
1

NeRF-PIM: PIM Hardware-Software Co-design of
Neural Rendering Networks

Jaeyoung Heo and Sungjoo Yoo

Abstract—Neural Radiance Field (NeRF) has emerged as a
state-of-the-art technique, offering unprecedented realism in
rendering. Despite its advancements, the adoption of NeRF is
constrained by high computational cost, leading to slow rendering
speed. Voxel-based optimization of NeRF addresses this by reduc-
ing the computational cost, but it introduces substantial memory
overheads. To address this problem, we propose NeRF-PIM, a
hardware-software co-design approach. In order to address the
problem of memory accesses to large model (of voxel grid) with
poor locality and low compute density, we propose exploiting
processing-in-memory (PIM) together with PIM-aware software
optimizations in terms of data layout, redundancy removal, and
computation reuse.

Our PIM hardware aims to accelerate tri-linear interpolation
and dot product operations. Specifically, to address the low
utilization of internal bandwidth due to random accesses to
voxels, we propose a data layout that judiciously exploits the
characteristics of interpolation operation on voxel grid, which
helps remove bank conflicts in voxel accesses and also improves
the efficiency of PIM command issue by exploiting all-bank mode
in the existing PIM device. As PIM-aware software optimizations,
we also propose occupancy-grid-aware pruning and one-voxel
two-sampling (1V2S) methods, which contribute to compute
efficiency improvement (by avoiding redundant computation on
empty space) and memory traffic reduction (by reusing per-
voxel dot product results). We conduct experiments using an
actual baseline HBM-PIM device. Our NeRF-PIM demonstrates
a speedup of 7.4x and 5.0x compared to the baseline on two
datasets, Synthetic-NeRF and Tanks and Temples, respectively.

Index Terms—accelerator, hardware/software co-design, neural
radiance fields (NeRF), processing in memory, voxel grid

I. INTRODUCTION

Neural Radiance Fields (NeRF), which produces highly
realistic images using deep neural networks, has attracted con-
siderable attention, especially in augmented and virtual reality
(AR/VR) applications. Despite its revolutionary potential, the
practical application of NeRF is substantially hindered by
its high computational cost, resulting in prohibitively slow
rendering speed.

To address the compute-cost problem, several efficient algo-
rithms have been proposed [1]–[3]. Among them, voxel grid-
based ones stand out as a promising candidate [4]–[6]. Unlike
traditional NeRF, which relies mostly on multilayer percep-
tron (MLP) computations, voxel grid-based NeRF divides 3D
space into a grid of voxels and exploits pre-computation, i.e.,

J. Heo is with the Interdisciplinary Program in Artificial Intelli-
gence, Seoul National University, Seoul 08826, South Korea (e-mail:
wodud7721@snu.ac.kr).

S. Yoo is with the Department of Computer Science and Engi-
neering, Seoul National University, Seoul 08826, South Korea (e-mail:
sungjoo.yoo@gmail.com).

utilizes stored values on these voxels, thereby reducing the
computation cost per sampling point down to that of a tiny
MLP or simple dot products.

For fast rendering, a minimum compute-cost solution is
desirable in the voxel grid-based NeRF models. Plenoxels [4]
and FastNeRF [7] are two representative examples since they
perform only dot product operations at each sampling point.1

Such minimum compute-cost models trade model size for fast
rendering. However, they often fail to realize fast rendering
due to the overhead of accessing large models.

To investigate the limitations of the minimum compute-cost
voxel grid-based NeRF, we performed performance profiling
and found that the primary operations consist of tri-linear
interpolations and dot products, both characterized by low
computational intensity (Ops/Byte) due to the characteristics
of storing voxel grid in the memory (all neighbor voxels cannot
be stored contiguously) and volume rendering (sampling points
are distributed across voxels). To address these issues coming
from large model size, heavy memory traffic, and low compu-
tational intensity, we propose to judiciously exploit processing-
in-memory (PIM) as a solution to improve performance.

In this paper, we propose a PIM hardware and software
co-design for accelerating the minimum compute-cost voxel
grid-based NeRF models. Our contributions are as follows:

1) Our hardware-software co-design comprises two key
aspects: hardware-software partitioning and hardware-
aware software optimization. Through detailed profil-
ing, we identify that the performance bottleneck of
NeRF model execution is in voxel grid accesses and
interpolation, and propose a co-processor for hardware
acceleration by enhancing the existing HBM-PIM with
a new data layout for efficient voxel grid accesses and
a new interpolation unit for reducing memory traffic.
We also propose modifying the NeRF model software
to make the best use of the underlying hardware, as will
be introduced below.

2) Executing tri-linear interpolation within PIM poses ar-
chitectural challenges, specifically bank conflicts due to
random accesses. We address this issue by proposing a
novel data layout that distributes, in an aligned manner,
eight voxel data across different banks, which enables
simultaneous accesses to eight voxels with a single all-
bank PIM command, thereby avoiding bank conflicts.
Additionally, we introduce an ML-based channel assign-

1Voxel grid-based models typically execute a small MLP on each sampling
point. The minimum compute-cost models minimize the per-sampling point
compute-cost down to a few dot products.

https://orcid.org/0009-0009-8517-2488
https://orcid.org/0000-0002-5853-0675

2

ment to improve load balancing across memory chan-
nels. Our proposed NeRF-PIM architecture augments the
existing HBM-PIM architecture [8] by introducing an
interpolation unit at a small additional area cost.

3) The PIM-aware software optimization focuses on voxel
grid-aware redundancy removal and intra-PIM computa-
tion reuse. While adopting an occupancy grid for voxel
pruning, we propose a novel pruning method that further
prunes the sparse voxel grid by exploiting the fact that a
vertex pruning can have a different impact on its voxel
and its neighboring voxels under the occupancy grid.
In addition, based on the fact that when a sampling
point is already selected in a voxel, adding an additional
sampling point in the same voxel does not incur addi-
tional memory accesses inside the PIM device, we also
propose one-voxel two-sampling (1V2S) method, which
contributes to performance improvement by effectively
reducing memory accesses inside the PIM device.

4) We evaluated the NeRF-PIM with a representative
minimum compute-cost voxel grid-based NeRF model,
namely Plenoxels [4], using two datasets, Synthetic-
NeRF dataset [9] and Tanks and Temples [10], employ-
ing an actual HBM-PIM device [8].

II. BACKGROUND AND MOTIVATION

A. Preliminaries of NeRF

NeRF uses deep neural networks to generate highly realistic
images from 2D images. The basic idea is that the color of
each pixel is obtained via volume rendering where we first
shoot a ray (corresponding to a pixel on the image) into the
space and the color is calculated by a weighted summation
of colors at sampling points on the ray. The neural network,
upon the coordinate of a sampling point and the ray direction,
predicts the weight and color of the sampling point.

Figure 1 illustrates the rendering pipeline of NeRF [9],
divided into four steps. In Step 1 (Ray generation), given a
target view (i.e., camera pose) for the image to be rendered, we
generate rays connecting the camera origin to pixels, expressed
as r = o + td, where o represents the camera center coordinate
and d represents the direction. In the subsequent steps, we
calculate the color of each ray corresponding to each pixel of
the image.

In Step 2 (Generate sampling points with ray marching),
we locate sampling points along the ray (e.g., at regular
intervals). In this process, known as ray marching, we check
to see whether an object is present at each location or the
sample point is in empty space (via hierarchical sampling or
occupancy grid). If the sampling point is not in empty space,
we generate the sample point and move to Step 3.

In Step 3 (Calculate density/color data of each sampling
point), we execute a trained multilayer perceptron (MLP) with
the information of each generated sampling point including its
coordinates (x, y, z) and the ray direction (d) as inputs. The
MLP outputs the sampling point’s density (σ) and color (R, G,
B). As multiple sampling points are generated and evaluated
for each ray through ray marching, Steps 2 and 3 are repeated
multiple times before moving to Step 4.

Fig. 1. Rendering pipeline of NeRF [9]

In Step 4 (Render final pixel color), we utilize the results of
Step 3 and calculate the pixel color of the current ray (Ĉ(r)),
using the volume rendering equation as follows.

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci

where Ti = exp

−
i−1∑
j=1

σjδj

 (1)

Here, N is the number of sampling points along the ray,
σi and ci are the density and color at the i-th sample point,
respectively, δi is the distance between sampling points, and
Ti represents the transmittance, which indicates the presence
of object from the camera center to a sampling point i. We
apply Steps 1 to 4 to all the rays to generate an image.

The rendering pipeline requires executing MLP as many
times as there are sampling points. For instance, rendering an
800x800 image would result in 800x800xN sampling points,
where N , the number of sampling points per ray, is 192 in
[9]. Experiments on an NVIDIA RTX 2080ti show that the
rendering speed is only 0.03 fps.

B. Voxel Grid-based NeRF Algorithm

Figure 2 illustrates the structure and rendering pipeline
of a minimum compute-cost voxel grid-based NeRF model,
Plenoxels [4]. This model employs a sparse voxel grid struc-
ture, where each unpruned grid vertex stores a density scalar
and three feature (or color) vectors for RGB computation.

As shown in the figure, the rendering pipeline comprises
four steps, where Steps 1, 2, and 4 align with those of
the vanilla NeRF, while Step 3 replaces the MLP with a
minimal computation using dot product operations. To be
specific, Step 3 involves a density stage and a color stage.
In the density stage, density scalar values are retrieved from
the eight vertices of a voxel containing the sampling point,
and tri-linear interpolation is applied to compute a density
value. Similarly, in the color stage, tri-linear interpolation is
performed on the color vectors from the eight vertices, which
gives an output color vector. To render view-dependent color,
a dot product operation is carried out between the basis vector
(for spherical harmonics in [4]) and the output color vector for
each RGB color. In Plenoxels [4], the basis vector, representing
the ray direction, is generated using spherical harmonics (SH)
functions and the ray direction. Thus, it is shared by all the

3

Fig. 2. Rendering pipeline of voxel grid-based NeRF [4]

sampling points on the same ray. The dimensions of the basis
and color vectors are set to 9 in our experiments as in [4].

Note that we utilize Plenoxels to showcase the potential of
minimum compute-cost models, hence our proposed NeRF-
PIM is not limited to Plenoxels.

III. PROBLEM

A. Minimum Compute-Cost Voxel Grid-based NeRF

Minimum compute-cost voxel grid-based NeRF represents
a trade-off between computational and memory overhead,
leading to its unique characteristics. First, the model size is
considerably large. As shown in Figure 3, accessing den-
sity/color data requires link data that stores the vertex indices.
The size of the link data depends on the grid resolution.
For instance, a [512,512,512] grid gives a link data size of
approximately 537MB. Additionally, each unpruned vertex
holds a density scalar and color vectors, which leads to the
overall model size ranging from several hundred megabytes
to gigabytes, e.g., average 816MB and maximum 1.3GB in
Synthetic-NeRF dataset [9].

Second, the model exhibits the characteristics of heavy
memory traffic with weak spatial locality, especially in
Step 3 in Figure 2 where we need to fetch density/color
data from eight vertices on each sampling point. Furthermore,
sampling points are generated along the ray, i.e., irrespective
of the voxel’s storage format. Thus, the voxels referenced
by sampling points on the same ray are scattered within the
memory, resulting in poor spatial locality in memory accesses
thereby giving low chances of row buffer hits.

Figure 2 exemplifies the weak spatial locality behavior
under heavy memory traffic. During the density stage, eight
vertices must be accessed to fetch the density scalar data for
tri-linear interpolation, requiring link data of the eight vertex
indices first (Figure 3), followed by the fetch of density data

Fig. 3. An example of data structure of sparse voxel grid

Fig. 4. Profiling results of [4] on RTX 2080ti (a) Latency breakdown at the
Step level (b) Latency breakdown according to block dimension of GPU

using the link values. The key issue here is that the (link or
density) data of the eight vertices cannot be sequentially read
in a single memory access. Only a pair of two adjacent vertices
can be stored continuously, while four pairs from eight vertices
are scattered throughout the memory. This tends to result in
four memory requests across different memory rows on the
same or different banks for the link data and another four for
the density data across different memory rows. In the color
stage, the required data volume is even larger. Interpolation for
RGB color requires fetching three color vectors from each of
the eight vertices, totaling 24 vectors. Assuming a color vector
dimension of 9 and half-precision [4], each vertex requires, for
RGB color, fetching 3x9x2 bytes (three 9-dim fp16 vectors),
i.e., 2 memory accesses (of 32 bytes each). Thus, for all the
eight vertices, this amounts to 16 memory requests, mostly,
across different rows in the memory.

Last but not least, both operations of tri-linear interpolation
and dot product are characterized by a low compute intensity
(Ops/Byte). Specifically, the vertex data fetched for tri-linear
interpolation are not reused unless the adjacent voxel has a
sample point. Even in such a case, only half of the fetched
vertex data can be reused since only four vertices are shared
by two adjacent voxels.

Figure 4 shows the profiling results of running Plenoxels
[4] on an RTX 2080ti. The utilized kernel was custom-
implemented to calculate one ray per thread with the capability
of profiling memory overhead, and this setup shows no per-
formance difference from the official code. Since Plenoxels
operates on a single CUDA kernel, we conducted detailed
profiling by measuring latency while removing each step in
Figure 2 and overlaying these results onto the total latency.
Figure 4 (a) shows that a significant portion (83%) of the
processing time is taken up by Step 3. Figure 4 (b) illustrates

4

the latency breakdown relative to GPU block size. The color
stage accounts for the largest portion (52∼77%) of the latency
across different numbers of threads/block. For link and density
data, their latency share sharply increases with the number of
threads/block, ranging from 13% to 44%. According to Nsight
Compute [11], as the number of threads/block increases from
4 to 32, the L1 cache hit ratio decreases by 53%, and global
memory traffic increases by 4.3 times. This indicates that voxel
grid-based NeRF’s memory traffic is significantly large with
weak spatial locality, causing cache trashing that hampers GPU
utilization.

B. Problems and Opportunities of PIM
PIM aims to overcome the CPU-memory bottleneck by

performing computations within memory chips, leveraging
high internal bandwidth.

The minimum compute-cost voxel grid-based NeRF model
exhibits the characteristics that make it an ideal candidate
for PIM application: large model size, heavy memory traffic,
and low compute intensity. First, heavy memory traffic due
to large model size can be better served with high internal
memory bandwidth available inside of the PIM memory chip.
The interpolation and dot product operations, which finally
output scalar values, align well with the PIM architecture
which specializes in vector operations including dot products.
Additionally, the small amount of scalar outputs also helps
reduce memory traffic to the host.

However, merely applying PIM to minimum compute-cost
voxel grid-based NeRF models does not inherently leverage
these advantages. Typically, PIM utilizes high internal band-
width with an all-bank operation, which issues computation
on all PIM banks with a single memory command with
identical row and column addresses. If the data of eight
vertices required for tri-linear interpolation are not aligned
in the same row and column address on each bank, a single
all-bank read operation cannot fetch all of them. In such a
case, multiple memory requests will be necessary, potentially
requiring as many requests as would be needed without using
PIM. To address this, we propose a novel data layout and its
management in Section IV which enables full exploitation of
internal bandwidth in all-bank mode.

Minimum compute-cost voxel grid-based NeRF offers new
opportunities to better exploit the memory bandwidth and
compute capability on PIM architecture. Specifically, having
multiple sample points in the same voxel enables us to reduce
PIM-internal memory traffic by reusing fetched vectors.

IV. NERF-PIM: HARDWARE ARCHITECTURE

We provide an overview of the architecture and its key
components (Section IV-A, D) followed by a detailed expla-
nation of the data layout (Section IV-B) and PIM operations
(Section IV-C). Finally, we explore optimization possibilities
and discuss aspects of system integration (Section IV-E).

A. Architecture Overview
Figure 5 shows the structure of a channel in the NeRF-PIM

architecture. The overall architecture is based on the HBM-
PIM [8]. Thus, the PIM unit (PU) is allocated to every two

banks and is directly connected to the banks, enabling efficient
dot product operations by exploiting high internal bandwidth.
Its architecture is based on the functional unit in AiM [12],
comprising 16 FP16 multipliers and an adder tree that enables
dot product computation. The adder tree incorporates a bank-
wide MA shift (BWMS) scheme [12]. The interpolation unit
(IU) is located in the peripheral logic area. It receives results
from each PU and performs the interpolation. The detailed
architecture of the IU is discussed in Section IV-D.

The NeRF-PIM architecture executes a NeRF model as
follows. Initially, the host GPU processes Steps 1 and 2
(Figure 2) and sends the inputs of PIM operations to the
memory in memory write commands. Each input consists of
per-ray shared values such as the SH basis vector and per-
sample coordinates within its voxel. As will be explained
in Section IV-D, each input (of 32 bytes) accommodates
up to 24 sampling points. Upon receiving these inputs, the
NeRF-PIM hardware calculates the density and color results
for each sampling point through NeRF-PIM operations (Step
3) and sends the results back to the host. Subsequently, the
host performs alpha composition (Equation 1) to produce the
pixel color (Step 4). The remainder of Section IV primarily
discusses how NeRF-PIM efficiently accelerates Step 3.

Tri-linear interpolation operations are typically performed
before dot product computation. However, as both operations
are linear, altering their execution order does not change the
result. Utilizing this characteristic, our design performs dot
product operations on eight PIM units in parallel, reducing 8
pairs of vector inputs to eight scalar results, which are then
sent to the IU for tri-linear interpolation. This approach, using
PU and IU, reduces eight scalar (density) / vector (color) pairs
to a single scalar density/color result, each in fp16. Thus, for
each sampling point, we obtain 8 bytes (four fp16 data for
density and three colors) of PIM result in total. The host reads,
from the IU, the results of multiple (usually four) sampling
points which are packed into a memory transfer of 32 bytes.

B. Data Layout

1) Inter-Bank Data Layout: We propose an all-bank con-
scious data layout that allows for full utilization of PIM’s
internal bandwidth. Figure 6 illustrates our data layout for
color vectors of two voxels. When processing a sampling point
within voxel 1, the data from its vertices (0, 1, 2, 3, 4, 5, 6,
7) become the input operands for dot product and tri-linear
operations. Consequently, we place these eight data in the
same location across all eight banks as shown in the figure.
This arrangement is also applied to voxel 2, with vertices (1, 8,
3, 9, 5, 10, 7, 11) applying the same pattern of data placement.

Without our proposed data layout, scattered storage of
the eight color vectors within memory necessitates multiple,
possibly random, access requests. However, our layout allows
the eight color vectors to be read in a single all-bank operation.
This layout also reduces the memory traffic of link data.
Without the proposed layout, it would be necessary to fetch
link data for all eight vertices. However, as shown in Figure 6,
only the link data of vertex 0 is required for reading the eight
vertices’ data of voxel 1. Knowing only the index of vertex 0’s

5

Fig. 5. NeRF-PIM architecture overview (single memory channel)

Fig. 6. A 2-voxel example of data layout for NeRF-PIM: For density data,
the data from 8 vertices are sequentially stored. For color data, the data from
8 vertices are distributed across 8 banks. The data comprising one voxel are
stored in the same row and column but in different banks.

data, the density data can be directly read, and the color data
of all eight vertices can be read with a single all-bank read
command. Hence, our data layout scheme not only enables
efficient utilization of internal bandwidth but also significantly
reduces memory requests for link data.

Implementing this data layout involves data duplications,
as seen with vertices (1, 3, 5, 7) in Figure 6, which incurs
overhead in runtime memory capacity and setup time. Only the
density/color data of valid vertices are duplicated, neither the
link data nor the pruned vertices. As a result, the overall impact
on runtime memory size is significantly reduced, yielding an
increase of approximately 3.34x on average for the Synthetic-
NeRF [9] dataset. The increase in runtime memory size gets
further reduced when adopting our proposed pruning method
in Section V-B, which brings the average runtime memory
overhead down to 2.62x. Note that the original model structure
remains unchanged implying no increase in storage usage
despite a larger runtime memory requirement.

The setup time duplication process also incurs overhead in
setup time latency. However, its impact on overall frames per
second (FPS) is negligible in real-time NeRF scenarios as it
takes an initial single-time latency of 233 ms.

Note that the data layout approach differs on density data.
Considering that dot product is not computed in the density
stage and its smaller data size, leveraging internal bandwidth
becomes unnecessary for density data. To avoid power con-

sumption from all-bank operations, the eight density data of
a voxel are stored sequentially, allowing a single burst read
transmission to the IU.

2) Inter-Channel Data Distribution: The data layout of
Figure 6 is applied to a channel. We also need to distribute
voxel data across channels to exploit channel-level compute
parallelism. To do that, we divide the entire grid into sub-grids
of 8x8x8 voxels and distribute sub-grids across channels.

When determining the size of the sub-grid, the efficiency
of PIM input transfer needs to be considered. For a PIM
operation, it is necessary for the host to write to the memory
both per-ray shared values (shared by all sampling points on
the same ray), e.g., the ray’s basis vector, and the coordinates
of the sampling points. The more sampling points are packed
into a single write, the fewer memory writes are needed,
thereby contributing to faster PIM operations. In addition,
packing multiple sampling points can increase the row buffer
hit rate in the density stage. As shown in Figure 6, density
and color data are stored on different rows. Consequently,
performing the density stage consecutively for multiple sam-
pling points, packed together, can lead to row buffer hits,
whereas alternating between density and color stages for every
sampling point gives no row buffer hit for the density stage.

The size of the sub-grids, set to 8x8x8, is chosen to contain
as many sampling points as possible on a single DRAM row
thereby improving the row buffer hit rate. A sub-grid can
contain up to 512 valid data points. With data duplication,
all density data within the same sub-grid can be stored in a
single row. It means that during the density stage, row buffer
misses are eliminated inside the sub-grid.

3) Channel Assignment for Load Balance: The perfor-
mance of NeRF-PIM is bound by the channel with the most

Fig. 7. Sub-grid distribution across channels using ML-based channel
assignment

6

Fig. 8. (a) Density stage dataflow. (b) Color stage dataflow

computation. Therefore, when distributing multiple sub-grids
across channels, load balance is essential. The amount of PIM
operations per channel is not determined by the number of
allocated sub-grids but by the amount of valid (i.e., unpruned)
data contained in sub-grids. Consequently, we propose an ML-
based channel assignment module that allocates sub-grids to
channels considering the amount of valid data they contain.

We train a channel assignment module, i.e., a linear layer
for optimal channel assignment for each target scene/object.
It can be obtained with an additional one-time training of
approximately 30 seconds on a trained NeRF model and, after
training, provides a channel assignment as illustrated in Figure
7. Note that the channel assignment, once obtained by training,
remains fixed for different camera positions.

C. NeRF-PIM Operation

Operation Overview The initial step in operating NeRF-
PIM, as depicted in Figure 5, involves writing PIM inputs, i.e.,
packed data of basis vector and coordinates, from the host to
the memory. Note that, as mentioned before, multiple sampling
points (maximum 24 points as will be explained in Section
IV-D) are packed into a single PIM input thereby reducing
host-to-PIM traffic. Since the basis vector remains constant
for each ray, it is shared across all sampling points on the ray.
Thus, once the PIM inputs are transferred to the memory, the
basis vector is broadcast and written into the PU’s registers,
while the coordinates are stored in the IU’s input buffer.

Figure 8 illustrates each of the density and color stages. A
key distinction between the two stages is that while both stages
require tri-linear interpolation, the color stage also necessitates
dot product operations between the basis and color vectors.

Table I shows the NeRF-PIM commands for these op-
erations. Note that both commands have the same timing
constraints as the existing HBM-PIM commands [8] as will
be explained in follows.

Density Stage The density result is obtained through tri-
linear interpolation. This operation, conducted by the PIM D
command, can be divided into two steps, as illustrated in
Figure 8 (a). In step 1, the density data of eight vertices
are fetched and sent to the IU. As mentioned in Section IV-
B, these eight vertices’ density data are sequentially stored

TABLE I
NERF-PIM COMMANDS

Name Description

PIM D Fetch 8 density scalar data from bank,
and then performs a tri-linear interpolation

PIM C
Fetch 8 color vector data from even/odd banks,
performs dot product in PIM unit,
and then performs tri-linear interpolation

in a single row. At the same time, the IU generates inter-
polation parameters in the interpolation parameter generator
(IPG) using the coordinates of the sampling points stored as
PIM input. In step 2, using the fetched data and parameters
generated by the IPG, IU performs tri-linear interpolation to
obtain the density result. As steps 1 and 2 can be performed
in parallel, two PIM D commands can be pipelined. From the
accessed bank’s perspective, the PIM D operation is identical
to a standard RD command and thus shares the same timing
constraints (tCCD L, tCCD S). As discussed in Section III-A,
in a GPU-only system, generating one density result requires
four random access memory requests. However, in NeRF-PIM,
a single PIM D operation suffices.

Color Stage To determine the color values, we perform
dot product operations and tri-linear interpolation for each of
the R, G, and B color vectors. This process, executed by the
PIM C command for each RGB color, can be divided into
two steps, as shown in Figure 8 (b). In the first step, the color
vectors of the eight vertices are fetched in parallel using an all-
bank read operation and then delivered to each PU. Each PU
performs a dot product operation with the basis vector stored
in its registers. Note that our proposed data layout, explained
in Section IV-B, enables us to perform only a single all-bank
read operation to fetch the color vectors of eight vertices and
perform dot product operations on them. The IPG generates
interpolation parameters as in PIM D operation for density.
The second step involves each of the eight PUs sending its
dot product result to the IU for tri-linear interpolation. Since
the PIM C command must be performed separately for R, G,
and B, three PIM C commands are required to compute the
color values for a single sampling point. The PIM C command
also operates in a pipelined manner, similar to PIM D, but
the intervals between commands are tCCD L [8], as the
PIM C command utilizes an all-bank operation. As explained
in Section III-A, in the baseline GPU-only system, completing
the operation for one sampling point incurs 16 memory read
commands since each of eight vertices requires, for 3x9 fp16
data, two memory commands of 32 bytes each. In contrast,
NeRF-PIM requires only three PIM C commands.

D. Interpolation Unit

Figure 5 shows the interpolation unit (IU) which comprises
an interpolation parameter generator (IPG), FP16 multipliers,
and an adder tree. The adder tree employs the BWMS scheme
used in the PU. The IU stores the coordinates of sampling
points as input and sends the corresponding coordinates to the
IPG upon receiving NeRF-PIM commands.

Figure 9 depicts the internal structure of the IPG. The
IPG generates interpolation parameters using the x, y, and z

7

Fig. 9. (a), (b) Architecture of interpolation parameter generator (IPG). (c)
Tri-linear interpolation

coordinates of a sampling point as input. Figure 9 (c) shows
the equations for the interpolation operation and parameter
generation. As illustrated in Figure 10, coordinate values
ranging from 0 to 1 are discretized and represented with 3
bits for efficiency. This reduces the size of coordinates from
48 bits (FP16x3) to 9 bits (3bitx3) for each sampling point.
Considering the size of data transfer (32 bytes) between GPU
and memory, the coordinates of up to 24 sampling points can
be packed into a single PIM input WR command of 32 bytes.
The 3-bit representation reduces the number of PIM input WR
commands and the area cost of IPG design at a negligible
PSNR degradation of 0.02 dB for the Synthetic-NeRF dataset.

Upon receiving the 3-bit inputs for x, y, and z coordinates,
the IPG generates interpolation parameters (P0 to P7, as shown
in Figures 5 and 9). Binary inputs from 000(2) to 111(2),
corresponding to float values from 1/16 to 15/16, are converted
to the numerator of their float values (1 to 15) through shifting
and bias addition, followed by multiplication. The omitted
value of the denominator (1/16), being a power of 2, is taken
into account in the final exponent adder. After being converted
to fp16, the interpolation parameters are multiplied with the
eight data fetched from the bank for interpolation operation.

E. System Integration

This section discusses how NeRF-PIM integrates with the
baseline HBM-PIM system and operates when running an
application end-to-end. NeRF-PIM is implemented based on
the HBM-PIM system [8] and is compatible with the JEDEC

Fig. 10. We propose discrete coordinate sampling. It converts real-value
coordinate (0.0∼1.0) to discrete value in 3 bits as shown in the table

Fig. 11. Methodology of the NeRF-PIM system in executing the end-to-end
NeRF application.

specification for HBM2 interface [13]. It is fully compatible
with the HBM-PIM software stack and programming model
[8], as its PIM memory manager seamlessly supports our data
layout, and its PIM executor runs our NeRF-PIM kernel. For
NeRF-PIM operation, the memory controller needs to support
the NeRF-PIM commands listed in Table I. As explained
in Section IV-C, the PIM D and PIM C commands share
the same timing constraints as the HBM-PIM commands.
NeRF-PIM is capable of performing both standard HBM2
and NeRF-PIM operations. It satisfies backward compatibility
with the host memory controller managing and scheduling the
memory state. Our NeRF-PIM architecture offers the practical
advantage of being implementable with minimal changes on
the host GPU and actual PIM devices [8].

Figure 11 illustrates an end-to-end NeRF model execution
scenario. Initially, the host fetches link data and writes PIM
inputs to the memory by normal memory operation. Using the
link data, it calculates density/color data addresses and issues
PIM commands to compute results. Each PIM command can
generate one scalar output (density or one of RGB color). For
every 16 PIM commands, the IU returns a packet of results
for four sampling points (32 bytes = 4 sets of 8 bytes per-
sample point density and RGB) as the read data of the last
PIM command of the 16 ones. This procedure is repeated
until all sampling point results for the current ray are received,
after which the host computes the ray’s color. The host runs
multiple threads (each for a ray) concurrently. It results in a
situation where normal memory operation and PIM operation
can access the same memory channel. During the execution
of PIM commands, the memory channel does not consume
external memory bandwidth [8]. Utilizing this, we overlap
memory accesses between link data (on a rank) and PIM
operation (on another rank on the same memory channel).

V. NERF-PIM: SOFTWARE OPTIMIZATION

We first describe the inefficiency issue of voxel grid-based
NeRF algorithms (Section V-A) and propose optimizations
to address it (Section V-B). Additionally, we suggest further
optimizations to increase data reuse (Section V-C).

A. Motivation

Voxel grid-based NeRF algorithms first calculate density
data for each sampling point and skip the color stage if the

8

Fig. 12. Occupancy grid implementation with link data: (a) Key vertex
indicating the pruning status of a voxel. (b) One key voxel and seven adjacent
voxels containing the key vertex.

density is below a threshold, indicating a low probability of
object surface. Profiling Plenoxels [4] reveals that only 19%
of sampling points in the Synthetic-NeRF dataset proceed to
the color stage. While density thresholding effectively skips
81% of unnecessary color stages, it also implies that 81% of
the sampling points for fetching density data are redundant.
Hence, we call this problem “density sampling inefficiency.”

The problem of density sampling inefficiency is two-fold.
First, it loses computational efficiency by spending memory
bandwidth and compute resources for to-be-discarded density
data. Second, it is unfriendly to PIM, possibly increasing its
implementation cost. When density thresholding is done by the
host, PIM operations cannot proceed until the density results
are retrieved from memory, reducing PIM utilization. Imple-
menting density thresholding within the memory, as a part of
PIM function, requires a separate internal PIM controller to
handle density-dependent color computation, increasing logic
overhead. To address these issues, we propose optimizations
for higher sampling efficiency and PIM-friendly sampling.

B. Occupancy Grid and Occupancy-Grid-aware Pruning

Applying Occupancy Grid To address the sampling in-
efficiency problem, we adopt an occupancy grid as in [1].
An occupancy grid divides 3D space into a grid, storing
information about the presence of objects at each location.
When sampling, the occupancy grid can reduce the number
of sampling points by avoiding areas, i.e., voxels where no
objects are present. Instead of creating a separate occupancy
grid, we propose utilizing the link data from the sparse voxel
grid structure in Figure 3 to implement an occupancy grid.

As shown in Figure 12 (a), among the eight vertices forming
a voxel, the bottom-left vertex is designated as the key vertex.
If the key vertex is invalid (i.e., pruned), we do not choose
sampling points in the associated voxel (called key voxel)
for the subsequent density/color computation. Thus, after
determining the location of a sample point, we first fetch the
link data of the key vertex (of the voxel where the sampling
point resides). If it is pruned (i.e., the voxel is empty), then
we skip subsequent computation for the sampling point. If it
is valid, we proceed directly to the density/color stage.

Occupancy-Grid-Aware Pruning In the conventional ver-
tex pruning for sparse voxel grid [4], we prune a vertex when
two conditions are met. First, its density needs to be below
a threshold. Even if this condition is met, if it has at least
one valid neighbor vertex (among 26 vertices), then we do
not prune it. We found that this approach is too conservative,

Fig. 13. One-voxel two-sampling method: enforcing two sampling points
within a single voxel.

thereby incurring the sampling inefficiency problem. To further
enhance sampling efficiency, we propose a more aggressive
pruning while minimizing the degradation of rendering quality.

Figure 12 (b) illustrates a key vertex and its associated key
voxel. As the figure shows, the pruning of the key vertex
can make a larger impact on its key voxel than on the other
seven neighbor voxels (sharing the key vertex). Thus, when
determining whether a vertex is pruned, it would be desirable
to consider the impact of vertex pruning on its key voxel as
well. Our proposed pruning method, which we call occupancy-
grid-aware pruning, prunes a vertex when the following three
conditions are all met: (1) its density is less than a threshold,
(2) there is no adjacent voxel which has more than h adj (=6
in our experiments) valid vertices, and (3) there are no more
than h key (=3) valid vertices in its key voxel.

C. One-Voxel Two-Sampling Method

Traditional sampling methods sample points without con-
sidering voxel granularity, e.g., sampling at a fixed step size
in Figure 13. We propose the one-voxel two-sampling (1V2S)
method, which samples two points per voxel, allowing reuse
of the dot product results at the eight vertices of the voxel.

Figure 13 illustrates how our proposed method samples
points. First, assume that we sampled a point in a voxel.
Then, as illustrated in the figure, we sample another point
at the intersection between the ray and a face of the current
voxel. The spacing between the two sample points in the same
voxel can be different from the step size. We choose the third
sampling point one step size away along the ray as the figure
demonstrates. We sample another point at the intersection of
a ray and a face of the new voxel. We repeat this process
until we reach the far limit of the ray. As will be reported
in the experiments, our proposed 1V2S method is effective
in reducing memory accesses by reusing dot product results,
which leads to significant performance improvement. Note that
the location of sampling points is determined by the host GPU.

VI. METHODOLOGY

Workloads We conducted our experiments using the
Synthetic-NeRF [9] and (a subset of) Tanks and Temples
[10] datasets. Synthetic-NeRF is comprised of eight synthetic
scenes. Tanks and Temples is comprised of real, unbounded,
360◦ scenes. We used four scenes based on the provided
official checkpoint.2

2The checkpoints of the Tanks and Temples dataset are not reproducible.
We could train four scenes, M60, Playground, Train, and Truck, in the
same environment provided by the official checkpoints and applied our
optimizations to them.

9

TABLE II
HBM-PIM DEVICE SPECIFICATION [8]

External clocking frequency 1 ∼1.2GHz
Timing parameters Same as HBM2

of pCH 16
of PCU per pCH 8

of banks per pCH 16
On-chip (Compute) bandwidth 1TB/s ∼ 1.229TB/s

Off-chip (I/O) bandwidth 256GB ∼ 307.2GB/s
Capacity 6GB

TABLE III
IMPLEMENTATION RESULTS OF NERF-PIM MODULES

Units Area (um2) Power (mW)
Interpolation unit 5274 0.82

PIM unit 9345 1.50

Software baselines The proposed NeRF-PIM is imple-
mented based on the official custom Pytorch CUDA extension
library of Plenoxels [4], which supports volume rendering
on sparse voxel grid, and we integrated it into HBM-PIM
software stack [8]. However, the CUDA kernel of this library
is not designed to profile memory traffic. Consequently, we
developed a new custom kernel. In our experiments, we
evaluated both kernels and reported the superior one.

Hardware baselines and system setup To evaluate the
performance of NeRF-PIM, we used two hardware baselines:
HBM-PIM and GPU-only systems. We employed the eval-
uation system used in [8], called HBM-PIM system, which
comprises four integrated HBM-PIM devices in an AMD
MI100-PIM GPU. The detailed specifications of the HBM-
PIM device are presented in Table II. The GPU-only system
adopts the same evaluation system without utilizing PIM
capability. Note that NeRF-PIM hardware, as well as HBM-
PIM hardware, is an in-memory co-processor to the GPU.

Our NeRF-PIM architecture is based on the HBM-PIM
architecture and adheres to the same timing constraints as
the HBM-PIM commands [8]. The additional NeRF-PIM
commands share identical latency with HBM-PIM commands
as explained in Section IV-C. Thus, by exploiting the charac-
teristics of deterministic latency on DRAM commands, we can
reliably measure the performance of the NeRF-PIM system on
the HBM-PIM system. Specifically, to measure the runtime
of NeRF-PIM, we execute the PyTorch NeRF model on the
GPU and the model issues the existing PIM commands (via
the memory controller on the GPU) that have the same latency
as our proposed PIM commands, e.g., RD command on behalf
of PIM D. Considering the pipelined operation, we inserted
a dummy PIM command after the final PIM C command to
ensure the completion of interpolation.

From the perspective of software-side code running on
the GPU, the implementations of the software-only and our
proposed hardware-software co-design differ slightly. This is
because the PIM design requires additional operations, such
as buffering for PIM inputs and inter-thread communication,
to efficiently issue PIM commands. However, these additional
operations adversely affect only the performance of our PIM
design. Furthermore, as discussed in Section IV-E, the parallel
operation of normal memory operation rank and PIM operation
rank is also implemented in the HBM-PIM system.

TABLE IV
COMPARISON BETWEEN THE BASELINE AND NERF-PIM SOFTWARE-ONLY

IMPLEMENTATION

Dataset Methods PSNR Valid Data Sampling Eff.
Synthetic-NeRF Plenoxels [4] 31.71 4811341 19%

[9] NeRF-PIM 31.66 2876115 100%
Tanks&Temples Plenoxels [4] 20.12 16701993 23%

[10] NeRF-PIM 20.14 7927691 100%

The hardware modules of NeRF-PIM were synthesized
in Verilog to estimate the silicon area, timing, and power
consumption of each module. We used the Synopsys Design
Compiler with TSMC’s 45nm technology. In line with prior
works [14], [15], we scaled our implementation results to
22nm technology using the scaling factor from [16]. To ac-
count for the differences between DRAM and logic processes,
we adopted the method from [17]. The implementation results
of our module are shown in Table III.

VII. EVALUATION

A. NeRF-PIM Ideas on Software Only Implementation

Table IV compares the baseline [4] and the SW-only imple-
mentation of our NeRF-PIM ideas. Our occupancy-grid-aware
pruning results in a substantial 40% reduction in the amount
of valid data while only incurring a minor PSNR degradation
of 0.05 dB, alleviating the runtime memory overhead.

Figure 14 shows the performance improvements from our
optimization methods. The occupancy grid (OG) alone en-
hances the performance by 1.52 times and increases sampling
efficiency by 35%. Occupancy-grid-aware pruning (OGPR)
further reduces valid data, thereby offering an additional 1.4
times speedup and a 26% increase in sampling efficiency.
Thus, these two methods collectively achieve a speedup of 2.14
times and an 80% improvement in sampling efficiency. Lastly,
the application of the one-voxel two-sampling (1V2S) method
exploits data reuse while contributing to a further speedup (of
NeRF-PIM in the figure).

Sensitivity analysis on the occupancy-grid-aware prun-
ing Figure 15 shows the benefits of the proposed occupancy-
grid-aware pruning and its sensitivity analysis based on hy-
perparameter variations. When both hyperparameters (h key,
h adj) are set to values below or equal to 3, there is limited
pruning, resulting in negligible performance differences. How-
ever, transitioning from (3,3) configuration to our approach of
(3,6) setting, which applies stricter criteria for adjacent voxels,
we observe a minor PSNR degradation of only 0.05 dB, while

Fig. 14. Analysis of speedup and sampling efficiency for each NeRF-PIM’s
software optimization method on the Synthetic-NeRF Dataset [9]

10

Fig. 15. Sensitivity analysis on occupancy-grid-aware pruning.

Fig. 16. Speedup of our NeRF-PIM software and hardware-software co-design
on the Synthetic-NeRF dataset [9]

the number of valid data decreases by 14%. Changing the
parameters from our (3,6) to a (6,6) setting leads to a further
reduction in valid data by 7%, but with a significant PSNR
degradation of 0.38 dB. These results highlight the different
sensitivities of vertex pruning on the key and adjacent voxels.
Considering the trade-off of pruning and PSNR degradation,
we choose the (h key, h adj) configuration as (3,6).

B. NeRF-PIM Hardware Evaluation

Figure 16 shows the speedup enabled by our proposed
NeRF-PIM ideas on the SW-only (NeRF-PIM SW-only) de-
sign and hardware-software (NeRF-PIM) co-design. NeRF-
PIM offers a substantial average speedup of 7.4x over the
case of running the original NeRF model on the GPU only
(Baseline). Furthermore, when comparing the NeRF-PIM SW-
only design (in Figure 14), we observe an additional 2.9x
speedup on the NeRF-PIM hardware-software co-design.

The success of NeRF-PIM hardware in accelerating voxel
grid-based NeRF can be attributed to three key factors. First,
by leveraging large internal bandwidth, NeRF-PIM reduces
memory traffic. For example, in the color stage, the baseline
and NeRF-PIM SW-only designs, which use only a GPU
without PIM hardware, require 16 memory requests to fetch
the color vectors of 8 vertices (each vertex requires two
memory requests of 32 bytes for 3*9 fp16 data). In contrast,
NeRF-PIM needs only three PIM commands. Secondly, the
proposed data layout for all-bank mode enables us to minimize
PIM command overhead. In addition, the sub-grid level data
placement across channels enables us to perform the density
stage by accessing only a single row on each sub-grid,
without incurring any bank conflicts. Finally, the hardware-
software co-design helps enhance the cache utilization of the
host. Unlike GPU systems suffering from cache thrashing as
exemplified in Figure 4, NeRF-PIM enables the host to utilize
the cache mostly for link data while density and color data

Fig. 17. (a) Normalized latency and average number of sampling points per
PIM operation w.r.t. maximum number of sampling points (b) Speedup and
maximum number of valid data per channel with channel assignment method.

are accessed inside the PIM chip. Furthermore, as explained
in Section IV-B, NeRF-PIM also reduces memory traffic for
link data by eight times.

Effectiveness of the discrete coordinate sampling Figure
17 (a) illustrates the normalized latency and average number
of sampling points per PIM command with respect to the
maximum number of sampling points per PIM command. Our
discrete coordinate sampling approach, which represents the
coordinates of sampling points with 3 bits, allows us to pack
up to 24 sampling points per PIM input. As the figure shows,
when the maximum number of packed sample points per PIM
input gets reduced, the normalized latency of the entire model
gets increased, which demonstrates the effects of packing, a
reduced number of PIM input WR commands, and enhanced
row buffer hit rate for density data, enabled by the discrete
coordinate sampling, on the latency of the entire model.

Load balance Figure 17 (b) shows the effect of load
balancing. In a typical address-based assignment where the
channel assignment follows the address of data, the channel
with the most accesses determines the overall performance.
In the Interleaving-based method where the channel-level
interleaving is applied at sub-grid granularity, a more balanced
workload is assigned across channels as shown in the figure
(Max data per CH). Our ML-based approach reduces the data
volume in the most loaded channel by 15% compared to
the Interleaving-based method. However, as the figure shows,
our method offers an overall performance gain of only about
2%. We will discuss the weak correlation of (per-channel)
workload and total runtime in Section VIII.

In the experiments rendering images across various view-
points on the Lego dataset, our method significantly reduced
the maximum load (the number of sampling points each chan-
nel is responsible for), outperforming the Interleaving-based
method by 1.26x (1.22x to 1.32x), demonstrating its superior
capability in load balancing across different viewpoints.

Sensitivity analysis of the hardware-software co-design
Figure 18 demonstrates the effectiveness of our co-design
approach. The configuration of NeRF-PIM SW-only represents
the case where GPU runs the NeRF, applying our software
optimizations. The configurations of PU (+DL) and IU show
the effect of hardware-software co-design. PU (executing dot
products on PIM hardware) alone gives a marginal (aver-
age 1.15x) speedup due to inefficient utilization of internal
memory bandwidth. However, DL (our data layout) boosts
performance (2.49x speedup) by better utilizing PUs, i.e.,
internal memory bandwidth via all-bank mode operations.

11

Fig. 18. The speedup achieved by our proposed NeRF-PIM’s hardware
modules and co-design on the Synthetic-NeRF dataset [9]

Fig. 19. Speedup of our NeRF-PIM software and hardware-software co-design
on the Tanks and Temples dataset [10]

IU further increases speedup (2.86x speedup) by moving
interpolation from GPU to PIM hardware, thereby reducing
memory traffic otherwise incurred for interpolation on GPU.

Considering that the NeRF-PIM SW-only configuration
also corresponds to the baseline HBM-PIM, which does not
accelerate dot product and interpolation operations, Figure 18
demonstrates that NeRF-PIM improves the existing HBM-PIM
by equipping it with a new PU, the proposed data layout, and
memory-side interpolation.

C. Evaluation on Real 360° Scenes

We additionally evaluated NeRF-PIM on the Tanks and
Temples dataset [10] to capture its performance characteristics
in real, unbounded, and 360° scenes. Table IV illustrates that
our occupancy-grid-aware pruning results in a 53% reduction
of valid data without any image quality loss. Figure 19
shows a total 5x speedup enabled by our hardware-software
(NeRF-PIM) co-design. Our software optimizations achieved
a 2.5x speedup, and our hardware-software co-design further
increased performance by 2x. The results still show a tendency
for larger models to achieve greater speedups. For instance, the
scene ‘Train’ gives a 4 times larger model than ‘Playground.’

NeRF-PIM still demonstrates robust performance with a 5x
speedup on the real-world dataset. However, the speedup is
slightly lower than that of the Synthetic-NeRF dataset [9].
The difference is due to the presence of a background model,
which is not accelerated by PIM. As the background model
occupies 14% of the total latency, it diminishes the impact of
our NeRF-PIM. Without the background model, NeRF-PIM
achieves a total speedup of 7.9x.

VIII. DISCUSSION & ABLATION

Architectural benefits of NeRF-PIM w.r.t. software-only
design The performance of the NeRF-PIM SW-only design
(yellow bar of Figure 16) did not include our data layout

Fig. 20. (a) NeRF-PIM SW-only vs. NeRF-PIM hardware-software co-design
and (b) speedup vs. the number of PIM channels

because the key benefit of our data layout comes from all-
bank mode which is not available on the GPU. To fairly assess
our architecture compared to GPU, we further implemented
a GPU-friendly data layout, ensuring that the data for eight
vertices within a single voxel are stored sequentially through
data duplication, to avoid irregular memory accesses.

Figure 20 (a) shows a 1.3x speedup when the NeRF-PIM
SW-only design adopts the GPU-friendly layout. As the figure
shows, NeRF-PIM acceleration gives a further 2.7x speedup to
the SW-only design adopting the GPU-friendly layout. Given
that the NeRF-PIM architecture’s internal bandwidth is 4x
larger than the external bandwidth, an end-to-end runtime
speedup of 2.7x indicates that NeRF-PIM efficiently accel-
erates the NeRF model. In this comparison, we chose not
to employ the 1V2S method to ensure a fair assessment, as
it yields varying degrees of speedup for the GPU and PIM
systems.

Performance scalability of NeRF-PIM Figure 20 (b)
presents performance scalability with respect to the number
of channels. As the number of channels increases, the per-
formance of NeRF-PIM increases almost linearly up to 16
channels. This growth is attributed to each channel inde-
pendently executing PIM operations, enhancing the overall
compute capability. However, performance improvements start
to weaken after 16 channels, indicating that the entire set of
channels is not fully utilized. This weak scaling may stem
from the limited issue capabilities of PIM commands in the
baseline HBM-PIM. Primarily, this is due to our host ISA’s
requirement of utilizing two threads to generate a single PIM
command [8], which necessitates inter-thread communication
and effectively halves the command issue capabilities.

Trade-offs and limitations As a summary, compared with
the baseline, which runs the original NeRF model on the GPU
only, NeRF-PIM provides a 7.4x speedup at the one-time cost
of setup time (233ms) and training time (30 seconds), with an
unnoticeable loss of image quality (0.07dB), a runtime-only
overhead of 2.62x larger memory usage, and a very small
area cost of additional circuits. The total speedup of 7.4x is
decomposed into 2.6x by our software optimizations, 2.5x by
our data layout and PIM unit that accelerate the dot product,
and 1.2x by interpolation unit. For higher performance, the
current NeRF-PIM would need to address the issues of low
ratio of internal to external memory bandwidth (currently, 4)
and limited issue capabilities of PIM commands (as explained
above). Addressing those issues is left for future work.

Regarding the experimental methodology, our results are
also susceptible to the approximations (e.g., the usage of 45nm

12

logic and scaling to estimate 20nm DRAM circuit cost) and
the mismatches between the codes for the NeRF-PIM SW-
only design and hardware-software (NeRF-PIM) co-design
(mentioned in Section VI).

Generality of NeRF-PIM Since our NeRF-PIM architec-
ture supports dot product and tri-linear interpolation, it is
also compatible with other minimum compute-cost voxel grid
models like [7] sharing the same characteristics of minimizing
compute-cost down to a few dot products per sampling point.
Our proposed NeRF-PIM can also be used to accelerate the
previously trained NeRF models, e.g., based on MLP or Gaus-
sian splatting, by training Plenoxels with images generated
from the pre-trained model to leverage the high-performance
rendering of our NeRF-PIM.

IX. RELATED WORK

Voxel grid-based NeRF To address the limitations of NeRF
[9], various studies [1], [3]–[6] have used 3D grid structures
to reduce computational demands. [1] factorizes the grid into
low-rank tensor components, while [3] uses a voxel grid with
a hash table, both improving efficiency but still requiring MLP
computations. [5] adopts octree structures, replacing MLP with
SH operations for faster rendering but leading to slow training
and larger models. In [4], the authors propose a sparse voxel
grid without neural components, which offers faster training
and inference as well as smaller model sizes.

NeRF accelerators For efficient NeRF processing, several
NeRF-specific accelerators have been presented. [18] employs
a hardware-software co-design to expedite the rendering of
[1]. [19] enhances the reconstruction speed of [3], while [20]
focuses on boosting its rendering performance. However, de-
spite these advancements [18]–[20], accelerating larger models
without MLP remains challenging due to their extremely low
computational intensity and high memory demands.

X. CONCLUSION

In this study, we propose NeRF-PIM, a hardware-software
co-design aimed at efficiently accelerating voxel grid-based
NeRF using PIM. The NeRF-PIM ideas adopted in our
software-only implementation significantly enhance perfor-
mance over conventional algorithms through optimizations
that improve sampling efficiency and leverage data reuse.
Moreover, the NeRF-PIM hardware further improves perfor-
mance by efficiently utilizing internal memory bandwidth.
We evaluated the proposed NeRF-PIM based on real system
execution and obtained significant (up to 7.4x) speedup over
the baseline software-only design.

ACKNOWLEDGMENTS

This work was supported by Samsung Advanced Institute
of Technology, and Memory Division, Samsung Electronics
Co., Ltd., and Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) [NO. RS-2021-II211343, Artificial
Intelligence Graduate School Program (Seoul National Univer-
sity)]. Additionally, we would like to thank Euntae Choi for
his insightful discussions and contributions to the manuscript
revision.

REFERENCES

[1] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su, “Tensorf: Tensorial radiance
fields,” in European Conference on Computer Vision. Springer, 2022,
pp. 333–350.

[2] C. Reiser, S. Peng, Y. Liao, and A. Geiger, “Kilonerf: Speeding up
neural radiance fields with thousands of tiny mlps,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
14 335–14 345.

[3] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM Transactions on
Graphics (ToG), vol. 41, no. 4, pp. 1–15, 2022.

[4] S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and
A. Kanazawa, “Plenoxels: Radiance fields without neural networks,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 5501–5510.

[5] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa, “Plenoctrees
for real-time rendering of neural radiance fields,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
5752–5761.

[6] L. Liu, J. Gu, K. Zaw Lin, T.-S. Chua, and C. Theobalt, “Neural sparse
voxel fields,” Advances in Neural Information Processing Systems,
vol. 33, pp. 15 651–15 663, 2020.

[7] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin,
“Fastnerf: High-fidelity neural rendering at 200fps,” in Proceedings of
the IEEE/CVF international conference on computer vision, 2021, pp.
14 346–14 355.

[8] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee,
K. Lim, H. Shin et al., “Hardware architecture and software stack
for pim based on commercial dram technology: Industrial product,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2021, pp. 43–56.

[9] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” Communications of the ACM, vol. 65, no. 1, pp. 99–106,
2021.

[10] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and temples:
Benchmarking large-scale scene reconstruction,” ACM Transactions on
Graphics (ToG), vol. 36, no. 4, pp. 1–13, 2017.

[11] NVIDIA, “Nvidia nsight compute,” 2024. [Online]. Available: https:
//developer.nvidia.com/nsight-compute

[12] S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka, K. Hwang, J. Park,
K. Kang, J. Kim et al., “A 1ynm 1.25 v 8gb, 16gb/s/pin gddr6-based
accelerator-in-memory supporting 1tflops mac operation and various
activation functions for deep-learning applications,” in 2022 IEEE In-
ternational Solid-State Circuits Conference (ISSCC), vol. 65. IEEE,
2022, pp. 1–3.

[13] S. JEDEC, “High bandwidth memory (hbm) dram,” JESD235, 2013.
[14] L. Wu, R. Sharifi, M. Lenjani, K. Skadron, and A. Venkat, “Sieve: Scal-

able in-situ dram-based accelerator designs for massively parallel k-mer
matching,” in 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2021, pp. 251–264.

[15] M. Zhou, W. Xu, J. Kang, and T. Rosing, “Transpim: A memory-
based acceleration via software-hardware co-design for transformer,” in
2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2022, pp. 1071–1085.

[16] A. Stillmaker, Z. Xiao, and B. Baas, “Toward more accurate scaling
estimates of cmos circuits from 180 nm to 22 nm,” VLSI Computation
Lab, ECE Department, University of California, Davis, Tech. Rep. ECE-
VCL-2011-4, vol. 4, p. m8, 2011.

[17] A. Yazdanbakhsh, C. Song, J. Sacks, P. Lotfi-Kamran, H. Esmaeilzadeh,
and N. S. Kim, “In-dram near-data approximate acceleration for gpus,”
in Proceedings of the 27th International Conference on Parallel Archi-
tectures and Compilation Techniques, 2018, pp. 1–14.

[18] C. Li, S. Li, Y. Zhao, W. Zhu, and Y. Lin, “Rt-nerf: Real-time on-device
neural radiance fields towards immersive ar/vr rendering,” in Proceed-
ings of the 41st IEEE/ACM International Conference on Computer-Aided
Design, 2022, pp. 1–9.

[19] S. Li, C. Li, W. Zhu, B. Yu, Y. Zhao, C. Wan, H. You, H. Shi, and Y. Lin,
“Instant-3d: Instant neural radiance field training towards on-device ar/vr
3d reconstruction,” in Proceedings of the 50th Annual International
Symposium on Computer Architecture, 2023, pp. 1–13.

[20] J. Lee, K. Choi, J. Lee, S. Lee, J. Whangbo, and J. Sim, “Neurex:
A case for neural rendering acceleration,” in Proceedings of the 50th
Annual International Symposium on Computer Architecture, 2023, pp.
1–13.

https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute

	Introduction
	Background and Motivation
	Preliminaries of NeRF
	Voxel Grid-based NeRF Algorithm

	Problem
	Minimum Compute-Cost Voxel Grid-based NeRF
	Problems and Opportunities of PIM

	NeRF-PIM: Hardware Architecture
	Architecture Overview
	Data Layout
	Inter-Bank Data Layout
	Inter-Channel Data Distribution
	Channel Assignment for Load Balance

	NeRF-PIM Operation
	Interpolation Unit
	System Integration

	NeRF-PIM: Software Optimization
	Motivation
	Occupancy Grid and Occupancy-Grid-aware Pruning
	One-Voxel Two-Sampling Method

	Methodology
	Evaluation
	NeRF-PIM Ideas on Software Only Implementation
	NeRF-PIM Hardware Evaluation
	Evaluation on Real 360° Scenes

	Discussion & Ablation
	Related Work
	Conclusion
	References

