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Training on the Fly: On-device Self-supervised
Learning aboard Nano-drones within 20 mW

Elia Cereda, Student Member, IEEE, Alessandro Giusti, Member, IEEE, and Daniele Palossi

Abstract—Miniaturized cyber-physical systems (CPSes) pow-
ered by tiny machine learning (TinyML), such as nano-drones,
are becoming an increasingly attractive technology. Their small
form factor (i.e., , ∼10 cm diameter) ensures vast applicability,
ranging from the exploration of narrow disaster scenarios to safe
human-robot interaction. Simple electronics make these CPSes
inexpensive, but strongly limit the computational, memory, and
sensing resources available on board. In real-world applica-
tions, these limitations are further exacerbated by domain shift.
This fundamental machine learning problem implies that model
perception performance drops when moving from the training
domain to a different deployment one. To cope with and mitigate
this general problem, we present a novel on-device fine-tuning
approach that relies only on the limited ultra-low power resources
available aboard nano-drones. Then, to overcome the lack of
ground-truth training labels aboard our CPS, we also employ a
self-supervised method based on ego-motion consistency. Albeit
our work builds on top of a specific real-world vision-based
human pose estimation task, it is widely applicable for many
embedded TinyML use cases. Our 512-image on-device training
procedure is fully deployed aboard an ultra-low power GWT
GAP9 System-on-Chip and requires only 1 MB of memory while
consuming as low as 19 mW or running in just 510 ms (at
38 mW). Finally, we demonstrate the benefits of our on-device
learning approach by field-testing our closed-loop CPS, showing
a reduction in horizontal position error of up to 26% vs. a
non-fine-tuned state-of-the-art baseline. In the most challenging
never-seen-before environment, our on-device learning procedure
makes the difference between succeeding or failing the mission.

Index Terms—On-device Learning, Self-supervised Learning,
Embedded ML, TinyML, Resource-constrained CPS.

SUPPLEMENTARY VIDEO MATERIAL

Supplementary video material of the in-field experiments at
https://youtu.be/3yNbMwszpSY

I. INTRODUCTION

M INIATURIZED unmanned aerial vehicles (UAVs) as
small as the palm of one hand, also known as nano-

UAVs, are appealing cyber-physical systems (CPS), which,
leveraging tiny machine learning (TinyML) algorithms de-
ployed aboard, have reached an unprecedented level of auton-
omy. Thanks to their small form factor, i.e., 10 cm in diameter
and sub-50 g in weight, nano-UAVs can fly in narrow and
constrained spaces [1] or safely in the human proximity [2]
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embodying the ultimate dynamic IoT smart sensors, capable
of analyzing their surrounding and flying where their presence
is most needed. To cope with extremely limited onboard
sensory, memory, and computational resources, i.e., , low-
resolution cameras, a few MB off-chip memories, and sub-
100 mW power envelope for the computational units, recent
works make extensive use of optimized TinyML workloads,
such as convolutional neural networks (CNNs) [2], [3], [4].
Apart from the well-known challenges in deploying complex
deep learning (DL) models on ultra-low-power microcon-
troller units (MCUs), TinyML algorithms are vulnerable to
the fundamental problem of domain shift [5]. Domain shift
occurs when a DL model, such as a classifier or regressor,
trained on data acquired in a given context, i.e., domain, is
deployed in a different one. Then, the predictive performance
of the system (i.e., the accuracy or estimation error) often
decreases because the training data is not representative of the
deployment domain. This problem is particularly present in
real-world applications, such as the robotic task we address
in this work. This paper explores on-device learning as a
viable and effective solution to the domain shift problem.

We consider the case in which a CNN, previously trained
on a given task using large datasets, is fine-tuned on-device,
using a small amount of data collected after deployment.
Fine-tuning consists of updating the parameters of the pre-
trained models by executing a limited number of additional
training steps. With on-device self-supervised learning, data
can be collected by the robot precisely in the domain in
which the model will operate, counteracting the domain shift.
Despite on-device learning being conceptually simple and
attractive, pulling it off in a real-world application is extremely
challenging. Fine-tuning typically requires significant memory
and computational resources, including hardware support for
floating-point arithmetic (not always available on MCUs) and
data availability with the corresponding ground-truth labels.
In this work, we study this problem in the context of a real-

world robotic application, covering the full pipeline of design,
deployment, and testing of a vertically integrated on-device
learning system and evaluating the practical implications of
our design choices. In particular, we strive to answer three key
research questions: i) What is the best fine-tuning strategy to
exploit the limited computing power? iii) Can the limited on-
board memory fit enough data for fine-tuning to be effective?
ii) How to deal with the lack of ground-truth data in the
field? While analysed in a specific context, these questions
yield valuable insights for real-world applications of on-device
learning also on other tasks.
We start from the State-of-the-Art (SotA) PULP-Frontnet
CNN [2] for the human pose estimation task, whose outputs
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TABLE I
EMBEDDED ON-DEVICE LEARNING LITERATURE REVIEW. WE REPORT THE LOWEST POWER COMPUTATIONAL DEVICE CONSIDERED IN EACH WORK.

Work Task Arch. Data Training Supervision Compute Memory
[MB]

Power
[W]

Field-
tested

Mudrakarta et al. [6] object class. +
object detect.

CNN benchmark
datasets

fine-
tuning supervised GPU

(unspecified) 1000s 100s ✗

TinyTL [7] object
classification

CNN benchmark
datasets

fine-
tuning supervised GPU

(unspecified) 1000s 100s ✗

PULP-TrainLib [8] object class. +
keyword spotting

CNN benchmark
datasets

from
scratch supervised GWT

GAP9 0.4 0.1 ✗

RLtools [9] robot control fully
connected

external
simulator

from
scratch reinforcement i.MX

RT1060 16 0.3 ✗

TinyTrain [10] object
classification

CNN benchmark
datasets

fine-
tuning supervised Raspberry

Pi Zero 2
512 10 ✗

PockEngine [11] object
classification

CNN +
Transformer

benchmark
datasets

fine-
tuning supervised STM32F7 0.3 0.2 ✗

LifeLearner [12] object
classification

CNN benchmark
datasets

continual
learning supervised STM32H7 1 1 ✗

Ours human pose
estimation

CNN real-world
robot

fine-
tuning self-supervised GWT

GAP9 1 0.1 ✓

control the nano-UAV and allow to keep it in front of the user
at a predefined distance. We tackle the first computational chal-
lenges by adopting an ultra-low-power GWT GAP8 System-
on-Chip (SoC) and its next generation, the GAP9. Then, we
investigate four fine-tuning strategies, spanning from the most
memory-hungry fine-tuning of all layers of the CNN down
to minimal fine-tuning of only the final fully connected layer.
Further, we propose a self-supervised state-consistency loss
term [13] to handle the data availability problem, relieving
our fine-tuning process from ground-truth labels. Our main
contributions are the following:

• an in-depth analysis of four fine-tuning strategies, which
explores the trade-off between computational and mem-
ory requirements and their prediction performance in a
real-world scenario. Our results show a regression per-
formance improvement up to 30% of our self-supervised
method against a non-fine-tuned baseline, which grows
to 56% when using ground-truth labels.

• On-device implementation and profiling of the resulting
best fine-tuning approach, requiring only 6.6 s@102 mW
and 511 ms@38 mW for fine-tuning on 512 images (5
epochs) on the GAP8 and GAP9 SoC, respectively.

• An in-field evaluation in a very challenging deployment
field where the SotA PULP-Frontnet baseline fails in
following the user, while all self-supervised fine-tuned
models can complete between 92 and 100% of the
expected path (over 3 runs for each model).

• A quantitative evaluation of the nano-UAV position error
resulting from an autonomous closed-loop controller that
uses the fine-tuned model for perception. Compared to
a pre-trained perception model, it reduces by 26% the
horizontal position error.

Our work marks the first real-world demonstration of on-
device learning aboard a nano-UAV, addressing the critical
domain shift problem and paving the way for more general
advancements in the scientific community.

II. RELATED WORK

Domain shift [5] is a significant challenge for machine
learning approaches in every field: models that perform well
on their training domain often underperform when deployed
because real-world conditions differ or even change over
time. Robotics further exacerbates the issue due to a scarcity
of training data, which compounds on hardware-constrained
platforms such as nano-UAVs, with the tiny DNN architectures
affordable aboard. Past efforts address this issue by better-
taking advantage of the limited real-world training data [14],
generating vast training datasets in simulation [15], and taking
advantage of additional sensors that are more robust to sim-
to-real domain shift (e.g., depth sensors) [16].

On-device learning is an emerging field that proposes a
radically different approach [17], [18], [19]: abandon the tra-
ditional train-once, deploy-everywhere paradigm by enabling
devices to adapt a model to their domain directly in the
field. Table I gives an overview of the most significant on-
device learning literature in chronological order. However,
applying on-device learning to nano-UAVs is still hurdled by
the limitations of the onboard sensors and computationally-
constrained processors. Compared to larger-scale drones [20],
nano-UAVs can only afford MCU devices with 1/1000th the
memory and computational power of their bigger counterparts.
Embodiments of the Parallel Ultra Low Power (PULP) plat-
form [21], in particular, have enabled a number of break-
through applications on nano-UAVs [3], [4]. Regarding on-
device learning on PULP devices, PULP-TrainLib [8] was re-
cently proposed to accelerate neural network back-propagation
through parallelization, software optimizations, and reduced
16-bit floating-point precision.

A number of approaches have been also demonstrated on
other embedded platforms. For example, gradient rescaling,
sparse updates, and compile-time graph optimization allow
PockEngine [11] to achieve 8-bit approximated backward
passes on STM32 MCUs. RLtools [9] introduce a highly
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Fig. 1. Human pose estimation task and reference frames [14].

portable on-device reinforcement learning implementation and
test it, among others, on an i.MX RT1060 MCU. Despite
being tailored for robotics applications, RLtools focus on fully
connected models and control tasks, while our focus is on
more computationally intensive perception tasks with CNN-
based methods.
Various approaches propose to reduce the re-training workload
through spare updates, i.e., by fine-tuning only a subset
of the model parameters [6], [7], [10], [12]. Mudrakarta et
al. [6] limits updates to just the batch normalization layers,
which TinyTL [7] further reduces to only the bias parameters.
The latter translates to significant memory savings (up to
6.5×) by not storing activation maps during the forward pass
since they are needed only for back-propagation to weight
parameters, not biases. TinyTrain [10] introduces a dynamic
strategy based on task-adaptive sparse updates, which achieves
a 5.0% accuracy gain on image classification benchmarks
and reduces the backward-pass memory and computation by
up to 2.3× and 7.7×, respectively. LifeLearner [12] applies
lossy compression to the stored activation maps to reduce
their size in memory by at least 11.4×. Crucially, these
methods are tested only on image classification tasks and
assume that a training dataset with ground-truth labels is
provided externally. Further, not all methods are deployed and
evaluated on the target embedded devices. On the contrary,
our approach extends these techniques [6], [7] to a regression
task, and deploys them on-device and in the real world, where
ground-truth labels are not readily available. Addressing these
fundamental problems has a far-reaching impact on many real-
life perception problems.

Exploiting self-collected data and deriving supervisory in-
formation exclusively from onboard sensors (as opposed to ex-
ternal infrastructure, manual annotation, or user intervention)
is the core idea of self-supervised learning. Three categories of
approaches have been recently applied in autonomous robotics.
Most approaches derive noisy approximations to the ground-
truth labels using task-specific methods, such as exploring
an environment with a drone until it crashes [22] or while
continuously measuring its distance from the surrounding envi-
ronment [23]. Others learn a secondary task, for which ground-
truth labels are known to the robot, as a pretext for learning
the task of interest, for which no or little data is available.
Namely, predicting a quadrotor’s sound from camera images
is a strong proxy for estimating its location [24]. Additionally,
a masked autoencoder for image reconstruction can be adapted

Fig. 2. Robot platform: Crazyflie 2.1 with AI-deck and Flow-deck boards.

to perform a range of robot manipulation tasks [25]. Finally,
audio, optical flow, and depth estimation are useful pretexts for
visual odometry [26]. The third group imposes geometric con-
sistency constraints to improve model predictions: an object
pose estimation model must be consistent over time with the
robot’s ego motion [27], while visual odometry between pairs
of camera images must satisfy the transitive property [28]. The
photometric reprojection error is another common constraint
used to train self-supervised monocular depth [29], optical
flow [30], and visual odometry [31], [32] models.

Our work proposes a self-supervised fine-tuning process
based on an ego-motion consistency loss and approximated
labels derived through task-specific collaboration with the
user. However, in contrast to the above approaches, which
assume abundant self-supervised data, we are tightly con-
strained by the amount of fine-tuning data we can store on
our embedded system’s 8MB DRAM memory. Additionally,
previous consistency approaches assume self-supervised labels
that are noisy but fully measurable (e.g., learning object
pose estimation in the presence of odometry error while the
object remains still [27]). By comparison, we also deal with
inherently unknown data, such as the movements of human
subjects.

III. BACKGROUND

A. Regression task

We demonstrate our approach aboard an autonomous nano-
UAV that performs the human pose estimation task [2]. A
perception CNN takes gray-scale 160× 96 px camera frames
and estimates the subject’s 4DOF pose [x, y, z, ϕ], relative to
the drone’s horizontal frame as shown in Figure 1. Therefore,
the model output poses do not depend on the pitch and
roll orientations of the drone and human subjects. The poses
are processed with a Kalman filter and fed to a closed-loop
velocity controller that autonomously flies the drone, keeping
a fixed distance ∆ in front of the human subject and centering
them in the image.

B. Robotic platform

Our target robot is the Bitcraze Crazyflie 2.1, a commercial
off-the-shelf (COTS) nano-UAV, extended by the pluggable
AI-deck and Flow-deck companion boards as depicted in
Figure 2. Table II compares the computational and memory
resources available on this drone. The Crazyflie relies on
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TABLE II
COMPARISON OF SOCS ABOARD CRAZYFLIE NANO-UAVS

SoC
(ISA)

CPU
cores

L1
[kB]

L2
[MB]

L3
[MB]

SIMD
instr. FPUs

Max freq.
[MHz]

Power
[mW]

STM32
(ARM) 1 64 0.1 – – 1 168 116

ESP32
(Xtensa) 2 32 0.5 – – 2 240 300

GAP8
(RISC-V)

8
(+1) 64 0.5 8 ✓ – 175 96

GAP9
(RISC-V)

9
(+1) 128 1.5 32 ✓ 4 370 66

an STM32 single-core microcontroller unit (MCU) for low-
level flight control and state estimation. It can reach up to
7 min flight time on a single 380 mA h battery. The AI-deck
extends onboard sensing and processing capabilities with a
GreenWaves Technologies (GWT) GAP8 SoC and a Himax
HM01B0 gray-scale QVGA camera, while the Flow-deck
provides a time-of-flight laser-based altitude sensor and an
optical flow sensor to improve the drone’s state estimation
for autonomous flight.

The GAP8 SoC is an embodiment of the parallel ultra-low
power platform (PULP) [21], shown in Figure 3. It features
two power domains: a computationally-capable 8-core cluster
(CL) and a single-core fabric controller (FC), in charge of
data orchestration for the CL’s execution. All cores are based
on the RISC-V instruction set architecture; the FC can reach
up to 250 MHz, while the CL peaks at 175 MHz. The on-
chip memories are organized in a fast 64 kB scratchpad L1
and a slower 512 kB L2 memory. Additionally, the AI-deck
features also 8 MB off-chip DRAM memory and 64 MB Flash.
Finally, the GAP8 does not provide any hardware support for
floating-point calculations and requires either costly soft-float
emulation (10× overhead) or fixed-point arithmetic through
quantization.

The next-generation SoC GAP9 marks significant improve-
ments compared to GAP8, as shown in Table II. Most sig-
nificantly, GAP9’s CL includes four shared floating point
units (FPUs), which execute floating-point instructions in
a single clock cycle. In the context of on-device training,
floating-point hardware support is extremely valuable for back-
propagation, for which the basic primitives are implemented
in the PULP-TrainLib [8] software library. For convolutional
layers, PULP-TrainLib running on the GAP9 achieves a peak
performance efficiency of 5.3 and 4.6 multiply-accumulate
operations (MAC) per clock cycle for, respectively, the forward
and backward passes.

C. Baseline models

We demonstrate our approach on the PULP-Frontnet
CNN [2], a field-proven model for human pose estimation
aboard nano-UAVs. The architecture, in Figure 4 is composed
of eight convolutional layers, based on the pattern conv,
batch norm, ReLU, and one fully connected, for a total of
304 k parameters. The total computational load for inference
is 14.3 MMAC (million MAC) per frame, which leads to
a throughput of 48 Hz while consuming only 96 mW when

Fig. 3. The parallel ultra-low power System-on-Chip architecture (PULP).
Cluster cores perform parallel computationally intensive workloads, while a
fabric controller orchestrates data transfers through two direct memory access
(DMA) units. Optional floating-point units (FPU) are shared in the cluster.

deployed with 8-bit integer quantization on the GAP8. By
comparison, computing one update step (forward + backward)
for the entire architecture requires 3.7× as many operations
(53.1 MMAC).

Initial training: we employ two datasets for human pose
estimation in the initial training, from which we obtain two
baseline models. The first [2] is acquired in the real world and
contains 2.6 k training samples with mm-precise mocap-based
labels. The second [16] provides 75 k images and ground-truth
labels from the Webots simulator. In line with the state of the
art [2], we train the models with the Adam optimizer at a
learning rate of 10−3 for 100 epochs, choosing the best model
during validation.

IV. METHOD

A. On-device fine-tuning

For our fine-tuning procedure, we implement the full back-
propagation algorithm on an ultra-low power embedded de-
vice. As in [8], we consider a feed-forward neural network
of N layers. Each layer computes a non-linear function f
parameterized by a weight tensor Wi:

Yi = fWi
(Xi) i ∈ 0, . . . , N − 1 (1)

where Xi and Yi are input and output tensors. The network is a
composition of the layers, where each layer’s input Xi = Yi−1

is the previous layer’s output, up to the model’s input X0.
We train the network on a loss function L defined on the

model outputs. An optimization procedure, e.g., stochastic
gradient descent (SGD), iteratively updates the weights Wi

to minimize L according to the update rule:

Wi ←Wi + ηdW i (2)

based on the gradients of the loss function w.r.t. each weight,
dW i = δL/δWi, and a learning rate η.

Back-propagation enables efficient computation of the gra-
dients through the gradient chain rule. It performs a forward
pass (FW), which computes the model’s output YN−1 and the
loss function, followed by a backward pass (BW). For each
layer starting from the last, the BW pass computes the input
gradient dX i, used to propagate the errors to the previous
layers (BW-IG), and the weight gradient dW i, used to update
the layer’s own parameters (BW-WG).
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Fig. 4. PULP-Frontnet [2], our target CNN architecture with 9 layers and 304 k parameters. Inference requires 14.3 MMAC operations per frame.

TABLE III
MEMORY AND COMPUTATIONAL REQUIREMENTS OF FINE-TUNING METHODS

Fine-tuning
strategy

Params
[k]

Memory [kB/frame] Computation [MMAC/frame/step]

Input Activations Weight grads Tot. FW BW-IG BW-WG Tot.

all 304.4 (100%) 15.0 (u8) 870.0 (f32) 1188.9 (f32) 2073.9 14.3 24.5 14.3 53.1
bn 1.0 (0.33%) 15.0 (u8) 585.0 (f32) 3.8 (f32) 603.8 14.3 24.4 0.10 38.8

bias 0.5 (0.15%) 15.0 (u8) 0.8 (u1) 1.9 (f32) 17.7 14.3 24.4 – 38.7
fc 7.7 (2.5%) 1.9 (u8) – 30.0 (f32) 31.9 0.01 – 0.01 0.02

The trainable parameters for affine layers, such as convolu-
tion, fully connected, and batch normalization, are weight Wi

and bias Bi tensors. Thus, their BW-IG and BW-WG steps
correspond, respectively, to the products:

dX i = dY i · δYi/δXi = dY i ·WT
i (3)

dW i = δYi/δWi · dY i = Xi · dY i (4)
dB i = δYi/δBi · dY i = 1 · dY i (5)

Crucially, BW-IG and BW-WG make neural network train-
ing ∼3× as computationally expensive as inference (which
executes only the FW phase). In addition, computing dW i

requires storing intermediate outputs Xi from the FW to the
BW pass, quickly making training unfeasible on memory-
constrained embedded devices. Finally, weights and weight
gradients typically have order-of-magnitude differences in
scale, which complicates resorting to reduced precision arith-
metic (16-bit float or quantized int). Thus, we focus our
implementation to 32-bit float arithmetic.

Fine-tuning strategies: Our hardware limitations motivate
us to investigate strategies to reduce the cost of the fine-tuning
workload. We select four fine-tuning strategies from the family
of sparse updates, adhering to two design constraints: i) each
strategy updates a fixed subset of the model parameters, ii)
each subset contains a uniform type of parameters (e.g., batch
normalization, fully connected, or biases). Under these con-
straints, the strategies follow from optimizing different regres-
sion performance/memory/computation trade-offs due to the
characteristics of each layer’s forward and backward phases.
In Table III, we analyze the workload of one optimization step
(FW + BW) with our architecture on a single frame, depending
on which subset of model parameters is updated.

(a) Entire model (all): our baseline setting is to update the
weight and biases of every layer in the model, the most expen-
sive method at 53 MMAC per frame. In addition, it requires
storing all intermediate activations and weight gradients, which
in 32-bit floats amount to 2 MB for a single frame, 25% of

the AI-deck’s 8 MB DRAM, which is also needed to store our
fine-tuning dataset.

(b) Only batch-norm layers (bn): batch normalization layers
contain a mere 0.33% parameters of the entire model while
significantly impacting model performance [6]. This method
requires 70% less memory and 26% less computation due to
the smaller weight gradients.

(c) Only biases (bias): as BW-WG of the biases is simply
the BW-IG of the following layer, full intermediate activations
don’t need to be stored [7]. The 1-bit signs of the intermediate
activations are still needed for BW-IG of ReLU non-linearities,
0.8 kB per frame. Total memory decreases to just 17.7 kB,
while computation remains comparable to bn.

(d) Only the fully-connected layer (fc): by far, the greatest
reduction comes from fine-tuning only the final layer of the
network, although this also has the least expected improvement
among the four methods [7]. The forward pass of all layers
up to the final fully connected one can be pre-computed
just once at the beginning of fine-tuning, a 99.9% reduction
in computation. In our implementation, this pre-computed
forward pass is further quantized to 8-bit integers and runs in
real-time at 48 Hz during fine-tuning set acquisition. The fine-
tuning dataset then only stores the resulting feature vectors
(1920 elements) instead of full input images (160 × 96 px),
reducing memory storage by 98.1%.

Hyper-parameters: compared to the initial training, we
substitute Adam with stochastic gradient descent (SGD) due to
3× lower computation cost. With hyper-parameter search, we
set the learning rate to 10−2 to retain comparable regression
performances to Adam. Additionally, we select a fine-tuning
set size of 512 samples, such that the entire dataset fits the AI-
deck’s 8 MB DRAM memory even for methods that require
storing the full input images (7.8 MB), and set five epochs as
fixed fine-tuning length. We always select the final model at
the end of fine-tuning, thus avoiding storing multiple model
checkpoints.

Data augmentation: we employ standard photometric data
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Fig. 5. Loss functions: A) task loss, B) original state-consistency loss [27], and C-D) our state-consistency loss with uncertain drone odometry and moving
subject. Subject movements are either C) known or D) unknown (subject assumed still). The depicted reference frames represent drone D and subject H
ground-truth poses, at times i and j, and the corresponding relative poses estimated by, respectively, drone odometry D̂ and model predictions H∗.

augmentations, including exposure and contrast adjustment,
Gaussian noise, box blurring, and vignetting. These transfor-
mations operate mostly pixel-wise, benefiting from paralleliza-
tion and high spatial locality, allowing efficient implementa-
tions on embedded devices such as GAP SoCs. Furthermore,
we randomly flip images and ground-truth labels horizon-
tally to guarantee the fine-tuning set follows a symmetric
distribution along the y axis and yaw orientation. Similarly,
we randomly apply time reversal when fine-tuning with state
consistency to impose that relative poses T

Dj

Di
and T

Hj

Hi
also

respect a zero-mean symmetric distribution (i.e., centered on
the identity).

B. Self-supervised loss

We perform self-supervised learning with the state-
consistency loss introduced by Nava et al. [27]. We consider
a dataset of fine-tuning samples acquired at timesteps i ∈ T ,
where each sample comprises an image from the drone’s
camera and the drone’s and subject’s poses. We define TB

A

in SE(3) as the relative pose of reference frame B w.r.t. A.
The fine-tuning process minimizes the loss function

L = Ltask + λscLsc, (6)

composed of a task loss term Ltask and a state-consistency
loss term Lsc. In accordance with [27], we set λsc = 1.
Figure 5 depicts the two loss terms and their effects on model
predictions. The task loss is defined on individual timesteps
i, taken from the (possibly empty) subset Tt ⊆ T for which
target relative poses THi

Di
are known:

Ltask =
1

|Tt|
∑
i∈Tt

∆(T
H∗

i

Di
,THi

Di
), (7)

where TH∗
i

Di
represents the model’s estimate of the subject w.r.t.

the drone relative pose at time i and ∆(T1,T2) is a distance
function between relative poses, which we define as the L1
loss between 4DOF pose vectors (x, y, z, ϕ)1.

When THi

Di
are ground-truth relative poses (e.g., acquired by

a motion capture system), this loss is equivalent to ordinary
supervised learning. Noisy estimates can also be used as THi

Di
.

1Angles are expressed in radians and angle differences are computed on
the circle group, to account for discontinuities at ±π. This weighs equally
position errors of 1 m and rotation errors of 1 rad, which is a reasonable
heuristic in our setting.

Our experiments explore the case when the relative pose is
known at a time i, and the subject subsequently remains still,
which allows us to define the relative pose at a later time
j as T

Hj

D̂j
= TDi

D̂j
THi

Di
. The relative pose T

D̂j

Di
indicates the

(possibly noisy) odometry estimate of the drone’s pose at time
j w.r.t time i.

The state-consistency loss is defined instead on pairs of
timesteps i and j = i + dt at a fixed time delta (a hyperpa-
rameter) sampled from the subset Tsc ⊆ T :

Lsc =
1

|Tsc|
∑
i∈Tsc

∆(TDi

H∗
i
T

D̂j

Di
T

H∗
j

Dj
, THi

Hj
), (8)

where THi

Hj
is the subject’s relative pose at time j w.r.t time i.

Compared to [27], we reformulate the state-consistency loss
to model drone and subject movements separately. Noisy
estimates for the former are generally available through drone
odometry, while the latter are not known by the drone. In the
experiments, we evaluate the regression performance impact
of these sources of uncertainty individually as depicted in
Figure 5-BCD. Subject movements THi

Hj
will be replaced by

the identity matrix I, i.e., we assume the subject stands still.

C. Embedded implementation

We implement the proposed fine-tuning process in optimized C
code for the PULP architecture. Figure 6 shows the algorithm
pipeline, depicting dependencies and concurrent operations.
We compute the forward, loss function, and backward passes
using hand-written 32-bit float kernels that operate entirely
in L1 memory. The 512-sample fine-tuning set, composed of
input images and the corresponding 4-element label outputs,
totals 7.8 MB stored as 8-bit quantized integers in the off-chip
L3 memory. The fc method, which only ever needs to perform
the forward pass before the fully-connected layer once (see
Section IV-A), stores just the fully-connected layer’s 1920-
element input features and label outputs (∼1 MB).
During fine-tuning, the dataset is processed in 16 batches of
32 samples each. Each batch is transferred from L3 to L2
memory, while samples are transferred to L1 memory one
by one. Both transfers exploit the SoCs’ DMA peripherals.
Weight gradients are accumulated in L1 memory and applied
to the weights once per batch. The updated weights are written
out to L2 at the end of each epoch.

Optimizations: In our kernel implementations, we apply
four software optimizations to exploit the target platform’s
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Fig. 6. One epoch of the fine-tuning pipeline on GAP9 with all optimizations (8 cores, L3-L2 double buffering, loop unrolling, and L1 memory).

TABLE IV
AVERAGE REGRESSION PERFORMANCE

Train on Fine-tune on MAE R2 [%] cfr. Fig. 7

real
world

– 0.50 -9.3 (A), SotA [2]
env. 0.39 23.5 –

env. + subj. 0.35 41.5 –

sim.
– 0.61 -55.0 (B), SotA [16]

env. 0.38 29.1 (C)
env. + subj. 0.27 57.4 (D)

hardware architecture efficiently.
i) Double buffering: L3-L2 memory transfers are constrained
by the limited off-chip memory bandwidth (∼90 MB/s). As
shown in Figure 6, we introduce double buffering to schedule
DMA transfers concurrently with forward/backward computa-
tion, thereby fully hiding transfer latency (except for the first
batch in each epoch).
ii) Loop unrolling: on GAP chips (strictly in-order architec-
tures), memory instructions suffer from load stalls due to
access latency. To hide these latencies, we manually unroll
4 iterations of our kernels along the output tensor dimension.
iii) L1 memory: We take advantage of the cluster L1 memory
area (64 kB on GAP8, 128 kB on GAP9, single-cycle access
time) for every buffer (i.e., input, outputs, labels, weights, and
weight gradients) in the inner loops of our kernels. The cluster
DMA handles L2-L1 transfers sample-by-sample.
iv) Parallelization: We take advantage of the GAP chips’
multi-core cluster by executing the forward/backward compu-
tation on 8 cores, with a blocking strategy that distributes work
among cores along the input tensor dimension. Section V-C
measures the latency improvements of each optimization in-
dividually.
Quantization: At inference time, we run the int-8 quantized

model obtained through Parameterized Clipping Activations
(PACT) [33] and Quantization-Aware Training (QAT). The
quantization process is first performed offline on the non-
finetuned baselines through the same deployment pipeline
adopted by the original works [2], [16]. These quantized initial
model parameters are deployed to our SoC’s Flash memory. At
fine-tuning time, the quantized weights are loaded and dequan-
tized to a 32-bit floating-point in the on-chip L2 memory. Fine-
tuning is then performed entirely in floating-point arithmetic.
Updated weights are quantized again at the end of the fine-
tuning process to the same 8-bit integer representation used for
inference. In particular, we found the overall scale of model
parameters does not change significantly during fine-tuning.

Fig. 7. R2 scores [%] for each combination of fine-tuning and test subjects.

As such, we quantize using the same quantization parameters
(quantization ε and bit precision) as the non-finetuned model,
without repeating QAT.

V. RESULTS

A. Fine-tuning strategy

We start our experiments by analyzing the proposed fine-
tuning methods offline in the PyTorch framework on a set
of 4.7 k real-world images from [14]. This dataset comprises
18 in-flight sequences from three subjects in challenging
situations, e.g., different subject appearances, dynamic mo-
tions of both subjects and the drone. It is collected with the
same robotic platform introduced in Section III (including the
Himax camera) and is used both for fine-tuning the pre-trained
models and testing them. This dataset stresses the domain shift
problem, as it represents a completely novel domain for the
baseline models, which are trained either entirely in simulation
or in a different real-world environment.

For each subject, we select a random temporally-contiguous
128 s segment of the dataset (512 samples @ 4 Hz) as the
fine-tuning set, while the rest is used as the test set. To
provide unbiased measures of regression performance, we
discard 100 contiguous samples (25 s) between fine-tuning and
test segments, and we apply cross-validation, repeating 3 runs
for each subject with different random fine-tuning segment (9
total experiment runs). At most, 75% of each subject’s samples
are used as the fine-tuning set.

Baseline performance: A lower bound on the test re-
gression performance achieved by our models is obtained by
not doing any fine-tuning. An upper bound corresponds to
fine-tuning in the best-case scenario: we fine-tune all model
parameters, i.e. method all, entirely on the task loss (i.e.,
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Fig. 8. Regression performance across loss functions. The self-supervised
loss (SSL) is computed entirely on data from the drone’s onboard sensors
and reaches up to 50% of the MAE improvement of the supervised loss t(a).

Tt = T and Tsc = ∅) and assuming perfect knowledge of
the drone and subject poses.

Table IV reports the resulting mean absolute errors (MAE)
and R2 scores2. Figure 7 breaks down these results by the test
subject, both on the four individual regression outputs and
as an average. Model (A), trained on real-world data and not
fine-tuned, represents the performance of the original PULP-
Frontnet [2] on our test set. Model (B) is trained on simulated
data, is not fine-tuned, and constitutes our lower bound.

For the fine-tuned models, we report several averages: (D)
reports the average performance of a model when tested on
the same subject and the same environment that it was fine-
tuned on; (C) is the average performance of a model, tested
on a different subject (but the same environment) that it
was fine-tuned on. Table IV shows that, despite the higher
initial performance, the models trained with real-world data
achieve a poorer fine-tuned performance than those trained
on simulation data. This confirms that training on a larger
and more varied simulation train set translates to a model that
better adapts to unseen subjects and environments when fine-
tuned. Therefore, in the following experiments, we focus on
scenario (D): models trained on simulated datasets and tested
on the same subject and environment they were fine-tuned on.

Self-supervised learning: in Figure 8, we report our fine-
tuning results obtained when ground-truth labels are unavail-
able. We consider three setups for the drone pose – perfect
absolute pose, perfect odometry (dm), and uncertain odometry
(do) – and three for the pose of the human subject – perfect
absolute pose, perfect odometry (sm), and unknown (si).

When perfect absolute poses are known for both drone and
subject, we have the ground-truth information to fine-tune
using Lt (i.e., regular supervised learning). The supervised

2The R2 score is a normalized metric of regression performance that aids
comparisons among different sets of data. A perfect model scores 100%, while
a dummy model always predicts the test set mean scores zero.

TABLE V
REGRESSION PERFORMANCE COMPARED ACROSS FINE-TUNING METHODS

Fine-tuning none all bn bias fc

M
A

E Supervised 0.61 0.27 0.36 0.39 0.45
SSL – 0.43 0.43 0.46 0.47

case where these are known for all samples, considered in all
previous experiments, is named t(a) and reaches MAE 0.27.

To reduce our reliance on privileged information, we assume
only odometry is known, i.e. relative poses between two
instants in time. When odometry is perfect for both drone and
subject on all samples sc(a,dm, sm), we can fine-tune using
Lsc, which achieves 93% of the ideal improvement. Uncertain
drone odometry sc(a,do, sm) also has a limited impact on
performance and achieves 85% of the ideal. Performance
improves at higher state-consistency time deltas dt (horizontal
axis), as imposing state-consistency between samples farther
in time carries a larger information content.

On the other hand, an unknown subject odometry
sc(a,do, si) drastically reduces performance3. In this case, in
order to compute Lsc, we assume that THj

Hi
= I, i.e., that the

subject is always still. Although the time reversal augmentation
ensures this holds on average, i.e., the fine-tuning set has
E[THj

Hi
] = I by design, the model degenerates to a dummy

predictor that always outputs a constant value.
To address the above issue, we design a cooperative scenario

in which the subject moves to a known pose w.r.t. the drone
(e.g., 1 m in front of the drone, directly facing the camera and
centered in the field of view). While the subject stands still,
the drone randomly moves around to acquire a small number
of samples. The procedure is repeated from multiple start
locations in the environment to acquire highly diverse fine-
tuning data. We test this scenario, called t(r32) + sc(a,do, si),
by selecting a random 32-sample subset of frames on which
we optimize Lt. It relies on realistic in-field infrastructure-
free data acquisition and achieves a significant improvement,
up to 39%. As such, we select it as the SSL loss function
in the following experiment, in the best-performing dt = 2 s
configuration.

Fine-tuning methods: in Table V, we explore the effec-
tiveness of methods that reduce the fine-tuning workload by
limiting the subset of model parameters to update. Full fine-
tuning, named all, sets the lower bound at an MAE of 0.27
(−56 % compared to the non-finetuned baseline). Optimizing
only the batch-norm layers, bn, is second best, followed
closely by fine-tuning the biases, bias. Fine-tuning the final
fully connected layer, fc, performs the worst, but notably still
shows an MAE improvement of −26 %.

B. In-field experiments

In this experimental section, we assess the end-to-end per-
formance of our system when deployed in the real world, i.e.,

3The case with unknown subject odometry but perfect drone odometry
sc(a, dm, si), omitted, exhibits similar behavior.
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TABLE VI
IN-FIELD EXPERIMENT RESULTS (AVERAGE OVER 3 RUNS).

THE SYMBOL * MARKS PREMATURELY FAILED RUNS.

Model
Completed
path [%]

R2 [%] Control error

x y ϕ exy [m] eθ [rad]

mocap 100 100.0 100.0 100.0 0.18 0.21

So
tA real world [2] 0 -80.7 26.3 1.9 2.68* 0.32*

simulator [16] 91 9.0 42.1 12.7 1.05* 0.37*

Su
pe

rv
is

ed all 100 64.5 75.8 24.6 0.70 0.47
bn 76 53.4 62.3 20.5 0.60* 0.30*
bias 100 46.3 55.2 18.8 0.72 0.46
fc 100 44.9 54.5 15.6 0.67 0.47

SS
L

all 92 36.2 55.4 21.1 1.03* 0.45*
bn 100 33.9 54.1 14.6 1.00 0.59
bias 100 33.3 48.8 15.8 0.99 0.43
fc 100 32.9 48.0 15.8 0.78 0.42

in the field. We challenge our models in an environment and
test subject combination that significantly differs from those
seen during initial training. As described above, we collect a
512-sample fine-tuning dataset, then fine-tune eight models:
four fine-tuning methods, all, bn, bias, and fc, multiplied by
two loss functions, supervised and self-supervised. We record
three flights for each of our two baselines and eight fine-tuned
models (3× 10 = 30 flights), plus one additional flight based
on the perfect mocap position of the subject, for a total of 31
test flights. As the GAP9 SoC is not currently available on a
COTS module for the Crazyflie, for in-field experiments, we
deploy all fine-tuned models on GAP8, applying 8-bit integer
quantization to achieve a real-time inference throughput of
48 frame/s.

We reproduce the same testing procedure introduced in [2]:
the human subject walks a predetermined path, with distinct
phases designed to stress the different components of the
model prediction, while the fully autonomous nano-UAVs
must stay in front of the subject at a distance of 1.3 m. The
results are summarized in Table VI, where we report the path
completion (in percentage), the R2 regression performance,
and the control errors, all of them averaged over the three
runs of each model4.

We define path completion as the percentage of the expected
path the drone can follow, and we conclude the test if the
subject exits the camera’s field of view or the drone leaves
our 6 × 6m flight arena. The SotA real-world baseline [2]
immediately fails the experiment: it moves away from the
subject instead of approaching, thus completing 0% of the
path. The SotA simulator baseline [16] manages to follow the
subject two out of three runs for the entire path, resulting in a
completion score of 91%. Fine-tuned models track the subject
until the end of every experiment, except one run each of the
supervised bn and self-supervised bias models. The supervised
bn run is aborted because the drone comes close to the subject,
while the drone in the self-supervised all run drifts out of the
arena.

4Supplementary video material for the in-field experiments available online:
https://youtu.be/3yNbMwszpSY

TABLE VII
ON-DEVICE FINE-TUNING COST (5 EPOCHS)

SoC and operating point
(Vdd, FC and CL frequencies)

Latency
[ms]

Avg. Power
[mW]

Energy
[mJ]

G
A

P8

most energy efficient 18 899 24.6 464.7
(1.0 V, 25 MHz, 75 MHz)

peak throughput 6553 101.5 664.9
(1.2 V, 250 MHz, 175 MHz)

G
A

P9

most energy efficient 785 18.7 14.7
(0.65 V, 240 MHz, 240 MHz)

peak throughput 511 38.3 19.5
(0.80 V, 370 MHz, 370 MHz)

The second metric analyzed in Table VI is the R2, which
indicates the regression performance on a test set. For compa-
rability between models, we build this test set from all 31 test
flights, resulting in 60 104 images. The relative trends between
models closely follow those in Section V-A, i.e., fine-tuned
models outperform the simulator baseline by up to 55%, and
self-supervised models also manage a 27% improvement.

Finally, the last metric we present in Table VI is the control
performance, which is composed of the mean horizontal
position error exy and the mean absolute angular error eθ.
The former is computed against the desired position of the
drone (i.e., 1.5 m in front of the subject) while eθ accounts
for the drone orientation vs. the desired one (i.e., facing the
subject). Compared to the two SotA baselines, the supervised
models improve the in-field control performance by −36%
on exy . Self-supervised models all, bn, and fc show only
a minor reduction in control error compared to the SotA
simulator baseline (i.e., −6% on exy), while fc marks a clear
improvement w.r.t the same baseline, with exy of just 0.78 m.

This last result on the SSL fc remarkably shows only a
minor degradation (only 16%) in control performance com-
pared with the vastly costlier supervised all, i.e., 10 000×
more operations and 200× more memory than SSL fc. To
further investigate this key finding, we show in Figure 9
the individual predictions of each model. From these, we
notice the real-world baseline consistently under-estimates x,
outside the controller convergence zone (in green). On the
contrary, all fine-tuned models show improved performance
compared to the baselines. Self-supervised models reduce
prediction noise even more than supervised models but show
stronger miscalibration w.r.t. the ground-truths, which should
be explored in future work. The better control performance by
SSL fc w.r.t. the other three SSL models is explained by the
inability of the latter three to estimate phi .

C. On-device fine-tuning

As a final experiment, we deploy the proposed method on
the GAP8 and GAP9 SoCs and profile its workload. Due to
its computational and memory advantages, combined with the
highest in-field self-supervised performance, we focus on fc
for on-device deployment.

Figure 10 shows the detailed power traces for one fine-
tuning epoch at different operating points. Instead, Table VII

https://youtu.be/3yNbMwszpSY
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Fig. 9. Predictions (vertical) vs. ground-truths (horizontal) for each model during its three in-field experiment runs. Dashed diagonals correspond to a perfect
predictor. Green lines mark the control setpoints: predictions in the green area contribute to drive the drone towards the desired pose.

Fig. 10. Power traces for one epoch of the fc fine-tuning method, on A-B) GAP8 and C-D) GAP9. SoCs are configured in the A-C) peak throughput and
B-D) most energy efficient operating points. E) Details of the first two batches on GAP8 at peak throughput, with power consumption broken down into fabric
controller and cluster power domains.

provides aggregate metrics on the fine-tuning process com-
posed of 5 epochs. The zoom-in on the first two batches
in Figure 10-C highlights the sequence of forward (FW)
and backward (BW) passes with their distinct power con-
sumption patterns. The breakdown into fabric controller and
cluster power consumption shows the double-buffered DMA
transfers perfectly overlapped with computation to hide their
latency. GAP8 and GAP9 exhibit similar behavior, albeit
at significantly different time scales: soft-float emulation on
GAP8, due to the lack of FPUs, introduces more than 10×
overhead. As a result, in the peak throughput configuration of
GAP8, one epoch takes 1311 ms vs 102 ms on GAP9. GAP9
also more than halves the average power consumption from
102 mW to 38 mW, which compounds to reduce the energy

required for fine-tuning by 34×. The most energy efficient
configuration captures the case in which conserving energy
is more important than the fine-tuning latency (e.g., when
the drone lands to perform the fine-tuning process). In this
operating point, GAP9 reduces energy consumption by −25%
compared to peak throughput while increasing fine-tuning
latency by 53%. These results confirm the feasibility of on-
device learning aboard ultra-low power embedded devices in
a real-world robotic application.

Figure 11 measures the impact of the software optimizations
described in Section IV-C on our kernels’ performance for
the fc fine-tuning strategy. Combined, the four optimizations
achieve an 80× speed-up compared to a baseline platform-
agnostic C implementation. Specifically, double buffering
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Fig. 11. Latency comparison between kernel implementations with different
optimization levels. One batch on GAP9 at the “peak performance” operating
point.

hides the latency of L3 DMA transfers by overlapping them
with computation. Albeit this has limited impact on the
baseline implementation, DMA transfers impose a fixed 20 ms
cost that is not impacted by other optimizations, i.e., they
would account for more than 50% of total latency of a fully
optimized implementation. Loop unrolling, on the other hand,
hides load stalls due to L2 accesses. Four-iteration unrolling
on the output tensor dimension (i.e., a fully-unrolled kernel, as
our model has four-element outputs for the fc strategy), yields
a −30% improvement. The most impactful improvement, more
than 9×, is achieved by exploiting L1 memory for all buffers
in the kernels’ inner loops, with L2-L1 transfers handled by
DMA. Finally, parallelization yields a 5× improvement by
distributing work among our chip’s 8 cores (i.e., a 60% scaling
efficiency).

VI. CONCLUSION

We present on-device learning aboard nano-drones to miti-
gate the general TinyML problem of domain shift. Our fine-
tuning approach requires only 19 mW, 1 MB of memory, and
runs in just 510 ms (5 epochs) on the best-in-class GWT GAP9
SoC. We employ self-supervised learning to cope with the
lack of ground-truth labels aboard our UAV. In-field results
show an improvement in control performance up to 26% vs. a
non-fine-tuned SotA baseline, making the difference between
mission failure and success in a never-seen-before challenging
environment.
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