b) f = 10%. (c) f = 20%. (d) f = 50%.

it indicates that our method is more practical and adaptable to667

the heterogeneous FL scenarios with large numbers of devices.668

3) Numbers of Selected Devices: Assume that there are669

a total of |C| = 100 devices. Fig. 6 compares the training670

performance of the FL methods considering different ratios f671

of selected devices based on the CIFAR10 and VGG16 within672

an IID scenario. We can find that our approach achieves the673

best performance in all the four cases. Moreover, as the ratio674

f increases, the accuracy of our method remains stable, and675

the differences between the accuracy of the large and small676

models are the smallest.677

4) Proportions of Different Devices: We compared our678

method with three baselines in terms of accuracy under679

different proportions of devices as shown in Fig. 7. We cate-680

gorized all the devices into three groups, and the uncertainty681

configurations for each group of devices are shown in Table I.682

We varied the device proportions to 1:1:8, 1:8:1, and 8:1:1.683

According to our experimental results, we observed that our684

method outperformed the baselines in terms of the average685

(a) (b)

(c) (d)

Fig. 7. Learning curves for different proportions (small:medium:large) of
devices using VGG on CIFAR10 in the IID scenario. (a) 1:1:8. (b) 1:8:1.
(c) 8:1:1. (d) 4:3:3.

TABLE IV
TEST ACCURACY COMPARISON WITH DIFFERENT �

model accuracy across all the device proportions. Furthermore, 686

as the device proportions changed, our method’s accuracy 687

remained relatively stable, while the other baselines exhibited 688

performance degradation. 689

5) Adaptive Local Model Pruning Size: We conducted 690

experiments on the CIFAR10 within an IID scenario with 691

VGG16 to evaluate the impact of adaptive pruning sizes �. 692

The experimental results are presented in Table IV. We can 693

find that the optimal value for the hyperparameter � in our 694

experiments is 10%. This is mainly because a low value of 695

� leads to lower utilization of the adaptive models, meaning 696

more devices degrade their received models directly to the 697

smaller models. In contrast, although a high value of � 698

can improve the utilization of adaptive models, it causes 699

smaller sizes of the adaptive models, which results in a lower 700

utilization of resources. 701

6) Self-KD Hyperparameter Settings: We investigated the 702

impact of the hyperparameter λ in self-KD on our experiments. 703

In our experimental setup, we fixed the temperature parameter 704

τ = 3 for self-KD and varied the coefficient of KL-loss λ 705

during local training as λ = 0, 5, 10, 20, 50. 706

Fig. 8 shows that without self-KD (λ = 0), the accuracy 707

of our method decreased by approximately 2–4% compared 708

to when the distillation was used. Furthermore, with increas- 709

ing distillation coefficient λ, the accuracy showed an initial 710

increase followed by a decreasing trend in both the IID and 711

non-IID scenarios. When the distillation coefficient λ is at a 712

reasonable range, i.e., λ ∈ [10, 20], the overall loss can be well 713

balanced between the distillation loss and CE loss. When λ is 714



10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 8. Average accuracy of VGG16 on CIFAR10 with different λ.

TABLE V
CONFIGURATIONS OF DIFFERENT DEVICE RESOURCE DISTRIBUTIONS

TABLE VI
TEST ACCURACY (%) OF MODELS IN DIFFERENT CONFIGURATIONS

set to a high value, the overall loss is dominated by distillation715

loss, which hinders effective learning of knowledge from the716

local dataset, resulting in an accuracy decrease.717

7) Different Settings of Resource Distributions: To explore718

our method’s adaptability in different resource allocation719

scenarios, we constructed three distinct configuration plans720

as shown in Table V. Conf1 indicates a constant number of721

resources for each device, Conf2 indicates slight fluctuations722

in the resources of devices, and Conf3 suggests significant723

resource fluctuations across devices.724

We conducted a study comparing the accuracy differences725

between our method and three baseline methods with results726

shown in Table VI. Our method achieved approximately a 4%727

performance improvement compared to ScaleFL across all the728

configs, indicating that our method can maintain high accuracy729

when dealing with various degrees of resource fluctuations.730

8) Real-World Datasets: To validate the generalization731

ability of our approach, we extended our experiments to732

include the real-world datasets, i.e., FEMNIST [39] and733

Widar [40], in addition to the image recognition datasets.734

The FEMNIST dataset comprises 180 devices, with each735

training round selecting 10% devices. The data distribution736

on the devices is naturally non-IID. We assumed that the737

TABLE VII
TEST ACCURACY (%) COMPARISON ON REAL-WORLD DATASETS

Widar dataset involves 100 devices following given Dirichlet 738

distributions, and ten devices are selected for local training in 739

each FL round. We applied the uncertainty settings in Table I 740

to all devices. 741

The results presented in Table VII demonstrate the 742

performance of our method on ResNet34 and MobileNetV2, 743

with performance improvements of up to 10.63%. There 744

is minimal difference between the average model accuracy 745

and the accuracy of the best-performing model. On VGG16, 746

although FlexFL exhibits a 2.68% lower average accuracy 747

compared to HeteroFL on the FEMNIST dataset, FlexFL still 748

demonstrates improved accuracy for the largest model. 749

D. Ablation Study 750

We conducted a study on the effectiveness of each compo- 751

nent within our method to investigate their respective impacts 752

on the accuracy of our approach. We designed four varieties 753

of FlexFL: 1) “w/o self-KD” indicates the absence of self- 754

distillation during local training; 2) “w/o adaptive model” 755

implies the utilization of only models M1, M2, and M3, with 756

the current model Mi being pruned to the model Mi−1 under 757

the resource constraints; 3) “w/o APoZ” involves only using 758

adjustment weight AdjW for the model pruning; and 4) “w/o 759

adjustment” entails utilizing APoZ for model pruning without 760

adjustment weight AdjW. Fig. 9 shows the superiority of 761

FlexFL against its four variants, indicating that the absence of 762

our proposed components will decrease model accuracy, with 763

the lack of APoZ causing the most significant decline. 764

E. Evaluation on Real Test-Bed 765

To demonstrate the effectiveness of FlexFL in real AIoT 766

scenarios, we conducted experiments on a real test-bed plat- 767

form, which consists of 17 different AIoT devices and a cloud 768

server. Table VIII shows the details of the configuration of 769

these AIoT devices. Based on our real test-bed platform, we 770

conducted experiments with a non-IID α = 0.1 scenario on 771

CIFAR10 [36] dataset using MobileNetV2 [34] models and 772

selected ten devices to participate in local training in each FL 773

training round. We set an uniform time limit of 70 000 s for 774

FlexFL, ScaleFL, and HeteroFL. 775

Fig. 10 illustrates our real test-bed devices and the learning 776

curves of the methods. From Fig. 10(b), we can observe that 777

FlexFL achieves the highest accuracy compared to ScaleFL 778

and HeteroFL. In addition, we can also find that compared 779
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(a) (b) (c)

Fig. 9. Ablation study results for FlexFL (VGG on CIFAR10). (a) IID. (b) α = 0.6. (c) α = 0.3.

TABLE VIII
REAL TEST-BED PLATFORM CONFIGURATION

Fig. 10. Real test-bed devices and the learning curves. (a) Real test-bed
platform. (b) Learning curves.

TABLE IX
TIME OVERHEAD OF COMPONENTS PER ROUND (VGG ON IID

CIFAR10)

with the two baselines, FlexFL has relatively small accuracy780

fluctuations. Therefore, compared to ScaleFL and HereroFL,781

FlexFL still achieves the best inference accuracy and stability782

on the real test-bed platform.783

F. Discussion784

1) Computation Overhead: To evaluate the computation785

overhead of components (i.e., preprocessing, adaptive local786

pruning, and self-KD local training) introduced by FlexFL, we787

conducted various experiments in our real test-bed platform788

to investigate their impacts on the overall training time.789

Specifically, we evaluated from two aspects: 1) time overhead790

of components per FL training round and 2) training time791

to achieve a specific test accuracy. From Table IX, we can792

find that the introduction of self-KD will result in longer793

TABLE X
TRAINING TIME AND COMMUNICATION OVERHEAD TO ACHIEVE THE

SAME ACCURACY (VGG ON IID CIFAR10)

local training time. Note that, our method’s preprocessing time 794

accounts for approximately 0.3% of the total training time (219 795

s for 1000 rounds of training), and its adaptive pruning time 796

accounts for about 2% of the local time. Overall, the computa- 797

tional overhead of adaptive pruning and pretraining is almost 798

negligible, and the main additional computational overhead of 799

FlexFL comes from self-KD. However, as shown in Table X, 800

FlexFL needs much less training time to achieve a specific test 801

accuracy than HeteroFL and ScaleFL. Specifically, compared 802

with ScaleFL, FlexFL can achieve a training speedup of up 803

to 6.63×. Here, “all large” represents the results obtained 804

by only dispatching the largest models for the FL training 805

under FedAvg, and the notation “N/A” means not available. 806

Moreover, FlexFL can achieve an accuracy of 85%, while all 807

the other methods fail, mainly benefit from the performance 808

improvement brought about by our proposed self-KD tech- 809

nique. 810

2) Communication Overhead: From Table X, we can 811

observe that FlexFL achieves the optimal communication 812

overhead under all the target accuracy levels and can reduce 813

the communication overhead (Dispatch+Upload) by up to 814

85%. Since, APoZ-guided pruning, adaptive local pruning, 815

and self-distillation do not rely on any extra complex data 816

structures, the additional memory overhead they introduce is 817

negligible. Note that, APoZ-guided pruning is performed on 818

the server side and only once upon initialization, it does not 819

impose any burden on the devices. 820

V. CONCLUSION 821

Due to the lack of strategies to generate high-performance 822

heterogeneous models, existing heterogeneous FL suffers from 823
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low inference performance, especially for various uncertain824

scenarios. To address this problem, this article presents a825

novel heterogeneous FL approach named FlexFL, which826

adopts an APoZ-guided flexible pruning strategy to wisely827

generate heterogeneous models to fit various heterogeneous828

AIoT devices. Based on our proposed adaptive local pruning829

mechanism, FlexFL enables devices to further prune their830

received models to accommodate various uncertain scenarios.831

Meanwhile, FlexFL introduces an effective self-KD-based832

local training strategy, which can improve the inference833

capability of large models by learning from small models,834

thus boosting the overall FL performance. Comprehensive835

experimental results obtained from simulation- and real test-836

bed-based AIoT systems show that our approach can achieve837

better inference performance compared with state-of-the-art838

heterogeneous FL methods.839
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