IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

FlexBCM: Hybrid Block-Circulant Neural Network
and Accelerator Co-Search on FPGAs

Wengqi Lou, Member, IEEE, Yunji Qin, Xuan Wang~, Lei Gong"™', Member, IEEE,
Chao Wang™“', Senior Member, IEEE, and Xuehai Zhou

1 Abstract—Block-circulant matrix (BCM) compression has
2 garnered much attention in the hardware acceleration of convolu-
3 tional neural networks (CNNs) due to its regularity and efficiency.
+ However, constrained by the difficulty of exploring the compres-
s sion parameter space, existing BCM-based methods often apply
6 a uniform compression parameter to all CNN models’ layers,
7 losing the compression’s flexibility. Additionally, independently
s optimizing models or accelerators makes achieving the optimal
9 tradeoff between model accuracy and hardware efficiency chal-
10 lenging. To this end, we propose FlexBCM, a joint exploration
11 framework that efficiently explores both the parameter com-
12 pression and hardware parameter space to generate customized
13 hybrid BCM-compressed CNN and field-programmable gate
12 array (FPGA) accelerator solutions. On the algorithmic side,
15 leveraging the idea of neural architecture search (NAS), we design
16 an efficient differentiable sampling method to rapidly evaluate
17 the accuracy of candidate subnets. Additionally, we devise a
18 hardware-friendly frequency domain quantization scheme for
19 BCM computation. On the hardware side, we develop the effi-
20 cient and parameter-configurable convolutional core (ConvPU)
1 alongside the BCM computing core (BCMPU). The BCMPU can
22 flexibly accommodate different compression parameters at run-
23 time, incorporate complex-number DSP packing and conjugate
24 symmetry optimizations. For model-to-hardware evaluation, we
25 construct accurate latency and resource consumption models.
26 Moreover, we design a fast hardware generation algorithm based
27 on the coarse-grained search to provide prompt feedback on the
2s hardware evaluation of the current subnet. Finally, we validate
29 FlexBCM on the Xilinx ZCU102 FPGA and compare its com-
30 pressed CNN-accelerator solutions with previous state-of-the-art
a1 works. Experimental results demonstrate that FlexBCM achieves
32 1.21-3.02 times higher-computational efficiency for ResNet18 and
33 ResNet34 models while maintaining an acceptable accuracy loss
3« on the ImageNet dataset.

N

Manuscript received 31 July 2024; accepted 1 August 2024. This work was
supported in part by the National Key Research and Development Program of
China under Grant 2022YFB4501600 and Grant 2022YFB4501603; in part
by the National Natural Science Foundation of China under Grant 62102383,
Grant 61976200, and Grant 62172380; in part by the Jiangsu Provincial
Natural Science Foundation under Grant BK20210123; and in part by the
Youth Innovation Promotion Association CAS under Grant Y2021121. This
article was presented at the International Conference on Hardware/Software
Codesign and System Synthesis (CODES + ISSS) 2024 and appeared as
part of the ESWEEK-TCAD Special Issue. This article was recommended by
Associate Editor S. Dailey. (Corresponding authors: Lei Gong; Chao Wang.)

Wengi Lou is with the School of Software Engineering, University of
Science and Technology of China, Hefei 230026, China, and also with
the Suzhou Institute for Advanced Research, University of Science and
Technology of China, Suzhou 215123, China (e-mail: louwenqi @ustc.edu.cn).

Yunji Qin, Xuan Wang, Lei Gong, Chao Wang, and Xuehai Zhou are
with the School of Computer Science, University of Science and Technology
of China, Hefei 230026, China (e-mail: leigong0203 @ustc.edu.cn; cswang @
ustc.edu.cn).

Digital Object Identifier 10.1109/TCAD.2024.3439488

Index Terms—Algorithm-hardware co-exploration, convolu-
tional neural network (CNN) compression, field-programmable
gate array (FPGA).

I. INTRODUCTION

NNS HAVE achieved a series of remarkable achieve-

ments in computer vision [1], [2], [3]. However,
their ever-increasing computational and memory volume
makes their deployment challenging, especially in resource-
constrained embedded scenarios. To this end, model
compression has emerged as an effective method to reduce
model redundancy [4], [5], [6]. Early unstructured pruning
reduces the model’s size but introduces irregularity in com-
putation and memory access, significantly complicating the
hardware design. Therefore, researchers have subsequently
proposed regular compression methods. Among them, block-
circulant matrix (BCM) compression has become a promising
technique for deploying neural networks [7], [8], [9] on field-
programmable gate arrays (FPGAs) due to its regular structure
and expressive power.

Despite the remarkable results of BCM compression in
model deployment, the current BCM-based hardware acceler-
ation works still face the following limitations.

1) Constrained Compression Space: Due to the FFT/IFFT

operations involved in the computation, the BCM-based
work usually sets the block size (BS) to a power of 2,
e.g., 4, 8, and 16. Then, all layers in the model are sub-
jected to a uniform compression parameter [7], [8], [9].
This scheme limits the compression space and neglects
that convolutional layers vary in their sensitivity to
compression. Fig. 1 illustrates the variation in accuracy
among different compression schemes with a simi-
lar compression ratio for the ResNetl8 (RN18) and
ResNet34 models.

2) Separate Model Compression and Hardware Design:
Previous works typically rely on expert experience
to set appropriate model compression parameters and
corresponding hardware design parameters. Although
separate optimization at the algorithmic and hardware
levels is feasible, research has shown that there are
interactions between algorithms and hardware, and
optimization at different stages often yields only subop-
timal solutions [10], [11], [12].

However, solving the above problem encounters the follow-

ing challenges.

1937-4151 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

35
36
37

38

39

40

4

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

https://orcid.org/0000-0003-3065-4606
https://orcid.org/0000-0002-8391-5526
https://orcid.org/0000-0002-9403-5575
https://orcid.org/0000-0002-8360-3143

80

81

82

83

84

85

86

87

88

89

920

91

92

93

94

95

96

97

98

929

100

1

=}

1

102

103

104

10

G

10

=3

10

<

10

@

10!

©

11

o

1"

12

"

w

114

115

116

17

118

119

120

121

122

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

©
>
@
o

o
o

©
2
@
S
o
=)

o
=)

MEM Ratio
Accuracy (%)
~
o
L

Accuracy (%)
N
S
=
MEM Ratio

©

=)

~

o
I

o
)

N

Var‘1i|la Bé-4 Bé-S BS‘-16 hBé-r hBé-o

(b)

Var‘]illa Bé-4 Bé-8 BS‘-16 hBé-r hBé-o

(a)

Fig. 1. Effect of block size on model accuracy in BCM compression for
(a) RN18 on CIFAR-10 and (b) RN34 on ImageNet-100 datasets. “Vanilla”
denotes the uncompressed model; “hBS” indicates layer-wise hybrid block
size selection; and “-r/0” indicates random or optimized selection.

1) At the algorithmic level, hybrid BCM compression
with layer-wise granularity entails a considerably larger
search space. For instance, RN34 has a compression
space greater than 10'°, and the expanded compression
space does not guarantee good accuracy (e.g., “hBS-r”
in Fig. 1). Training all possible subnets to obtain the
accuracy ranking involves prohibitive time costs.
At the hardware level, previous accelerators based on
BCM compression adopt a fixed dataflow. After static
configuration, the accelerators cannot support different
block sizes at runtime. Hence, a flexible computing core
is required to support compressed convolutional layers
with different block sizes.
At the model-to-hardware evaluation level, in addition to
accuracy evaluations, joint search considering layer-wise
compression/hardware parameters necessitates frequent
feedback on the subnet’s hardware metrics. Therefore,
accurately and promptly generating optimized accelera-
tors for subnets is also vital to the quality and cost of
the co-search [13], [14], [15].
To address the above challenges, we propose FlexBCM,
a joint search framework for layer-wise compression and
hardware parameters to balance model accuracy and hard-
ware efficiency. First, regarding the accuracy evaluation of
subnets, we establish a supernet structure where each layer
encompasses all candidate operators. By designing effective
differentiable sampling methods, we can address the problem
of operator selection using gradient optimization. Second, for
convolutional layers with different parameter configurations,
we devise dedicated hardware computation cores to ensure
the execution efficiency of the model. Particularly, a highly
optimized BCM computing core (BCMPU) is designed to
support different compression parameters flexibly. Finally, in
the hardware evaluation of subnets, we model the hardware
computation cores and design a rapid hardware generation
algorithm using genetic algorithms to achieve rapid feedback
on hardware evaluation.
In summary, this work makes the following contributions.
1) To avoid the heavy retraining overhead of numerous
subnets, we design a supernet based on weight shar-
ing and propose a simple yet effective differentiable
sampling method to assess candidate subnets’ accuracy.
Besides, we develop a hardware-friendly frequency-
domain quantization scheme to facilitate hardware gains.

2)

3)

TABLE I
KEY PARAMETERS AND VARIABLES FOR THE DESIGN

Acronyms ‘ Description

R,C Rows and columns of the feature map

N, M Input and output channels of the feature map

K,BS Kernel size, the block size in BCM compression
o,P Operator search space and operator selection probability
Ty, Te The tiling factor on the row and column dimension
Tn,Tm The unroll factor on the input and output channels
D, R Usage of digital signal processing (DSP) and BRAMs
F,LC Hardware parameter variables, latency value

o Wi Xj yi

|10 ! 1.0

: 0.0

o] l0.0]

11200 -1. 2,

Fig. 2. BCM compression flow of matrix-vector multiplication.

2) To efficiently and flexibly support different compression
parameters, we design the customized convolutional core
and BCM core, where the BCM core can accommodate
different compression parameters at runtime and con-
tains targeted optimizations, such as complex-number
DSP packing and conjugate symmetry.

To rapidly provide the hardware evaluation of the
subnets, we accurately model the latency and resource
consumption of the computational cores, and based on
this, we design a heuristic hardware generation algo-
rithm based on the coarse-grained search and parallel
optimization.

We validate FlexBCM on the Xilinx ZCU102 FPGA.
Experimental results demonstrate that FlexBCM effec-
tively explores the joint search space in a brief time
(1 GPU day), and compared to previous works, the
searched solutions achieve 1.21-3.02 times higher-
computational efficiency with acceptable accuracy
degradation.

3)

4)

II. BACKGROUND AND RELATED WORK

In this section, we introduce the basis of the BCM compres-
sion, the application of mainstream neural architecture search
(NAS) methods, and related work. Table I summarizes the key
parameters and variables involved in the remainder of this
article.

A. Block-Circulant Matrix Compression

BCM compression splits the matrix (W e R™>*N) into
p X g square sub-blocks, where p [(M/BS)] and q¢ =
[(N/BS)]. A circulant sub-block (W;;,i € [0,p),j € [0,9)),
shown in Fig. 2, has each column vector as a cyclic shift of
the previous one by one element. Thus, only one column is
required, reducing the memory storage complexity from O(n?)
to O(n). Moreover, the product of Wj; and x; equals the circular
convolution of a;; and x;, which can be accelerated by the fast
Fourier transform (FFT), as follows:

Wi x x5 = F 1 (F(ay) © F(x))

ey

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

16

162

163

164

165

166

167

168

169

170

17

172

173

174

175

171

=3

177

178

179

180

18

182

183

184

185

186

187

18

®

189

190

191

192

193

194

195

196

197

198

199

200

20

202

20:

@

204

20!

&

206

20

2

LOU et al.: FlexBCM: HYBRID BLOCK-CIRCULANT NEURAL NETWORK AND ACCELERATOR CO-SEARCH ON FPGAs 3

where F and F~! represent FFT and IFFT transformations,
respectively, and © denotes Hadamard product. Finally, BCM
compression reduces computational complexity from O(n?)to
O(nlogn) in a regular manner, making it suitable for hardware
acceleration.

For convolution layer, it can be regarded as a series of
matrix-vector multiplication operations, that is

OL:1rllel = W[, &, kiv k] x IE1[r + kil [e + K]
RMXNXKXK

2

where W e is the weight tensor, / and O are
the input and output tensors, respectively, and r/c/k;/k; is
the index of the cycle on their respective dimensions. We
constrain each submatrix (Wi,j,k,.,k_,.,i e [0,[(M/BS)]),j €
[0, [(N/BS)1)) to follow a circulant pattern. It can be seen that
setting BS to the power of 2 enhances the computational gains
due to the FFT/IFFT operations. Balancing the computation
benefits with model accuracy, previous studies [8], [9] have
often empirically set the BS to 4/8/16 and applied it to the
entire model.

B. Neural Architecture Search

NAS has garnered considerable attention for its automated
exploration of neural network architectures. The initial NAS
method trains each subnet from the search space to assess
its accuracy level and update the controller, incurring a
prohibitive cost [16]. As a remedy, ENAS [17] constructs
an over-parametrized supernet, enabling the evaluation of all
architectures using its parameter subset. This strategy, com-
monly called weight sharing, has been widely adopted. Later,
DARTS [18] highlights the inefficiency of previous methods
based on reinforcement learning (RL) and evolutionary algo-
rithms (EAs) in searching within discrete spaces, which leads
to substantial architecture evaluations required. To this end,
DARTS introduces the differentiable NAS (DNAS) concept,
relaxing the discrete search strategy through a Softmax way

0]

A=)

i=1

exp(«;)
24 exp(e)

Here, A'~! is the output of the previous layer, and © denotes
the predefined operator space. oef means the architectural
parameter of operator (; in the /th searchable layer. Similarly,
FBNet [19] employs a Gumbel-Softmax (GS) approximation,

probabilistically sampling a path from the candidate paths

10|
I _ Lyl Y
A —;GS(O(,W)xOl(.A)

Thus, DNAS has evolved into an optimization process for a
set of continuous variables o = {af }. On this basis, researchers
further incorporate hardware constraints into the objective
function and optimize the search process for a target hardware
platform [20], [21], [22]. This type of work is commonly
referred to as hardware-aware NAS.

x (9,-(,41*‘). 3)

“4)

C. Algorithm and Hardware Co-Optimization

Researchers initially focused on computation and memory
access optimizations for convolutional neural networks

(CNNs) and designed a series of dedicated accelerators [23],
[24], [25], [26], [27]. They then introduced algorithmic opti-
mizations and adapted them on the hardware side to achieve
a synergy between algorithm and hardware [28], [29], [30],
such as accelerators for quantized or compressed neural
networks. However, recent research has shown that staged
algorithmic/hardware optimization makes it hard to achieve
an optimal solution. Therefore, algorithm and hardware co-
search research has emerged. Jiang et al. [10] performed a
joint search for the network architecture and the accelerator’s
parallel parameters on FPGAs using the RL method, achieving
significant overall performance improvement. However, the
scalability was limited by the cost of the search. To address
this, Li et al. [11] introduced EDD, which conducted co-search
for networks and accelerators in a differentiable manner,
thereby enhancing search efficiency. Nevertheless, EDD used
hardware-agnostic metrics to model the hardware. To this end,
Fan et al. [12] established a latency predictor for their single-
core hardware architecture to achieve rapid feedback for the
hardware evaluation. Furthermore, Lou et al. [31] designed a
rapid evaluation function for model deployment on multicore
accelerators to enable a broader co-search space.

As NAS technology has evolved, researchers are begin-
ning to explore a wider range of hardware and algorithm
co-optimization opportunities [32]. For example, Fasfous
et al. [33] jointly explored the layer-wise quantization bit-
width and accelerator design. Liang et al. [34] jointly searched
the compressed model (irregular) and accelerator based on
hardware analytical modeling. Thus, in this article, drawing
inspiration from the above advancements, we endeavor to
surmount the limitations in BCM compression with the help
of DNAS technology and further explore the potential of
hardware-software co-search.

III. FRAMEWORK

Given the target model, FPGA specifications, and frames
per second (FPS) settings, FlexBCM automatically generates
tailored BCM-compressed CNNs and accelerators to bal-
ance model accuracy and hardware efficiency. The overall
framework (refer to Fig. 3) consists of two key components:
1) the differentiable compressor and 2) the fast hardware
evaluator. These components work together to enable the
joint exploration of compression parameters (BS-1/4/8/16) and
accelerator structures (tiling and parallelism factors).

Section IV details the differentiable compressor, where we
construct a supernet containing all candidate compression
operators based on weight sharing. This supernet includes the
vanilla convolution operator (BS-1) to copy with different sce-
nario requirements. We then introduce a novel differentiable
sampling algorithm to efficiently explore the compression
space (O). Besides, we adopt a hardware-friendly frequency-
domain quantization scheme for the BCM compression.

Following this, Section V describes the hardware archi-
tecture designed to support these compressed models. We
construct a generic convolutional computing core (ConvPU)
and a specialized BCMPU. The BCMPU is designed to flexi-
bly support various compression parameters and incorporates

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

26!

a

26

>

267

268

26!

©

270

27

272

27

@

274

275

27

=)

27

N

27

®

279

280

28

282

283

284

285

286

287

28

@

289

29

o

29

292

29

@

294

295

29

>

29

N

29

®

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fast Hardware Evaluator
ConvPU

Differentiable Compressor

Supernet Subnets

Accurate
Perf.& Res.
Modeling

% Opnmlzed
Genetic
Metrlcs A/gonthm

Overview of our FlexBCM co-search framework.

QO Operators (BS-1/4/8/16)

Fig. 3.

optimizations, such as complex conjugate symmetry and mul-
tiplication DSP packing, which help to reduce computation
and storage overhead.

On this basis, we perform accurate resource and
performance modeling of the accelerator to reflect the actual
execution of the convolutional layers. We develop a fast
hardware generation algorithm based on the genetic algorithm,
as detailed in Section VI. This section explains how we
leverage genetic algorithms to optimize hardware generation,
ensuring efficient mapping of the CNN operations onto the
FPGA in a brief time.

In summary, our framework not only provides a method for
compressing CNNs but also includes the tools necessary for
implementing these models on FPGA hardware, optimizing for
both performance and efficiency. Following the DNAS work,
we use bi-level optimization (5) to solve this joint search
problem. In addition, we introduce a hardware loss term (L)
in the final loss function to guide the compression operator
search process at the algorithmic level

min Lya(w*, &) + ALy (o, F¥)
s.t. w* = argmin Lyin(w,)
w

s.t. F*=argmin Ly, (c, F)
F

(&)

where w is the supernet weight; o« denotes the operator
selection probability, also called architectural parameters; and
Lyy and Ly, are the validation and training loss of the
supernet, respectively. /* denotes the optimized FPGA accel-
erator, searched under the target hardware resource constraints
(AWiimit), to quickly provide hardware evaluation. A is a
hyperparameter that controls the tradeoff between terms.

s.t. hweost (0,) < hwiimig

IV. ALGORITHM DESIGN

In this section, we provide a detailed explanation of the
methods and steps taken to achieve efficient compression and
quantization, including a moderate sampling algorithm and a
hardware-friendly frequency-domain quantization algorithm.

200 A. Moderate Differentiable Sampling

300

30

302

303

304

305

306

To avoid repeatedly training subnets with different BS
values, we first construct a supernet that contains all candidate
compression operators in each layer, following the approach
of the DNAS works [11].

However, directly applying the GS method in the BCM
compression scenario results in a biased search, as shown in
Fig. 4(a). For clarity, we use layer six as an example, but

°

== Vanilla| = Vanilla| = Vanilla|
—Bs4 L[| 0524l — Bsa | A —Bs4 L~
B — Bs8 A — Bs8 % — Bs8 L1
3 g8]l=—88516 aximum |—Bs-16 = |0324/—BS-16 T~
8 o 7
8
3 4 L L T 1 | T
& <X g N 024 QN« 024
- S
Boa T I N
© ! M -
8 RN ™ |o. ™ o ~
V\\/"/\ -~
0201[Einal choice: £S-16] .16 [Final choice Vanilla] Final choice: Vanilla] |~
10 20 30 _40 6 70 80 10 20 30 _40 50 60 70 80 10 20 30 _40 50 60 70 80
Epoch Epoch Epoch
(a) (b) (©

Fig. 4. Probability distributions of each operator in the sixth layer of
the RN18 without imposing any computation-cost constraints under different
search methods: (a) GS method; (b) Softmax method; and (c) our proposed
M-GS method.

TABLE 11
COMPARISON OF SEARCH METHODS (TESTED ON A SINGLE NVIDIA
RTX 3090 GPU WITH 24 GB OF VIDEO MEMORY)

Method Memory | Search Time | Constraints Top-1
[GPU-GB] [GPU-hours] [Max.FLOPs] | Accuracy [%]

Search for RN18 on CIFAR10:

GS 6.7 1.59 None / 30% 94.69 / 93.86
Softmax 11.7 5.25 None / 30% 95.40 / 94.17
M-GS 8.5 2.64 None / 30% 95.56 / 94.26
Search for RN34 on CIFAR100:

GS 18.1 12.50 None / 50% 79.02 / 78.15
Softmax 7.9 431 None / 50% 76.14 / 76.19
M-GS 12.3 8.03 None / 50% 78.93 / 77.86

this trend holds for most layers in the model. We observe
that the GS method favors the BS-16 operator with the fewest
parameters over the vanilla operator with higher accuracy in
searching. The searched subnet’s final accuracy is 94.69%
(Table II), an apparent drop from the 95.23% accuracy of
the original RN18 model. We attribute the biased search to
the fact that the BS-16 operator has a higher priority than
other operators due to its fewer parameters. However, the
GS method picks only the highest-probability operator at
each feedforward. In contrast, the Soffmax method enables all
operators to participate in computations, prioritizing the vanilla
operator during the search. This method achieves the expected
outcome (95.40% accuracy) but involves all operators, signif-
icantly increasing GPU computation and memory costs (refer
to Table II).

To address the above issues, we propose a moderate GS
sampling (M-GS) technique, selecting more activation paths
based on GS sampling as follows:

I !
Pl =Gs(al) = lgfp((IOgS(“i> +6)/7)
> i) exp((logS(a)) + G})/7)
1@
A = Z([P,-l € largest(P', 2)] X 7?} X (’),-(,41)) (7

i=1

(6)

where Pf denotes the selection probability of the ith operator
in the /th layer after GS approximation (details can refer
to [35]); A1 denotes the Ith layer output. [exp]=1 when
exp is true. The M-GS method selects the top two paths with
the highest probabilities from the forward path, increasing
the diversity of operators and providing a suitable balance
between performance and search cost. To further validate the

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

3.

N

6

327

328

329

330

331

332

333

LOU et al.: FlexBCM: HYBRID BLOCK-CIRCULANT NEURAL NETWORK AND ACCELERATOR CO-SEARCH ON FPGAs 5

(@) Output (b) ActQ Output (C) Output T8

\FFT | QuantNode QRelLU

INT32

De
quant

Fig. 5. Quantization flow: (a) regular training in BCM compression;
(b) quantization-aware training; and (c) integer inference.

aas effectiveness of the M-GS method, we impose a computational
a5 constraint during the search process. We achieve this by adding
a3 a regularization term to the objective function, which is the
ss7 sum of the computational costs of each layer weighted by o’
ass Results show that reducing the computation by 70% lowers
s the model’s accuracy compared to the unconstrained case
a0 (“None”). However, the M-GS method still achieves a better-
as1 cost-performance tradeoff than the GS and Softmax methods.
a2 Note that the FLOPs metric is hardware-agnostic and cannot
ass reflect the actual latency of the compressed model on the target
ass hardware. We use this metric here to simplify the verification
as process of the search algorithm.

ss B. Hardware-Friendly Frequency Domain Quantization

a7 Quantization has become a de facto step for implementing
as CNNs on FPGAs, offering practical advantages for hardware-
ase related benefits [36]. However, the complexity of quantization
30 increases under BCM compression, as evidenced by the
1 following: 1) FFT/IFFT operations introduce additional quanti-
ss2 zation errors and 2) complex quantization requires determining
353 how to quantize both the real and imaginary parts.

4« For issue 1), we propose a quantization flow (see
sss Fig. 5) that simulates the quantization errors caused by
sss FFT/IFFT operations. This flow also converts the data
ss7 involved in off-chip access and computation to integers, which
sss enables actual hardware benefits. Specifically, we employ
30 the Quantize — Dequantize process, also known as fake
a0 quantization node, to introduce quantization errors during the
st model quantization process, as follows:

3!

a

AL = Quantk<Al> = clamp(L?;/-‘,min, max) (8)

3

3
S}

3

I3

3 WIQ = Quantk<Wl> = clamp({];v—ll-l,min,max) 9)

se« where A! and W! denote the activation and weights of the
ass [th layer, respectively, and Sé and va are the corresponding
a6 quantization scales. clamp(-) is a truncation function and k
37 denotes the integer bit-width; A typical approach for deter-
ses mining the scale factor based on the absolute maximum value
aee 1S illustrated as follows:

50 sl = max<|Afl|)/(2k_l - 1). (10)

srn For issue 2), we adopt a unified quantization method
2 [see (11)]. It applies the same scaling factor to the
a3 real and imaginary parts, which simplifies the hardware

3

L

. A Activation
Off-chip DRAM AXI Interfaces ‘ Banks m

PL
Mg«:;:olug:ﬂt Data Parallel Frequency-domain PE Array —
y Packer FFT/IFFT Unit I ’ES
) Data . }
Unpacker Accumulation §

Buffer D

e g 5 % X!
Top . T
Multiple ﬁal [PER] [PER] - PET] . -
Controll
Generic OnHoTen Adder Trees =
BCMPU Tm/HBS

L Config,] Post Processing Unit: QReLU, QBN ‘

Output Weight
Banks Buffer

Generic
ConvPU

Tn/

Fig. 6. Overall architecture (left) and the BCMPU structure (right).

implementation of fast complex multiplication optimization
(refer to Section V-C)

Quanty(z, +j * z)) = Quanty(z,, zi)- (11)

To ensure the model accuracy, we set k=8. Note that although
we use the INT8 type here, we exclude the —128 value (set
min to —127) for DSP packing optimization.

In model quantization training, since integer-based data
cannot be directly inserted back for training or optimization,
integer values are rescaled back to the floating-point domain,
referred to as “Dequantize”

Ay = Dequant(_AlQ) = Al x S, € £loat (12)
Whe = Dequant (Wp) =W x 5|, € float. (13)

In integer inference, weights and activations are deployed
at low-precision values (A%, and W.), with the next layer’s
quantized activations generated by multiplying by a rescaling
factor (S!, x S! /S%1). To prevent accuracy degradation due to
hardware implementation, we employ a conservative approach
by uniformly using 32-bit fixed-point numbers to approximate
floating-point factors, such as rescale factors and twiddle
factors (w) in FFT/IFFT. We perform integer inference of the
quantized BCM-based RN18 on CIFAR-10, and the results
show that the hardware implementation introduces an accuracy
degradation within 0.1%, which is consistent with previous
work and is negligible [37], [38].

V. HARDWARE DESIGN

In this section, we describe the architecture of the acceler-
ator that can adapt to different compression parameters (BS)
and provide insights into the architectural choices and their
impact on performance and resource overhead.

A. Overall Architecture

We design a generic and parameter-configurable convolu-
tion computation core (ConvPU) and a BCM compression
computation core (BCMPU) based on the operator space
(Vanilla, BS-4/8/16), shown in Fig. 6 (left). The host CPU
configures the computation core with the layer information,
compression parameter, and memory address. The two cores
fetch the required data through the AXI4 interface and store
them in multiple BRAM banks or LUTs using the memory
interleaving technique to provide the on-chip bandwidth for the
computation array. Both computational cores act as indepen-
dent AXI4 masters, receiving and outputting feature maps in

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Activation

HBS=2

2xK?
reshape

Tm/2| Weight

Tn/2
(a) (b)

Fig. 7. To reuse the PE array (HBS=8), the dataflow of activations and
weights when BS equals 4 or 8. (a) BS=4. (b) BS=8.

415 channel-first format, and thus can directly perform task-level
s parallel operations with the support of off-chip DRAM.

417 For the ConvPU design, we employ a tiling architec-
418 ture, with tiling performed along the horizontal dimension
419 (T, T;) and parallel unfolding conducted over the input/output
40 channels (T, T},). Tiled inputs and weights are sequentially
421 loaded onto the chip for computation, and the final results
422 are outputted off-chip. ConvPU can accommodate various
423 convolutional layer parameters, with differences in the number
424 of times tiled data is loaded. For brevity, we refrain from
s presenting the internal structure of ConvPU. Subsequently, our
426 focus will be on elucidating the design of the general BCMPU.

4

4;

N

427 B. BCMPU Design

428 The BCMPU structure, shown in Fig. 6, mainly consists
420 of data processing, on-chip storage, and computation units.
430 The data processing unit unpacks or packs the data, and the
431 on-chip storage unit provides the necessary on-chip buffer
432 and bandwidth for computation. Besides, the post-processing
433 unit performs ReLU and BN operations on the quantized
43¢ data. The computation unit is the heart of the design to
435 support convolutional layers with flexible block sizes. Next,
436 we describe the details of the computation unit.

a7 1) Frequency-Domain PE Array: The BCM-based compu-
438 tation flow involves FFT-Hadamard-IFFT operations on data of
s length BS. Thus, we further partition and unroll the tiled data
40 by BS size in the channel dimensions. However, if we adopt
41 the same unrolling strategy as the ConvPU, the parallelism
42 of the PE array is only (7},/BS) x (T,/BS), which is a
s significant decrease compared to ConvPU. To complement
444 the parallelism, we simultaneously unroll the BS dimension
45 rather than the convolution kernel’s spatial dimensions for
s generality, i.e., (T},/BS) x (T,,/BS) x BS. Specifically, we chose
447 the size required for maximum compression (BS=16) for the
48 BS dimension unrolling to reuse the PE array. We finally set
49 the hardware block size (HBS) to 8, considering the conjugate
450 symmetry. We package the data at positions “0” and “BS/2”
451 for the feature maps and weight after FFT because they only
452 contain real parts. Finally, the PE array can be reused for the
453 smaller BS values in a time-multiplexing manner.

44 Fig. 7 illustrates how BCM-based calculations with differ-
455 ent block sizes reuse the same frequency domain PE array.
46 Bach PE requires HBS activation and weight data per cycle
457 to perform the parallel computation. For activation, we obtain
4ss HBS continuous data along the channel dimension. Regarding

4

@

4

hS

=

4.

i

X bit-parallel ‘Accumulation buffer

T - -
Pipelined |. Butterfly Unit (BFU)
0 ’—l—‘ /] —ﬁ:
wp Stage 1
1 -
: | 5 ,| [Stage2 .
2 | FFT4 . — -
S|— | Stage3 S
| FAT8 Complex multiplication
o Stage 4 (r+s3)*(utvi)
5 |FFT-16 . B
——>l _ 0K Real:(r+s)u-(u+v)s
config Img: (r+s)u+(v-u)r

3
FFT(x) : 1/2/AXFFT-4, 1/2xFFT-8, 1xFFT-16
(a) (b)

Fig. 8. FFT/IFFT structure and accumulation unit. (a) Parallel FFT units that
support variable-length input. (b) Partial result accumulation operation flow.

Shared twiddle factor buffer
8 x 32 bits (Fixed)
g
o

|

weights, we employ the reshape operation to rearrange the
elements at the corresponding positions. For instance, when
BS equals 4, the complex weight size is T,,,/2 x T,/2 x 2K>
after conjugate symmetry optimization. Then, the weight is
reshaped to four T,/8 x T,/8 x 8K2. Thus, the PE array
is reused four times. Finally, the size of the on-chip weight
buffer is set to 7;,/2 x T,, to accommodate maximum demand.
Notable, if the PE completes the multiply-accumulate opera-
tion, it needs to accumulate different data lengths depending
on the BS value. Accordingly, we only perform complex
multiplication inside the PE to simplify its implementation.
Then, we set up a unified accumulation unit to facilitate partial
sum accumulation along the channel dimension.

2) Parallel FFT/IFFT Unit: For BCM-based convolutional
layers, their weights are processed offline by FFT and stored
off-chip as complex numbers. Conversely, activations are
stored off-chip as real numbers and require online FFT/IFFT
operations. Fig. 8(a) illustrates the FFT unit that supports
up to 16 parallel term inputs and can produce 4 FFT-4,
2 FFT-8, or 1 FFT-16 transform output, depending on the
configuration. It has four stages, each with eight butterfly units
(BFUs). The twiddle factors for the operations are stored as
INT32 numbers in the on-chip ROM. Since both complex
activations and weights possess the conjugate property, the
property (Z] x Z; = (Z1 x Z»)*) can reduce the complex
storage and computational overhead by nearly half. The IFFT
structure is identical to the FFT, except for the twiddle factor
value. Hence, we do not repeat it. To minimize the FFT/IFFT
latency, we adopt this parallel architecture, which is justified,
considering that the computation in each stage is relatively
small. Moreover, we employ fast complex multiplication
optimization, which replaces the real multiplication operation
with extra real addition operations to reduce the computational
overhead.

3) Accumulation Unit: To generate the output of 7, x
T, x T,, we still need to accumulate the partial sums in
the channel dimension, done by the accumulation unit. It
contains the accumulation buffer and multiple adder trees,
shown in Fig. 8(b). The buffer size is T, x T,/2, with a
single adder tree for each input data column to accumulate the
partial sum. T,/2 is the maximum number of accumulation
lengths after applying the conjugate symmetric optimization
(T,/(4/2)). For the BS-8/16, we additionally set up control
logic to explicitly set unused data in the buffer to zero to

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

LOU et al.: FlexBCM: HYBRID BLOCK-CIRCULANT NEURAL NETWORK AND ACCELERATOR CO-SEARCH ON FPGAs 7

50

@

maintain correctness. The depth of the adder tree is log, (7, /2),
s« Where we use registers to synchronize between adjacent stages
sos to optimize the timing. After fully pipelined, the accumulation

s06 Unit can output the accumulation sum in every cycle.

=3

so7 C. DSP Optimization

ss The DSP packing of INT8 data multiplication to reduce
so0 the computational cost has become a popular optimization
method [27]. In ConvPU, two real-number multiplications
s11 are packed as a x (w; << 18 4+ wp) onto a DSP with
stz 18x27 multiplier support. In contrast, in BCMPU, DSP
s13 packing involves optimized complex-number multiplication,
si4 which has yet to be explored. The multiplication of activation
si5 (ca = cay + j * ca;) and weights (cw; = cwy, +j % cwy;,
s16 (CWp = cwyr +j % cwp;)) is calculated as follows:

51

o

517 caxcwy = (A1 —Cp)+j* A1+ By)

518 caxcwy = (A — C) +j* (A2 + Bo)

519 A1 = (car + ca;) x cwyy

520 Ay = (cay + caj) X cwyy. (14)

Taking A; and A, as an example, after packing, it becomes
s22 (car + ca;) x (ewyr << 18 4+ cwy,). Similarly, By and Bj is
s23 packed as ((wjp — wyp) << 18 4+ (Wip — wy2)) X car. We do
s2¢ not repeat the Cy 2 details here for brevity. It can be observed
s25 that an extra addition or subtraction operation is necessary
s26 for the DSP packing of complex-number activations/weights.
Significant dequantization overhead occurs if the scaling fac-
s2s tors of the real and imaginary parts differ. Therefore, we have
s29 chosen a unified quantization approach (see Section IV-B). In
se0 this way, we only need to apply the rescaling factor for the
output. In addition, to keep the packed data within the 27-bit
s32 input range, we dropped the —128 in the INTS8 data to ensure
sss it would not overflow downward.

52

52

N

53

534 VI. NETWORK-ACCELERATOR MAPPING

ss This section presents a model of the accelerator’s resource
ss6 and latency and proposes a fast hardware generation function
se7 based on genetic algorithms to provide feedback for subnets.

sss A. Accelerator Modeling

ss9 Here, we focus on modeling the latency and consumption
se0 of DSP and BRAM of the accelerator and use the identifiers
s¢1 “cu” and “bu” to distinguish ConvPU and BCMPU cores.

s2 Latency Modeling: We consider the latency of the pipeline’s
s43 start and exit phases in all units. For off-chip access latency, we
s44 adopt more refined modeling for all AXI4 ports by considering
sss the number of requests versus the cost of burst access

Laxi = (T - [L/(bw - bD)T) /Opum - (bl - Opum + Lant)
—_— ———

546 number of requests burst read cycles

Ll = max(Lgagr — bl X (Opum — 1), 0)

5)

sz where T, L, bw, bl, and Opyn, represent the number of accesses,
ses the access length, the bandwidth, the burst length, and concur-
ss9 TENt transmission transactions, respectively. £44, indicates one
sso DRAM access latency. Regarding the computation latency, for

brevity, we illustrate it with an example of the latency of the
BCMPU to generate one output tile (E};}f)

Ly = max(Ly,. £4,) + (IN/@ - T01 = 1) - £ + Li (16)
L3 = Lowp + K- K- TP - T . (2-HBS)/BS

where EZ‘;, ﬁfm, ng;, and L™ denote the weight latency,
input latency, computing latency, and maximum latency of the
pipeline, respectively. N means the input channel size.
Resource Modeling: The PE arrays account for most of the
DSP consumption (D), which we estimate by multiplying the
computation cost per unit by the degree of parallelism

551

552

553

554

555

556

557

558

559

Tcu Tbu bu
Do=T" | 2 |: Dpy=3-| —L— | .| 2L | HBS(17
T [2—‘ bu [Z-HBS—‘ IVHBS—‘ (17) se

Here, the DSP cost after complex multiplication optimization
in BCMPU is 3. For brevity, we have not reflected the addi-
tional consumption introduced by the FFT/IFFT, quantization,
and BN operation in (17). The consumption of BRAM (R)
typically hinges on the requisite port width and depth. Within
both computing cores, BRAM is primarily utilized to construct
input and output buffers, which can be estimated as follows:

T .8h7 [len™ Teu . T
R. =2. n . in TCu . r c
o ([36b W [5121+ " [512 D

lenbu Tbu . Tbu
=4. Tbu . in Thu . r c 1

where len;, denotes the maximum depth required for input
buffers. T, and T, denote the tiling size in the feature map’s
row and column dimensions. The factor of 4 accounts for
double buffering of complex data. A single BRAM18K block
can be configured as 9x2048 or 36 x512.

B. Fast Hardware Generation

In the joint search of parameter compression and hardware,
the framework necessitates not only an accuracy assessment
but also a hardware assessment for the sampled subnets.
This process involves generating hardware parameters for the
subnet on the target FPGA and providing feedback on its
hardware performance, as shown in the following equation:

min

max(LeyOcus Veu)s LouOpus Vou))
F:{veu,vou}

S.t. Duysed, Ruseds BWused < AWiimit (19)

where 6., and 0y, denote the layer set assigned to the
ConvPU and BCMPU, respectively. v, and vp, denote the
hardware (HW) parameter variables of ConvPU and BCMPU,
respectively. The two HW variables have the same param-
eter term, both requiring the determination of values for
[Ty, Te, T, Ty, bWin, bWy, bwout]. hwiimic represents FPGA
resource limitation. Due to the vast sampled subnets in joint
search, the traditional work’s minute-level evaluation time
becomes impractical [39]. For example, one search epoch
on the ImageNet-1k training set often involves thousands of
subnet samples and evaluations.

To this end, we design a fast hardware generation algorithm,
as shown in Algorithm 1, to reduce the hardware evaluation
time. Specifically, we apply genetic algorithms to accelerate

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

60

3

60

60:

o

603

60:

=

60!

&

606

60

N4

60

@

609

61

15}

61

612

61

w

61

N

615

616

617

618

619

620

621

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Algorithm 1: Fast Hardware Generation Algorithm

1 Initialize the target latency (latigrger) and hwyimir
2 Initialize population size (M), iteration number (Z)
3 Function FitScore(-) call latency and resource model to
evaluate individuals
< coarse-grained search
4 Randomly initialize the individuals in Popu[M] with the
index values in Table III
5 while iteration < Z do
< multiprocess parallel
6 for ind in [1, M] do
/I Get the fitness index with accelerator model
L Evaluate: Fitj,q = FitScore(Populind])

8 Update the top-k global optimal individuals
9 for ind in [k, M] do

10 Select parents (s,) according to probability
11 Crossover: Temp = cross(Populs], Popu[t])
12 Mutation: Populind] = mutat(Temp)

13 | Keep the best Lpess = Obj[1] and F* = Popu[l1]

14 if Lpesr < latiarger then
15 L break

16 Return best latency (Lpes;) and hardware parameters (F *)

TABLE III
HARDWARE ARCHITECTURE SEARCH SPACE

Candidate values
7, 14, 28, 56
2,4,8, 12, 16, 24, 32, 48, 64
8, 16, 24, 32, 40, 48, 56, 64
1,2,4,8, 16, 32

Tiling size (T, T.)
Unrolling size (T5%, T5")
Unrolling size (T2, T2%)
Bandwidth (bw)

the exploration of the hardware search space and further
conduct a coarse-grained search with multiprocess parallel
optimization. In the coarse-grained search, we restrict the
search for decision variable (f) to a candidate list, as shown in
Table I1I, to significantly speed up the search process. The val-
ues in the list are determined based on the convolutional layer
parameters and hardware execution efficiency (e.g., integer
divisibility). On the other hand, considering the independence
of individual evaluations within the population, we employ
multiprocess parallelism to leverage modern CPUs’ computing
power fully. In this study, we set the values of M and Z to
250 and 50, respectively. The search process exhibits a stable
convergence behavior, reaching a definitive value after about
40 iterations. Finally, on a desktop-class CPU i7-8700K with
32GB of DDR4, the search took just 1.63 s at parallelism 4. It
is noteworthy that our aim is not to pursue the optimal solution
but rather to rapidly attain an optimized solution, facilitating
the hardware assessment of the subnet.

VII. EVALUATION
A. Experimental Setup

To evaluate the effectiveness of FlexBCM, we conduct
a joint search to deploy RN18 and RN34 models on the
embedded Xilinx ZCU102 platform, aiming for 100 FPS and
80 FPS, respectively. FlexBCM searches on ImageNet-100,

TABLE IV
COMPRESSION PARAMETERS OF RN18 oN ZCU102

Convi-2 Conv3 Conv4 Conv5 Conv6-7
Param BS-1 BS-8 BS-1 BS-8 BS-4
Conv8 Conv9-11 Convi2-14 Convl5 Convi6-17
Param BS-8 BS-4 BS-1 BS-4 BS-1
TABLE V
COMPRESSION PARAMETERS OF RN34 oN ZCU102
Convl Conv2 Conv3-4 Conv5 Conv6-7 Conv8-13
Param BS-1 BS-4 BS-8 BS-1 BS-8 BS-4
Convl4 Convl5 Convi6 Convli7 Convi8 Convl9
Param BS-8 BS-1 BS-4 BS-1 BS-4 BS-1

Conv20-22 Comv23 Conv24 Comv25 Conv26-27 Conv28-33

Param BS-4 BS-1 BS-4 BS-8 BS-4 BS-1

TABLE VI
HW PARAMETERS FOR BCM-BASED RN 18 RUNNING ON ZCU102

F T Te T Tn bw;n bwayt bwout
ConvPU (vew) 7 7 24 48 16 32 4
BCMPU (vp,,) 7 7 32 32 8 2 4

TABLE VII

HW PARAMETERS FOR BCM-BASED RN34 RUNNING ON ZCU102

F T T T Tn bw;n, bwayt bwout
ConvPU (vew,) 7 7 64 32 4 16 2
BCMPU (vpy,) 14 14 32 32 16 4 32

a random subset of ImageNet-1k training set that consists
of 1000 classes to optimize both supernet weights (w) and
the compression parameters («). We train the supernet for
60 epochs, with a batch size of 256, a learning rate of
0.1, and cosine annealing, where we freeze o in the first
20 epochs. It takes 12.2 and 21 h on a single NVIDIA
A100 GPU (80 GB video memory), respectively. The searched
compression parameters of the RN18 and RN34 are shown in
Tables IV and V, respectively. We train the searched subnets
for 250 epochs with a batch size of 512 on the complete
training set to obtain the final accuracy.

The corresponding FPGA accelerator parameters are shown
in Tables VI and VII, respectively. The accelerator design is
implemented using HLS-compatible C++ code in Vitis HLS
(v2021.2), with a clock cycle of 200 MHz. RTL simulation
is performed through the tool’s C/RTL co-simulation feature.
The exported RTL is synthesized and placed-and-routed in
Vivado (v2021.2). The built-in reports in Vivado provide
power consumption data for the accelerator. Detailed power
and resource consumption data can be found in Table VIII.

B. Quantization Algorithm Validation

We evaluate the proposed quantization method on RNI18
and RN34 models using the classical CIFAR10 and ImageNet-
100 datasets. For comparison, we present the accuracy of the
floating-point model and the baseline scheme in which the real
and imaginary parts are quantized separately.

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

64!

©

650

65

652

65

@»

654

65!

a

65

>

65

g

65:i

o

65!

©

66

=3

66

662

66

@

664

66!

a

66

=3

66

2

66

®

669

67

o

67

672

LOU et al.: FlexBCM: HYBRID BLOCK-CIRCULANT NEURAL NETWORK AND ACCELERATOR CO-SEARCH ON FPGAs 9

TABLE VIII
COMPREHENSIVE COMPARISON WITH PREVIOUS FPGA IMPLEMENTATIONS

ICCAD TCASI FCcCcM TCAD FPGA TVLSI DATE This Work

2019 [40] | 2021 [41] | 2021 [5] | 2022 [34] | 2022 [42] 2023 [43] 2023 [9] 15 no
Platform ZC706 ArrialO ZC706 ZCU102 ZCU102 ZCU102 PYNQ-Z2 ZCU102
Frequency (MHz) 200 170 150 200 150 200 100 200
Model RN18 RN18 RN34 VGG16 RN18 VGG16 RN18 RN18 RN34
Bitwidth weA8 w8 A8 W16 16 W16 o16 W4 A5 W16 16 W16 16 w8 A8 w8 A8
Compression None Regular Regular Irregular None Irregular BCM? BCM BCM
Top-1/5 Acc. Drop -/- -/1.0% 1.0%!/- no loss 0.9%/0.6% | 0.9%/0.4% | 3.0%/1.5% | 2.0%/0.98% | 1.1%/0.5%
DSP Usage 818 512 900 1144 2096 1061 117 957 1392
SRAM Usage” 708 465 - 912 878 502 225 470 506
Logic Resource” 100.2K 103K 218.6K - 174.5K 348K 18.2K 156.0K 192.3K
Power (W) 7.31 4.6 - 23.6 13.4 11 1.83 9.91 114
Frame Rate (FPS) 30.99 - 31.1 - 72.8 - 12.5 131.1 84.1
Throughput (GOP/s) 124.9 89.09 230.1 309 263.7 409.6 42.75 448.0 589.0
Density (GOP/s/DSP) 0.153 0.174 0.256 0.270 0.126 0.386 0.365 0.468 0.423
Efficiency (GOP/s/W) 17.09 19.41 - 13.09 19.68 37.24 23.36 45.21 51.67

2BCM compression with further pruning.

b“SRAM” means BRAMI8K in Xilinx FPGA and M20k in Intel FPGA. “Logic” means LUTs in Xilinx FPGA and ALMs in Intel FPGA.

OOurs O Baseline @ Float OOurs O Baseline @ Float

84
—_— 95) —_
< S
< 94 4 E go |
> >
o o
C 93 1 c
=] 3 76 1
S 92 - 3
< <
91 . T 72 . T
BS-4 BS-8 BS-16 BS-4 BS-8 BS-16
(a) (b)

Fig. 9. Accuracy of frequency domain quantization algorithms under different
BS values. (a) RN18 on CIFAR10. (b) RN34 on ImageNet-100.

The results are shown in Fig. 9. We observe that both
quantization schemes achieve comparable accuracy under the
INTS quantization for both the RN18 model and RN34 model
with different block sizes. The maximum accuracy drop for
RN18 on CIFARIO and RN34 on ImageNet-100 in our
quantization is 0.2% and 0.9% (adopting BS-16), respectively.
Kindly note that we here do not focus on the full recovery
of accuracy but rather on validating the effectiveness of the
quantization scheme. Therefore, we only perform a limited
number of 90 training epochs on the ImageNet-100 dataset.
At this point, a precision error of 0.9% is acceptable. The
quantized model can improve its accuracy further as training
epochs increase. Despite the broader numerical representation
range exhibited by the baseline method in comparison to
the approach we propose, performance between the two is
similar in most cases. This phenomenon is mainly attributed
to the fact that the RN18 and RN34 models possess sufficient
feature extraction capability. Ultimately, considering hardware
friendliness, our approach exhibits a marked superiority in
overall performance.

C. ConvPU/BCMPU Validation

To validate the effectiveness of the computational cores,
we select the configurations of the main convolutional lay-
ers in ResNet-18/34 networks and conduct performance and
efficiency tests on the computational core based on different

[3BS-1 [JBS-4 [BS-8 [@BS-16 -#-DSP Busy Ratio

IN
=
o
o

< 91.1 86.9 92587.7

< 883 85.3 84.9 g3 ¢ 86.4 864 .
T, 83383, 30819755 M LR S 0 S
Is] T 69.7 ™ Py
g] &
1%} -
D 2 o i e e L 60

g M z
21 R R - 20 o
=1 || | || 2
o« = | i B 20

layer 1 layer 2 layer 3 layer 4

Fig. 10. Throughput and DSP busy rate of ConvPU and BCMPU running
the same convolutional layer with the same parallel parameters.

compression parameters (BS-1/4/8/16). The specific network
layer configurations (layerl/2/3/4) are {(56/28/14/7)* x
64/128/256/512) — {(56/28/14/7)% x 64/128/256/512},
with K/S/P values of 3/1/1 and a W8A® bitwidth. For a fair
comparison, we separately deploy ConvPU and BCMPU on
Xilinx ZCU102, both executing the above four convolutional
layers with the same level of parallelism. ConvPU has a
parallelism of 16x16, while BCMPU has a parallelism of
32 x16/8 x4 (complex computation). We obtain performance
through C/RTL co-simulation in Vitis HLS (v2021.2).

Fig. 10 illustrates the performance and efficiency of both
cores when executing the respective layers independently. In
terms of throughput, it can be observed that BCMPU exhibits
a significant throughput advantage (more than 2x) compared
to ConvPU. Across layerl to layerd4, as the compression
ratio increases (BS-1 to BS-16), BCMPU’s throughput for
each layer gradually improves, demonstrating the adaptability
of our designed BCMPU to different BS values. Regarding
DSP utilization, except for layerl, ConvPU’s DSP busy ratio
is consistently above 85%, primarily due to the relatively
small channel count (64) in layerl. The optimized BCMPU
maintains an acceptable level of DSP utilization. However,
compared to ConvPU, BCMPU’s DSP utilization decreases,
mainly because the computation after BCM compression is
less and more complex than the original convolution.

Additionally, we observe the following patterns in
BCMPU execution: 1) within the same convolutional
layer, DSP utilization during BCMPU runtime decreases

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

70

702

70!

@

704

70!

a

70

>

70

N

708

®

70!

©

7

5}

7

712

71

@

714

715

716

71

J

718

7

©

72

o

72

722

723

724

725

726

727

728

729

730

73

732

733

734

735

736

737

738

73

©

740

74

742

743

744

745

746

747

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

[IFeature Size mmChannel Size —#-CONV

I 256

il HH 1
gl 1

I 16

0.8 A

0.6 4

0.4 4

0.2 A

Estimation Error (%)

74

Feature/Channel Size

3x3 Convolution 1x1 Convolution

Fig. 11. Latency estimation errors of the ConvPU.

as the compression ratio increases and 2) across different
convolutional layers, the impact of compression ratio on
DSP utilization gradually diminishes with increasing channel
depth. The reasons for these phenomena are twofold: 1)
larger compression parameters imply a smaller computational
load for the compressed convolutional layer, making it more
challenging to utilize DSP under the same parallelism and 2)
we perform tiling in the channel dimension, and as channel
depth increases, the deepening of the pipeline reduces the
impact of injection and ejection phases on overall latency. In
conclusion, our designed ConvPU and BCMPU can effectively
handle different layers while maintaining an acceptable DSP
utilization. Furthermore, low-bit-width multiplication packing
contributes to further enhancing DSP efficiency.

D. Accelerator Modeling Validation

To avoid time-consuming hardware deployment, we have
performed precise modeling of the accelerator’s performance
and resources to reflect the actual deployment of the model.
Therefore, this section will verify the prediction accuracy of
the accelerator model to evaluate its effectiveness. We compare
the result with the C/RTL co-simulation result in Vitis HLS
(v2021.2) and the synthesis result in Vivado (v2021.2).

Here, the tested feature map sizes include [56, 28, 14],
channel sizes include [64, 128, 256, 512], and the 3 x 3 and
1 x 1 convolution kernel sizes. Instead of a full permutation,
we chose 14 representative layer configurations as test cases.
We perform performance verification on the ConvPU and
BCMPU units separately and present the verification results
in Figs. 11 and 12. The hardware parameters in both cores
are randomly sampled. It can be observed that, for the
general convolution core, our performance model exhibits
excellent performance in terms of error rate, remaining within
0.7%. In contrast, the prediction model described in the
work [39] fluctuated within 10% in error rate, highlighting
the significant error reduction we achieved. Compared to
ConvPU, BCMPU has a slightly higher-error rate, mainly due
to: 1) BCMPU’s operation is relatively complex, containing
more pipeline delays and 2) the overall latency is small,
increasing its memory access delay ratio. Overall, BCMPU’s
prediction error rate is still acceptable, remaining within 2%.
Furthermore, we select five common hardware configurations
where the resource prediction results deviate from the actual
outcomes by single-digit discrepancies, which will not be
further demonstrated.

E. Validation of Co-Search Effectiveness

To validate the effectiveness of our co-exploration approach,
we conduct experiments using RN18 on the Xilinx ZCU102

[JFeature Size EmmChannel Size —#-BS-4 ——BS-8 ——BS-16

I 256
1.5 A

Estimation Error (%)
-

Feature/Channel Size

3x3 Convolution 1x1 Convolution

Fig. 12. Latency estimation errors of the BCMPU.
78 teXBCM-RN TS —
° L]
— =76 Be o
S 8 IJt:?.‘ *
Z T 74 o B
© © A °
= = [/ {]
3 3 7 o °f ® Random Hybrid BS
2 2 J Searched Hybrid BS

Uniform BS-16
Uniform BS-8
Uniform BS-4

~
o

< Random CNN-Accelerator
71

Uniform BS-1 (Vanilla)|
] 68 | :
0 200 1400 4 6 8 10 16
Latency (ms) Latency (ms)
(a) (b)
Fig. 13. Accuracy and latency tradeoffs. (a) Random compressed network-

accelerator pairs versus (b) random networks with Algorithm 1 enhanced.

platform. We randomly sample 100 compressed subnets from
the compression parameter space (= 1E+10). Each subnet
undergoes the same training setting over 36 epochs on the
ImageNet-100 dataset to assess the accuracy. Further, for each
sampled subnet, we generate 100 distinct hardware configura-
tion sets from a pruned parameter space (& 1E+11, detailed
in Table III), adhering to constraints ensuring DSP utilization
exceeds 50% and BRAM utilization does not surpass 90% of
the ZCU102’s capacity.

Fig. 13(a) shows the distribution of accuracy and latency
among randomly generated compressed CNN-accelerator
pairs. Notably, even with a limited sample size, we observe
accuracy fluctuations reaching up to 5% at matching latencies,
suggesting that this effect could be even more significant when
extended to larger datasets, such as the ImageNet-1k dataset.
Fig. 13(b) depicts the accuracy and latency distribution of
compressed CNN-accelerator pairs after optimizing hardware
parameters via Algorithm 1, effectively demonstrating the
criticality of the hardware generation algorithm.

To further elucidate the effectiveness of the co-exploration,
we use annotations with different shapes to differentiate
model-accelerator pairs under fixed compression strategies
(BS-4/8/16) and uncompressed (BS-1). Compared to fixed
BCM compression strategies [8], [9], which are commonly
used in previous work, our searched solutions notably achieve
superior tradeoffs between accuracy and latency. Furthermore,
we observe that the hybrid schemes more effectively balance
accuracy and latency, underscoring the need for layer-wise
hybrid BS strategies. Although random exploration occasion-
ally produces near-optimal outcomes (e.g., cases “A” and
“B”), it is generally inefficient, which requires 215.4 GPU
hours to evaluate 100 random subnets—approximately 17 times
more computationally expensive than our method. For deeper
networks, such as ResNet34, the random method becomes
impractical. In contrast, our differentiable search method

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

78

@

78:

X

785

786

78

Q

78

@©

78

©

79

o

79

792

793

794

795

796

797

798

79

©

80

S

80

802

803

804

805

806

807

80

@©

80!

©

810

81

812

813

814

81

o

816

817

818

819

820

82

822

823

824

825

826

827

828

829

830

831

LOU et al.: FlexBCM: HYBRID BLOCK-CIRCULANT NEURAL NETWORK AND ACCELERATOR CO-SEARCH ON FPGAs 11

— 294 SO
@ 300 263 100rig.-CPU

= 217 '@ BCM-CPU '
o 187 192 o ;
© 200 1@ Orig.-GPU !
< 131 .. ‘
e 107 |0 Orig.-GPU-fp16!
13 84 | ;
51001 imBCMGPU |
S —2 206 'mBCM-Ours |
a 0 = P (| | S | I e

RN18 RN34

Fig. 14. Performance comparison with CPU and GPU versions.

scales efficiently with model training overhead and offers tai-
lored tradeoff strategies to meet various latency requirements.

F. Comparison With CPU and GPU

In this section, we undertake a comparative analysis of
performance and energy efficiency across CPU, GPU, and
the searched FPGA accelerators. We use the PyTorch (v2.0.1)
framework with CUDA 11.7 and cuDNN 8.5.0 to run
model inference on CPU and GPU platforms, and detailed
information is listed as follows.
1) CPU Baseline: Intel 17-8700K processor with 12-MB
cache, six physical cores, 12 threads operating at
3.7 GHz, and the thermal design power (TDP) is 95 W.

2) GPU Baseline: NVIDIA Tesla V100S with 32-
GB HBM2 and 5120 hardware threads operating at
1.245 GHz.

We also implement the original model on CPU and GPU,
denoted as “Orig..” We exclusively perform FP16 inference on
the original model due to the absence of half-precision support
in PyTorch’s FFT/IFFT operations. CPU power consumption
is estimated as the product of CPU utilization and TDP power,
and GPU power is measured using nvidia-smi. Both the CPU
and GPU versions run with a batch size of two.

Fig. 14 illustrates the performance comparison between the
accelerator and CPU/GPU during the execution of BCM-
compressed RN18 and RN34. Our accelerators demonstrate
substantial throughput improvements of 10.92x and 14.0x,
respectively, in comparison to the CPU baseline. Our accel-
erators, when benchmarked against the GPU baseline, deliver
performances at 70% and 79% of the GPU’s level, respectively,
indicating that they are indeed outpaced by GPUs. This
discrepancy can be attributed to the embedded nature of
the ZCU102 platform, which possesses constrained hardware
resources. Despite the reduction in model computation result-
ing from BCM compression, we observe a noteworthy decline
in performance rather than an enhancement in both CPU and
GPU performance. This phenomenon is primarily attributable
to the PyTorch framework’s specific optimizations for standard
convolution operations, including computational and memory
optimizations on the CPU and TensorCore optimizations on
the GPU. In contrast, the BCM compression operations,
relying on FFT/IFFT, are inherently intricate and lack dedi-
cated optimizations. In terms of energy efficiency (FPS/W),
as depicted in Fig. 15, our accelerators exhibit noteworthy
enhancements of 63.0x and 73.8x for BCM-RNI18 and
BCM-RN34, respectively, when juxtaposed with their CPU
counterparts. Relative to the GPU versions, our accelerators
also realize improvements of 6.42x and 7.96x, respectively.
Furthermore, within the GPU version employing FP16, the
half-precision inference reduces the video memory and power

212 & 1323 'DOrig-CPU
& 'EBCM-CPU

& % 738 | 5 orig-GPU }
E 6 1 444220 558 iDOrig.-GPU-fplGi
& 3 4 2.06] 2.64 '@ BCM-GPU

2 °-570-21HH 0«370-10|_|‘_’1'°4 {mcmours |
w 0 — T

RN18 RN34
Fig. 15. Energy efficiency comparison with CPU and GPU versions.

consumption instead of performance improvements for RN18
and RN34. Considering these factors, it is reasonable that our
accelerators tradeoff some performance for substantial gains
in energy efficiency when compared to GPUs.

G. Comprehensive Performance Comparison

We compare the solutions generated by FlexBCM with some
state-of-the-art FPGA accelerators in terms of throughput,
computational efficiency, and model accuracy, as shown in
Table VIII.

Regarding throughput, our accelerators demonstrate out-
standing performance compared to prior research, achieving
throughputs of 448 and 589 GOP/s on RNI18 and RN34,
respectively, representing improvements of 1.10-2.56 times
over previous works. Regarding computational efficiency, our
accelerators achieve 45.21 and 51.67 GOP/s/W on RN18 and
RN34, respectively, showcasing improvements of 1.21-3.02
times compared to prior work. These significant enhance-
ments primarily stem from two aspects: 1) the application of
BCM regular compression and frequency domain quantization
algorithms facilitates hardware gains and 2) the efficient and
flexible hardware core design exploits the algorithmic poten-
tial. Specifically, on the same platform [34] and [43], based
on the INT16 quantization strategy, achieve high throughput
on the compressed VGG16. However, it is noteworthy that
the irregular pruning adopted in both works cannot guarantee
the requirement of common multipliers during INT8 data
packing. Therefore, INT8 quantization does not ensure the
DSP efficiency improvement reported in [34] and [43]. We
compare our work with [9], which similarly employs BCM
compression but applies further pruning to enhance flexibility.
Nonetheless, this work sets a fixed compression rate for
each network layer, requiring manual tuning and leading to
a noticeable decline in accuracy (3% in Top-1 accuracy).
Therefore, our design excels beyond [9] in both accuracy and
computational efficiency, owing to our implementation of more
flexible compression strategies and optimized quantization
algorithms.

Regarding model accuracy, following [41] and [43], we opt
for accuracy degradation as a metric to assess the impact of
compression on accuracy. This metric mitigates the variations
caused by different models and settings. The results show
that the accuracy of the model compressed by FlexBCM is
comparable to previous research results [5], [41]. By incor-
porating innovative quantization algorithms, Sun et al. [42]
achieved higher accuracy in RN18, yet our design maintains
an advantage in resource consumption and energy efficiency.
Moreover, our automated search method demonstrates superior
scalability. FlexBCM can rapidly explore the algorithm-
hardware design space and yield efficient model-accelerator

832

833

8.

@

4

835

836

837

8:

@

8

839

840

841

842

843

844

845

846

847

848

849

8!

@

0

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

88

882

883

884

885

886

887

88

@

889

890

89

892

893

894

895

896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

pairs in various application scenarios without requiring manual
iterative experimentation.

VIII. CONCLUSION

In this article, we propose an automated framework,
FlexBCM, for co-exploring hybrid BCM-compressed CNNs
and accelerators, which overcomes the limitations of prior
BCM compression methods and further explores the hardware-
algorithm joint design space. First, we efficiently explore the
compression space in a differentiable manner. Then, we design
and model the hardware architectures that flexibly support
different compression parameters. Finally, we efficiently inte-
grate algorithm exploration and hardware design based on fast
hardware generation. Compared with prior works, FlexBCM
achieves significant computational efficiency improvement.

REFERENCES
[1

—

T. Chen et al., “DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” ACM SIGARCH Comput. Archit.
News, vol. 42, no. 1, pp. 269-284, 2014.

M. Blott et al., “FINN-R: An end-to-end deep-learning framework for

fast exploration of quantized neural networks,” ACM Trans. Reconfig.

Technol. Syst., vol. 11, no. 3, pp. 1-23, 2018.

[3] C. Wang, L. Gong, X. Li, and X. Zhou, “A ubiquitous machine
learning accelerator with automatic parallelization on FPGA,” IEEE
Trans. Parallel Distrib. Syst., vol. 31, no. 10, pp. 23462359, Oct. 2020.

[4] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proc. IEEE, vol. 108, no. 4, pp. 485-532, Apr. 2020.

[5] S. I. Venieris, J. Fernandez-Marques, and N. D. Lane, “unzipFPGA:

Enhancing FPGA-based CNN engines with on-the-fly weights genera-

tion,” in Proc. FCCM, 2021, pp. 165-175.

S. Dave, R. Baghdadi, T. Nowatzki, S. Avancha, A. Shrivastava, and

B. Li, “Hardware acceleration of sparse and irregular tensor compu-

tations of ML models: A survey and insights,” Proc. IEEE, vol. 109,

no. 10, pp. 1706-1752, Oct. 2021.

[7] C. Ding et al., “CirCNN: Accelerating and compressing deep neural

networks using block-circulantweight matrices,” in Proc. MICRO, 2017,

pp. 395-408.

J. Yue et al., “STICKER-T: An energy-efficient neural network processor

using block-circulant algorithm and unified frequency-domain accel-

eration,” IEEE J. Solid-State Circuits, vol. 56, no. 6, pp. 1936-1948,

Jun. 2021.

[91 H. Song, J. Yoon, D. Kim, E. Kwon, T.-H. Oh, and S. Kang, “FPGA-
based accelerator for rank-enhanced and highly-pruned block-circulant
neural networks,” in Proc. DATE, 2023, pp. 1-6.

[10] W. Jiang et al., “Hardware/software co-exploration of neural architec-
tures,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39,
no. 12, pp. 4805-4815, Dec. 2020.

[11] Y. Li et al., “EDD: Efficient differentiable DNN architecture and
implementation co-search for embedded ai solutions,” in Proc. DAC,
2020, pp. 1-6.

[12] H. Fan et al., “Algorithm and hardware co-design for reconfigurable
CNN accelerator,” in Proc. ASP-DAC, 2022, pp. 250-255.

[13] Y. Zhang et al., “DIAN: Differentiable accelerator-network co-search
towards maximal DNN efficiency,” in Proc. ISLPED, 2021, pp. 1-6.

[14] K. Choi et al., “DANCE: Differentiable accelerator/network co-
exploration,” in Proc. DAC, 2021, pp. 337-342.

[15] W. Lou et al, “Unleashing network/accelerator co-exploration
potential on FPGAs: A deeper joint search,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., early access, Apr. 19, 2024,
doi: 10.1109/TCAD.2024.3391688.

[16] B. Zoph and Q. Le, “Neural architecture search with reinforcement
learning,” in Proc. ICLR, 2017, pp. 1-16.

[17] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 4095-4104.

[18] H. Liu et al.,, “DARTS: Differentiable architecture search,” in Proc.

ICLR, 2019, pp. 1-13.

[2

—

[6

=

[8

[t

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

(34]

(35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

B. Wu et al, “FBNet: Hardware-aware efficient ConvNet design
via differentiable neural architecture search,” in Proc. CVPR, 2019,
pp. 10734-10742.

H. Benmeziane et al.,, “Hardware-aware neural architecture search:
Survey and taxonomy,” in Proc. 13th 1JCAI, 2021, pp. 4322-4329.

X. Luo, D. Liu, H. Kong, S. Huai, H. Chen, and W. Liu, “LightNAS:
On lightweight and scalable neural architecture search for embedded
platforms,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 42, no. 6, pp. 1784-1797, Jun. 2023.

H. Bouzidi, M. Odema, H. Ouarnoughi, M. A. Al Faruque, and S. Niar,
“HADAS: Hardware-aware dynamic neural architecture search for edge
performance scaling,” in Proc. DATE, 2023, pp. 1-6.

L. Gong, C. Wang, X. Li, H. Chen, and X. Zhou, “MALOC: A fully
pipelined FPGA accelerator for convolutional neural networks with all
layers mapped on chip,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 37, no. 11, pp. 26012612, Nov. 2018.

R. Xu, S. Ma, Y. Wang, Y. Guo, D. Li, and Y. Qiao, “Heterogeneous
systolic array architecture for compact CNNs hardware accelerators,”
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 11, pp. 2860-2871,
Nov. 2022.

Y. Liang, L. Lu, Q. Xiao, and S. Yan, “Evaluating fast algorithms for
convolutional neural networks on FPGAs,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 39, no. 4, pp. 857-870, Apr. 2020.
C. Wang, L. Gong, X. Ma, X. Li, and X. Zhou, “WooKong: A ubiquitous
accelerator for recommendation algorithms with custom instruction
sets on FPGA,” IEEE Trans. Comput., vol. 69, no. 7, pp. 1071-1082,
Jul. 2020.

Q. Liu, M. Sun, J. Sun, L. Lu, J. Zhao, and Z. Wang, “SSiMD:
Supporting six signed multiplications in a DSP block for low-precision
CNN on FPGASs,” in Proc. FPT, 2023, pp. 161-169.

S. Huang et al., “Mixed precision quantization for ReRAM-based DNN
inference accelerators,” in Proc. ASP-DAC, 2021, pp. 372-377.

W. Lou, L. Gong, C. Wang, Z. Du, and X. Zhou, “OctCNN: A
high throughput FPGA accelerator for CNNs using octave convolution
algorithm,” IEEE Trans. Comput., vol. 71, no. 8, pp. 1847-1859,
Aug. 2022.

B. Liu et al., “Frequency-domain inference acceleration for convolu-
tional neural networks using ReRAMSs,” IEEE Trans. Parallel Distrib.
Syst., vol. 34, no. 12, pp. 3133-3146, Dec. 2023.

W. Lou, J. Qian, L. Gong, X. Wang, C. Wang, and X. Zhou, “NAF:
Deeper network/accelerator co-exploration for customizing CNNs on
FPGA,” in Proc. DATE, 2023, pp. 1-6.

E. Luo et al., “DeepBurning-MixQ: An open source mixed-precision
neural network accelerator design framework for FPGAs,” in Proc.
ICCAD, 2023, pp. 1-9.

N. Fasfous et al., “AnaCoNGA: Analytical HW-CNN co-design using
nested genetic algorithms,” in Proc. DATE, 2022, pp. 238-243.

Y. Liang et al., “An efficient hardware design for accelerating sparse
CNNs with NAS-based models,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 41, no. 3, pp. 597-613, Mar. 2022.

E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
Gumbel-Softmax,” 2016, arXiv:1611.01144.

A. Kouris, S. I. Venieris, and C.-S. Bouganis, “A throughput-latency co-
optimised cascade of convolutional neural network classifiers,” in Proc.
DATE, 2020, pp. 1656-1661.

B. Jacob et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proc. CVPR, 2018,
pp. 2704-2713.

Y. Li et al.,, “MQBench: Towards reproducible and deployable model
quantization benchmark,” in Proc. NeurIPS, 2021, pp. 1-26.

X. Zhang et al., “DNNExplorer: A framework for modeling and
exploring a novel paradigm of FPGA-based DNN accelerator,” in Proc.
39th ICCAD, 2020, pp. 1-9.

Q. Xiao and Y. Liang, “Zac: Towards automatic optimization and
deployment of quantized deep neural networks on embedded devices,”
in Proc. ICCAD, 2019, pp. 1-6.

X. Xie, J. Lin, Z. Wang, and J. Wei, “An efficient and flexible
accelerator design for sparse convolutional neural networks,” [EEE
Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 7, pp. 2936-2949,
Jul. 2021.

M. Sun et al., “FILM-QNN: Efficient FPGA acceleration of deep neural
networks with intra-layer, mixed-precision quantization,” in Proc. FPGA,
2022, pp. 134-145.

W. Sun, D. Liu, Z. Zou, W. Sun, S. Chen, and Y. Kang, “Sense: Model-
hardware codesign for accelerating sparse CNNs on systolic arrays,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 31, no. 4,
pp. 470483, Apr. 2023.

948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024

http://dx.doi.org/10.1109/TCAD.2024.3391688

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

