
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

FlexBCM: Hybrid Block-Circulant Neural Network
and Accelerator Co-Search on FPGAs
Wenqi Lou, Member, IEEE, Yunji Qin, Xuan Wang , Lei Gong , Member, IEEE,

Chao Wang , Senior Member, IEEE, and Xuehai Zhou

Abstract—Block-circulant matrix (BCM) compression has1

garnered much attention in the hardware acceleration of convolu-2

tional neural networks (CNNs) due to its regularity and efficiency.3

However, constrained by the difficulty of exploring the compres-4

sion parameter space, existing BCM-based methods often apply5

a uniform compression parameter to all CNN models’ layers,6

losing the compression’s flexibility. Additionally, independently7

optimizing models or accelerators makes achieving the optimal8

tradeoff between model accuracy and hardware efficiency chal-9

lenging. To this end, we propose FlexBCM, a joint exploration10

framework that efficiently explores both the parameter com-11

pression and hardware parameter space to generate customized12

hybrid BCM-compressed CNN and field-programmable gate13

array (FPGA) accelerator solutions. On the algorithmic side,14

leveraging the idea of neural architecture search (NAS), we design15

an efficient differentiable sampling method to rapidly evaluate16

the accuracy of candidate subnets. Additionally, we devise a17

hardware-friendly frequency domain quantization scheme for18

BCM computation. On the hardware side, we develop the effi-19

cient and parameter-configurable convolutional core (ConvPU)20

alongside the BCM computing core (BCMPU). The BCMPU can21

flexibly accommodate different compression parameters at run-22

time, incorporate complex-number DSP packing and conjugate23

symmetry optimizations. For model-to-hardware evaluation, we24

construct accurate latency and resource consumption models.25

Moreover, we design a fast hardware generation algorithm based26

on the coarse-grained search to provide prompt feedback on the27

hardware evaluation of the current subnet. Finally, we validate28

FlexBCM on the Xilinx ZCU102 FPGA and compare its com-29

pressed CNN-accelerator solutions with previous state-of-the-art30

works. Experimental results demonstrate that FlexBCM achieves31

1.21–3.02 times higher-computational efficiency for ResNet18 and32

ResNet34 models while maintaining an acceptable accuracy loss33

on the ImageNet dataset.34

Manuscript received 31 July 2024; accepted 1 August 2024. This work was
supported in part by the National Key Research and Development Program of
China under Grant 2022YFB4501600 and Grant 2022YFB4501603; in part
by the National Natural Science Foundation of China under Grant 62102383,
Grant 61976200, and Grant 62172380; in part by the Jiangsu Provincial
Natural Science Foundation under Grant BK20210123; and in part by the
Youth Innovation Promotion Association CAS under Grant Y2021121. This
article was presented at the International Conference on Hardware/Software
Codesign and System Synthesis (CODES + ISSS) 2024 and appeared as
part of the ESWEEK-TCAD Special Issue. This article was recommended by
Associate Editor S. Dailey. (Corresponding authors: Lei Gong; Chao Wang.)

Wenqi Lou is with the School of Software Engineering, University of
Science and Technology of China, Hefei 230026, China, and also with
the Suzhou Institute for Advanced Research, University of Science and
Technology of China, Suzhou 215123, China (e-mail: louwenqi@ustc.edu.cn).

Yunji Qin, Xuan Wang, Lei Gong, Chao Wang, and Xuehai Zhou are
with the School of Computer Science, University of Science and Technology
of China, Hefei 230026, China (e-mail: leigong0203@ustc.edu.cn; cswang@
ustc.edu.cn).

Digital Object Identifier 10.1109/TCAD.2024.3439488

Index Terms—Algorithm-hardware co-exploration, convolu- 35

tional neural network (CNN) compression, field-programmable 36

gate array (FPGA). 37

I. INTRODUCTION 38

CNNS HAVE achieved a series of remarkable achieve- 39

ments in computer vision [1], [2], [3]. However, 40

their ever-increasing computational and memory volume 41

makes their deployment challenging, especially in resource- 42

constrained embedded scenarios. To this end, model 43

compression has emerged as an effective method to reduce 44

model redundancy [4], [5], [6]. Early unstructured pruning 45

reduces the model’s size but introduces irregularity in com- 46

putation and memory access, significantly complicating the 47

hardware design. Therefore, researchers have subsequently 48

proposed regular compression methods. Among them, block- 49

circulant matrix (BCM) compression has become a promising 50

technique for deploying neural networks [7], [8], [9] on field- 51

programmable gate arrays (FPGAs) due to its regular structure 52

and expressive power. 53

Despite the remarkable results of BCM compression in 54

model deployment, the current BCM-based hardware acceler- 55

ation works still face the following limitations. 56

1) Constrained Compression Space: Due to the FFT/IFFT 57

operations involved in the computation, the BCM-based 58

work usually sets the block size (BS) to a power of 2, 59

e.g., 4, 8, and 16. Then, all layers in the model are sub- 60

jected to a uniform compression parameter [7], [8], [9]. 61

This scheme limits the compression space and neglects 62

that convolutional layers vary in their sensitivity to 63

compression. Fig. 1 illustrates the variation in accuracy 64

among different compression schemes with a simi- 65

lar compression ratio for the ResNet18 (RN18) and 66

ResNet34 models. 67

2) Separate Model Compression and Hardware Design: 68

Previous works typically rely on expert experience 69

to set appropriate model compression parameters and 70

corresponding hardware design parameters. Although 71

separate optimization at the algorithmic and hardware 72

levels is feasible, research has shown that there are 73

interactions between algorithms and hardware, and 74

optimization at different stages often yields only subop- 75

timal solutions [10], [11], [12]. 76

However, solving the above problem encounters the follow- 77

ing challenges. 78

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3065-4606
https://orcid.org/0000-0002-8391-5526
https://orcid.org/0000-0002-9403-5575
https://orcid.org/0000-0002-8360-3143

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

(a) (b)

Fig. 1. Effect of block size on model accuracy in BCM compression for
(a) RN18 on CIFAR-10 and (b) RN34 on ImageNet-100 datasets. “Vanilla”
denotes the uncompressed model; “hBS” indicates layer-wise hybrid block
size selection; and “-r/o” indicates random or optimized selection.

1) At the algorithmic level, hybrid BCM compression79

with layer-wise granularity entails a considerably larger80

search space. For instance, RN34 has a compression81

space greater than 1019, and the expanded compression82

space does not guarantee good accuracy (e.g., “hBS-r”83

in Fig. 1). Training all possible subnets to obtain the84

accuracy ranking involves prohibitive time costs.85

2) At the hardware level, previous accelerators based on86

BCM compression adopt a fixed dataflow. After static87

configuration, the accelerators cannot support different88

block sizes at runtime. Hence, a flexible computing core89

is required to support compressed convolutional layers90

with different block sizes.91

3) At the model-to-hardware evaluation level, in addition to92

accuracy evaluations, joint search considering layer-wise93

compression/hardware parameters necessitates frequent94

feedback on the subnet’s hardware metrics. Therefore,95

accurately and promptly generating optimized accelera-96

tors for subnets is also vital to the quality and cost of97

the co-search [13], [14], [15].98

To address the above challenges, we propose FlexBCM,99

a joint search framework for layer-wise compression and100

hardware parameters to balance model accuracy and hard-101

ware efficiency. First, regarding the accuracy evaluation of102

subnets, we establish a supernet structure where each layer103

encompasses all candidate operators. By designing effective104

differentiable sampling methods, we can address the problem105

of operator selection using gradient optimization. Second, for106

convolutional layers with different parameter configurations,107

we devise dedicated hardware computation cores to ensure108

the execution efficiency of the model. Particularly, a highly109

optimized BCM computing core (BCMPU) is designed to110

support different compression parameters flexibly. Finally, in111

the hardware evaluation of subnets, we model the hardware112

computation cores and design a rapid hardware generation113

algorithm using genetic algorithms to achieve rapid feedback114

on hardware evaluation.115

In summary, this work makes the following contributions.116

1) To avoid the heavy retraining overhead of numerous117

subnets, we design a supernet based on weight shar-118

ing and propose a simple yet effective differentiable119

sampling method to assess candidate subnets’ accuracy.120

Besides, we develop a hardware-friendly frequency-121

domain quantization scheme to facilitate hardware gains.122

TABLE I
KEY PARAMETERS AND VARIABLES FOR THE DESIGN

Fig. 2. BCM compression flow of matrix-vector multiplication.

2) To efficiently and flexibly support different compression 123

parameters, we design the customized convolutional core 124

and BCM core, where the BCM core can accommodate 125

different compression parameters at runtime and con- 126

tains targeted optimizations, such as complex-number 127

DSP packing and conjugate symmetry. 128

3) To rapidly provide the hardware evaluation of the 129

subnets, we accurately model the latency and resource 130

consumption of the computational cores, and based on 131

this, we design a heuristic hardware generation algo- 132

rithm based on the coarse-grained search and parallel 133

optimization. 134

4) We validate FlexBCM on the Xilinx ZCU102 FPGA. 135

Experimental results demonstrate that FlexBCM effec- 136

tively explores the joint search space in a brief time 137

(1 GPU day), and compared to previous works, the 138

searched solutions achieve 1.21–3.02 times higher- 139

computational efficiency with acceptable accuracy 140

degradation. 141

II. BACKGROUND AND RELATED WORK 142

In this section, we introduce the basis of the BCM compres- 143

sion, the application of mainstream neural architecture search 144

(NAS) methods, and related work. Table I summarizes the key 145

parameters and variables involved in the remainder of this 146

article. 147

A. Block-Circulant Matrix Compression 148

BCM compression splits the matrix (W ∈ R
M×N) into 149

p × q square sub-blocks, where p = �(M/BS)� and q = 150

�(N/BS)�. A circulant sub-block (Wij, i ∈ [0, p), j ∈ [0, q)), 151

shown in Fig. 2, has each column vector as a cyclic shift of 152

the previous one by one element. Thus, only one column is 153

required, reducing the memory storage complexity from O(n2) 154

to O(n). Moreover, the product of Wij and xj equals the circular 155

convolution of aij and xj, which can be accelerated by the fast 156

Fourier transform (FFT), as follows: 157

Wij × xj = F−1(F(aij
)� F(xj

))
(1) 158

LOU et al.: FlexBCM: HYBRID BLOCK-CIRCULANT NEURAL NETWORK AND ACCELERATOR CO-SEARCH ON FPGAs 3

where F and F−1 represent FFT and IFFT transformations,159

respectively, and � denotes Hadamard product. Finally, BCM160

compression reduces computational complexity from O(n2)to161

O(n log n) in a regular manner, making it suitable for hardware162

acceleration.163

For convolution layer, it can be regarded as a series of164

matrix-vector multiplication operations, that is165

O[:][r][c] = W
[
:, :, ki, kj

]× I[:][r + ki]
[
c + kj

]
. (2)166

where W ∈ R
M×N×K×K is the weight tensor, I and O are167

the input and output tensors, respectively, and r/c/ki/kj is168

the index of the cycle on their respective dimensions. We169

constrain each submatrix (Wi,j,ki,kj , i ∈ [0, �(M/BS)�), j ∈170

[0, �(N/BS)�)) to follow a circulant pattern. It can be seen that171

setting BS to the power of 2 enhances the computational gains172

due to the FFT/IFFT operations. Balancing the computation173

benefits with model accuracy, previous studies [8], [9] have174

often empirically set the BS to 4/8/16 and applied it to the175

entire model.176

B. Neural Architecture Search177

NAS has garnered considerable attention for its automated178

exploration of neural network architectures. The initial NAS179

method trains each subnet from the search space to assess180

its accuracy level and update the controller, incurring a181

prohibitive cost [16]. As a remedy, ENAS [17] constructs182

an over-parametrized supernet, enabling the evaluation of all183

architectures using its parameter subset. This strategy, com-184

monly called weight sharing, has been widely adopted. Later,185

DARTS [18] highlights the inefficiency of previous methods186

based on reinforcement learning (RL) and evolutionary algo-187

rithms (EAs) in searching within discrete spaces, which leads188

to substantial architecture evaluations required. To this end,189

DARTS introduces the differentiable NAS (DNAS) concept,190

relaxing the discrete search strategy through a Softmax way191

Al =
|O|∑

i=1

exp
(
αl

i

)

∑|O|
i′=1 exp

(
αl

i′
) × Oi

(
Al−1

)
. (3)192

Here, Al−1 is the output of the previous layer, and O denotes193

the predefined operator space. αl
i means the architectural194

parameter of operator Oi in the lth searchable layer. Similarly,195

FBNet [19] employs a Gumbel-Softmax (GS) approximation,196

probabilistically sampling a path from the candidate paths197

Al =
|O|∑

i=1

GS
(
αl

i | αl
)

× Oi

(
Al−1

)
. (4)198

Thus, DNAS has evolved into an optimization process for a199

set of continuous variables α = {αl
i}. On this basis, researchers200

further incorporate hardware constraints into the objective201

function and optimize the search process for a target hardware202

platform [20], [21], [22]. This type of work is commonly203

referred to as hardware-aware NAS.204

C. Algorithm and Hardware Co-Optimization205

Researchers initially focused on computation and memory206

access optimizations for convolutional neural networks207

(CNNs) and designed a series of dedicated accelerators [23], 208

[24], [25], [26], [27]. They then introduced algorithmic opti- 209

mizations and adapted them on the hardware side to achieve 210

a synergy between algorithm and hardware [28], [29], [30], 211

such as accelerators for quantized or compressed neural 212

networks. However, recent research has shown that staged 213

algorithmic/hardware optimization makes it hard to achieve 214

an optimal solution. Therefore, algorithm and hardware co- 215

search research has emerged. Jiang et al. [10] performed a 216

joint search for the network architecture and the accelerator’s 217

parallel parameters on FPGAs using the RL method, achieving 218

significant overall performance improvement. However, the 219

scalability was limited by the cost of the search. To address 220

this, Li et al. [11] introduced EDD, which conducted co-search 221

for networks and accelerators in a differentiable manner, 222

thereby enhancing search efficiency. Nevertheless, EDD used 223

hardware-agnostic metrics to model the hardware. To this end, 224

Fan et al. [12] established a latency predictor for their single- 225

core hardware architecture to achieve rapid feedback for the 226

hardware evaluation. Furthermore, Lou et al. [31] designed a 227

rapid evaluation function for model deployment on multicore 228

accelerators to enable a broader co-search space. 229

As NAS technology has evolved, researchers are begin- 230

ning to explore a wider range of hardware and algorithm 231

co-optimization opportunities [32]. For example, Fasfous 232

et al. [33] jointly explored the layer-wise quantization bit- 233

width and accelerator design. Liang et al. [34] jointly searched 234

the compressed model (irregular) and accelerator based on 235

hardware analytical modeling. Thus, in this article, drawing 236

inspiration from the above advancements, we endeavor to 237

surmount the limitations in BCM compression with the help 238

of DNAS technology and further explore the potential of 239

hardware-software co-search. 240

III. FRAMEWORK 241

Given the target model, FPGA specifications, and frames 242

per second (FPS) settings, FlexBCM automatically generates 243

tailored BCM-compressed CNNs and accelerators to bal- 244

ance model accuracy and hardware efficiency. The overall 245

framework (refer to Fig. 3) consists of two key components: 246

1) the differentiable compressor and 2) the fast hardware 247

evaluator. These components work together to enable the 248

joint exploration of compression parameters (BS-1/4/8/16) and 249

accelerator structures (tiling and parallelism factors). 250

Section IV details the differentiable compressor, where we 251

construct a supernet containing all candidate compression 252

operators based on weight sharing. This supernet includes the 253

vanilla convolution operator (BS-1) to copy with different sce- 254

nario requirements. We then introduce a novel differentiable 255

sampling algorithm to efficiently explore the compression 256

space (O). Besides, we adopt a hardware-friendly frequency- 257

domain quantization scheme for the BCM compression. 258

Following this, Section V describes the hardware archi- 259

tecture designed to support these compressed models. We 260

construct a generic convolutional computing core (ConvPU) 261

and a specialized BCMPU. The BCMPU is designed to flexi- 262

bly support various compression parameters and incorporates 263

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 3. Overview of our FlexBCM co-search framework.

optimizations, such as complex conjugate symmetry and mul-264

tiplication DSP packing, which help to reduce computation265

and storage overhead.266

On this basis, we perform accurate resource and267

performance modeling of the accelerator to reflect the actual268

execution of the convolutional layers. We develop a fast269

hardware generation algorithm based on the genetic algorithm,270

as detailed in Section VI. This section explains how we271

leverage genetic algorithms to optimize hardware generation,272

ensuring efficient mapping of the CNN operations onto the273

FPGA in a brief time.274

In summary, our framework not only provides a method for275

compressing CNNs but also includes the tools necessary for276

implementing these models on FPGA hardware, optimizing for277

both performance and efficiency. Following the DNAS work,278

we use bi-level optimization (5) to solve this joint search279

problem. In addition, we introduce a hardware loss term (Lhw)280

in the final loss function to guide the compression operator281

search process at the algorithmic level282

min
α

Lval
(
w∗, α

)+ λLhw
(
α,�∗)

283

s.t. w∗ = arg min
w

Ltrain(w, α)284

s.t. �
∗ = arg min

�

Lhw(α,�)285

s.t. hwcost
(
α,�∗) < hwlimit (5)286

where w is the supernet weight; α denotes the operator287

selection probability, also called architectural parameters; and288

Lval and Ltrain are the validation and training loss of the289

supernet, respectively. �∗ denotes the optimized FPGA accel-290

erator, searched under the target hardware resource constraints291

(hwlimit), to quickly provide hardware evaluation. λ is a292

hyperparameter that controls the tradeoff between terms.293

IV. ALGORITHM DESIGN294

In this section, we provide a detailed explanation of the295

methods and steps taken to achieve efficient compression and296

quantization, including a moderate sampling algorithm and a297

hardware-friendly frequency-domain quantization algorithm.298

A. Moderate Differentiable Sampling299

To avoid repeatedly training subnets with different BS300

values, we first construct a supernet that contains all candidate301

compression operators in each layer, following the approach302

of the DNAS works [11].303

However, directly applying the GS method in the BCM304

compression scenario results in a biased search, as shown in305

Fig. 4(a). For clarity, we use layer six as an example, but306

(a) (b) (c)

Fig. 4. Probability distributions of each operator in the sixth layer of
the RN18 without imposing any computation-cost constraints under different
search methods: (a) GS method; (b) Softmax method; and (c) our proposed
M-GS method.

TABLE II
COMPARISON OF SEARCH METHODS (TESTED ON A SINGLE NVIDIA

RTX 3090 GPU WITH 24 GB OF VIDEO MEMORY)

this trend holds for most layers in the model. We observe 307

that the GS method favors the BS-16 operator with the fewest 308

parameters over the vanilla operator with higher accuracy in 309

searching. The searched subnet’s final accuracy is 94.69% 310

(Table II), an apparent drop from the 95.23% accuracy of 311

the original RN18 model. We attribute the biased search to 312

the fact that the BS-16 operator has a higher priority than 313

other operators due to its fewer parameters. However, the 314

GS method picks only the highest-probability operator at 315

each feedforward. In contrast, the Softmax method enables all 316

operators to participate in computations, prioritizing the vanilla 317

operator during the search. This method achieves the expected 318

outcome (95.40% accuracy) but involves all operators, signif- 319

icantly increasing GPU computation and memory costs (refer 320

to Table II). 321

To address the above issues, we propose a moderate GS 322

sampling (M-GS) technique, selecting more activation paths 323

based on GS sampling as follows: 324

P l
i = GS

(
αl

i

)
= exp

(
(logS(αl

i) + Gl
i)/τ

)

∑|O|
i′=1 exp

(
(logS(αl

i′) + Gl
i′)/τ

) (6) 325

Al+1 =
|O|∑

i=1

([
P l

i ∈ largest(P l, 2)
]

× P l
i × Oi

(
Al
))

(7) 326

where Pl
i denotes the selection probability of the ith operator 327

in the lth layer after GS approximation (details can refer 328

to [35]); Al+1 denotes the lth layer output. [exp]=1 when 329

exp is true. The M-GS method selects the top two paths with 330

the highest probabilities from the forward path, increasing 331

the diversity of operators and providing a suitable balance 332

between performance and search cost. To further validate the 333

LOU et al.: FlexBCM: HYBRID BLOCK-CIRCULANT NEURAL NETWORK AND ACCELERATOR CO-SEARCH ON FPGAs 5

(a) (b) (c)

Fig. 5. Quantization flow: (a) regular training in BCM compression;
(b) quantization-aware training; and (c) integer inference.

effectiveness of the M-GS method, we impose a computational334

constraint during the search process. We achieve this by adding335

a regularization term to the objective function, which is the336

sum of the computational costs of each layer weighted by αl.337

Results show that reducing the computation by 70% lowers338

the model’s accuracy compared to the unconstrained case339

(“None”). However, the M-GS method still achieves a better-340

cost-performance tradeoff than the GS and Softmax methods.341

Note that the FLOPs metric is hardware-agnostic and cannot342

reflect the actual latency of the compressed model on the target343

hardware. We use this metric here to simplify the verification344

process of the search algorithm.345

B. Hardware-Friendly Frequency Domain Quantization346

Quantization has become a de facto step for implementing347

CNNs on FPGAs, offering practical advantages for hardware-348

related benefits [36]. However, the complexity of quantization349

increases under BCM compression, as evidenced by the350

following: 1) FFT/IFFT operations introduce additional quanti-351

zation errors and 2) complex quantization requires determining352

how to quantize both the real and imaginary parts.353

For issue 1), we propose a quantization flow (see354

Fig. 5) that simulates the quantization errors caused by355

FFT/IFFT operations. This flow also converts the data356

involved in off-chip access and computation to integers, which357

enables actual hardware benefits. Specifically, we employ358

the Quantize− Dequantize process, also known as fake359

quantization node, to introduce quantization errors during the360

model quantization process, as follows:361

Al
Q = Quantk

(
Al
)

= clamp

(⌊Al

Sl
a

⌉
,min,max

)
(8)362

W l
Q = Quantk

(
W l
)

= clamp

(⌊W l

Sl
w

⌉
,min,max

)
(9)363

where Al and W l denote the activation and weights of the364

lth layer, respectively, and Sl
a and Sl

w are the corresponding365

quantization scales. clamp(·) is a truncation function and k366

denotes the integer bit-width; A typical approach for deter-367

mining the scale factor based on the absolute maximum value368

is illustrated as follows:369

Sl
a = max

(
|Al

a|
)
/
(

2k−1 − 1
)
. (10)370

For issue 2), we adopt a unified quantization method371

[see (11)]. It applies the same scaling factor to the372

real and imaginary parts, which simplifies the hardware373

Fig. 6. Overall architecture (left) and the BCMPU structure (right).

implementation of fast complex multiplication optimization 374

(refer to Section V-C) 375

Quantk(zr + j ∗ zi) = Quantk(zr, zi). (11) 376

To ensure the model accuracy, we set k=8. Note that although 377

we use the INT8 type here, we exclude the −128 value (set 378

min to −127) for DSP packing optimization. 379

In model quantization training, since integer-based data 380

cannot be directly inserted back for training or optimization, 381

integer values are rescaled back to the floating-point domain, 382

referred to as “Dequantize” 383

Al
DQ = Dequant

(
Al

Q

)
= Al

Q × Sl
a ∈ float (12) 384

W l
DQ = Dequant

(
W l

Q

)
= W l

Q × Sl
w ∈ float. (13) 385

In integer inference, weights and activations are deployed 386

at low-precision values (Al
Q and W l

Q), with the next layer’s 387

quantized activations generated by multiplying by a rescaling 388

factor (Sl
a ×Sl

w/Sl+1
a). To prevent accuracy degradation due to 389

hardware implementation, we employ a conservative approach 390

by uniformly using 32-bit fixed-point numbers to approximate 391

floating-point factors, such as rescale factors and twiddle 392

factors (ω) in FFT/IFFT. We perform integer inference of the 393

quantized BCM-based RN18 on CIFAR-10, and the results 394

show that the hardware implementation introduces an accuracy 395

degradation within 0.1%, which is consistent with previous 396

work and is negligible [37], [38]. 397

V. HARDWARE DESIGN 398

In this section, we describe the architecture of the acceler- 399

ator that can adapt to different compression parameters (BS) 400

and provide insights into the architectural choices and their 401

impact on performance and resource overhead. 402

A. Overall Architecture 403

We design a generic and parameter-configurable convolu- 404

tion computation core (ConvPU) and a BCM compression 405

computation core (BCMPU) based on the operator space 406

(Vanilla, BS-4/8/16), shown in Fig. 6 (left). The host CPU 407

configures the computation core with the layer information, 408

compression parameter, and memory address. The two cores 409

fetch the required data through the AXI4 interface and store 410

them in multiple BRAM banks or LUTs using the memory 411

interleaving technique to provide the on-chip bandwidth for the 412

computation array. Both computational cores act as indepen- 413

dent AXI4 masters, receiving and outputting feature maps in 414

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

(a) (b)

Fig. 7. To reuse the PE array (HBS=8), the dataflow of activations and
weights when BS equals 4 or 8. (a) BS=4. (b) BS=8.

channel-first format, and thus can directly perform task-level415

parallel operations with the support of off-chip DRAM.416

For the ConvPU design, we employ a tiling architec-417

ture, with tiling performed along the horizontal dimension418

(Tr, Tc) and parallel unfolding conducted over the input/output419

channels (Tn, Tm). Tiled inputs and weights are sequentially420

loaded onto the chip for computation, and the final results421

are outputted off-chip. ConvPU can accommodate various422

convolutional layer parameters, with differences in the number423

of times tiled data is loaded. For brevity, we refrain from424

presenting the internal structure of ConvPU. Subsequently, our425

focus will be on elucidating the design of the general BCMPU.426

B. BCMPU Design427

The BCMPU structure, shown in Fig. 6, mainly consists428

of data processing, on-chip storage, and computation units.429

The data processing unit unpacks or packs the data, and the430

on-chip storage unit provides the necessary on-chip buffer431

and bandwidth for computation. Besides, the post-processing432

unit performs ReLU and BN operations on the quantized433

data. The computation unit is the heart of the design to434

support convolutional layers with flexible block sizes. Next,435

we describe the details of the computation unit.436

1) Frequency-Domain PE Array: The BCM-based compu-437

tation flow involves FFT-Hadamard-IFFT operations on data of438

length BS. Thus, we further partition and unroll the tiled data439

by BS size in the channel dimensions. However, if we adopt440

the same unrolling strategy as the ConvPU, the parallelism441

of the PE array is only (Tm/BS) × (Tn/BS), which is a442

significant decrease compared to ConvPU. To complement443

the parallelism, we simultaneously unroll the BS dimension444

rather than the convolution kernel’s spatial dimensions for445

generality, i.e., (Tm/BS)×(Tn/BS)×BS. Specifically, we chose446

the size required for maximum compression (BS=16) for the447

BS dimension unrolling to reuse the PE array. We finally set448

the hardware block size (HBS) to 8, considering the conjugate449

symmetry. We package the data at positions “0” and “BS/2”450

for the feature maps and weight after FFT because they only451

contain real parts. Finally, the PE array can be reused for the452

smaller BS values in a time-multiplexing manner.453

Fig. 7 illustrates how BCM-based calculations with differ-454

ent block sizes reuse the same frequency domain PE array.455

Each PE requires HBS activation and weight data per cycle456

to perform the parallel computation. For activation, we obtain457

HBS continuous data along the channel dimension. Regarding458

(a) (b)

Fig. 8. FFT/IFFT structure and accumulation unit. (a) Parallel FFT units that
support variable-length input. (b) Partial result accumulation operation flow.

weights, we employ the reshape operation to rearrange the 459

elements at the corresponding positions. For instance, when 460

BS equals 4, the complex weight size is Tm/2 × Tn/2 × 2K2
461

after conjugate symmetry optimization. Then, the weight is 462

reshaped to four Tm/8 × Tn/8 × 8K2. Thus, the PE array 463

is reused four times. Finally, the size of the on-chip weight 464

buffer is set to Tm/2×Tn to accommodate maximum demand. 465

Notable, if the PE completes the multiply-accumulate opera- 466

tion, it needs to accumulate different data lengths depending 467

on the BS value. Accordingly, we only perform complex 468

multiplication inside the PE to simplify its implementation. 469

Then, we set up a unified accumulation unit to facilitate partial 470

sum accumulation along the channel dimension. 471

2) Parallel FFT/IFFT Unit: For BCM-based convolutional 472

layers, their weights are processed offline by FFT and stored 473

off-chip as complex numbers. Conversely, activations are 474

stored off-chip as real numbers and require online FFT/IFFT 475

operations. Fig. 8(a) illustrates the FFT unit that supports 476

up to 16 parallel term inputs and can produce 4 FFT-4, 477

2 FFT-8, or 1 FFT-16 transform output, depending on the 478

configuration. It has four stages, each with eight butterfly units 479

(BFUs). The twiddle factors for the operations are stored as 480

INT32 numbers in the on-chip ROM. Since both complex 481

activations and weights possess the conjugate property, the 482

property (Z∗
1 × Z∗

2 = (Z1 × Z2)
∗) can reduce the complex 483

storage and computational overhead by nearly half. The IFFT 484

structure is identical to the FFT, except for the twiddle factor 485

value. Hence, we do not repeat it. To minimize the FFT/IFFT 486

latency, we adopt this parallel architecture, which is justified, 487

considering that the computation in each stage is relatively 488

small. Moreover, we employ fast complex multiplication 489

optimization, which replaces the real multiplication operation 490

with extra real addition operations to reduce the computational 491

overhead. 492

3) Accumulation Unit: To generate the output of Tm × 493

Tr × Tc, we still need to accumulate the partial sums in 494

the channel dimension, done by the accumulation unit. It 495

contains the accumulation buffer and multiple adder trees, 496

shown in Fig. 8(b). The buffer size is Tm × Tn/2, with a 497

single adder tree for each input data column to accumulate the 498

partial sum. Tn/2 is the maximum number of accumulation 499

lengths after applying the conjugate symmetric optimization 500

(Tn/(4/2)). For the BS-8/16, we additionally set up control 501

logic to explicitly set unused data in the buffer to zero to 502

LOU et al.: FlexBCM: HYBRID BLOCK-CIRCULANT NEURAL NETWORK AND ACCELERATOR CO-SEARCH ON FPGAs 7

maintain correctness. The depth of the adder tree is log2(Tn/2),503

where we use registers to synchronize between adjacent stages504

to optimize the timing. After fully pipelined, the accumulation505

unit can output the accumulation sum in every cycle.506

C. DSP Optimization507

The DSP packing of INT8 data multiplication to reduce508

the computational cost has become a popular optimization509

method [27]. In ConvPU, two real-number multiplications510

are packed as a × (w1 << 18 + w2) onto a DSP with511

18×27 multiplier support. In contrast, in BCMPU, DSP512

packing involves optimized complex-number multiplication,513

which has yet to be explored. The multiplication of activation514

(ca = car + j ∗ cai) and weights (cw1 = cw1r + j ∗ cw1i,515

(cw2 = cw2r + j ∗ cw2i)) is calculated as follows:516

ca × cw1 = (A1 − C1) + j ∗ (A1 + B1)517

ca × cw2 = (A2 − C2) + j ∗ (A2 + B2)518

A1 = (car + cai) × cw1r519

A2 = (car + cai) × cw2r. (14)520

Taking A1 and A2 as an example, after packing, it becomes521

(car + cai) × (cw1r << 18 + cw2r). Similarly, B1 and B2 is522

packed as ((wi1 − wr1) << 18 + (wi2 − wr2)) × car. We do523

not repeat the C1/2 details here for brevity. It can be observed524

that an extra addition or subtraction operation is necessary525

for the DSP packing of complex-number activations/weights.526

Significant dequantization overhead occurs if the scaling fac-527

tors of the real and imaginary parts differ. Therefore, we have528

chosen a unified quantization approach (see Section IV-B). In529

this way, we only need to apply the rescaling factor for the530

output. In addition, to keep the packed data within the 27-bit531

input range, we dropped the −128 in the INT8 data to ensure532

it would not overflow downward.533

VI. NETWORK-ACCELERATOR MAPPING534

This section presents a model of the accelerator’s resource535

and latency and proposes a fast hardware generation function536

based on genetic algorithms to provide feedback for subnets.537

A. Accelerator Modeling538

Here, we focus on modeling the latency and consumption539

of DSP and BRAM of the accelerator and use the identifiers540

“cu” and “bu” to distinguish ConvPU and BCMPU cores.541

Latency Modeling: We consider the latency of the pipeline’s542

start and exit phases in all units. For off-chip access latency, we543

adopt more refined modeling for all AXI4 ports by considering544

the number of requests versus the cost of burst access545

⎧
⎨

⎩

Laxi = (T · �L/(bw · bl)�)
︸ ︷︷ ︸

number of requests

/Onum · (bl · Onum + Lstall)︸ ︷︷ ︸
burst read cycles

Lstall = max(Lddr − bl × (Onum − 1), 0)

(15)546

where T , L, bw, bl, and Onum represent the number of accesses,547

the access length, the bandwidth, the burst length, and concur-548

rent transmission transactions, respectively. Lddr indicates one549

DRAM access latency. Regarding the computation latency, for550

brevity, we illustrate it with an example of the latency of the 551

BCMPU to generate one output tile (Ltile
bu) 552

{Ltile
bu = max

(LW
bu,LI

bu

)+ (�N/(2 · Tbu
n)� − 1

) · Lm + Larr
bu

Larr
bu = Lsetup + K · K · Tbu

r · Tbu
c · (2 · HBS)/BS

(16) 553

where LW
bu, LI

bu, Larr
bu , and Lm denote the weight latency, 554

input latency, computing latency, and maximum latency of the 555

pipeline, respectively. N means the input channel size. 556

Resource Modeling: The PE arrays account for most of the 557

DSP consumption (D), which we estimate by multiplying the 558

computation cost per unit by the degree of parallelism 559

Dcu = Tcu
n ·

⌈
Tcu

m

2

⌉
; Dbu = 3 ·

⌈
Tbu

m

2 · HBS
⌉

·
⌈

Tbu
n

HBS

⌉
· HBS.(17) 560

Here, the DSP cost after complex multiplication optimization 561

in BCMPU is 3. For brevity, we have not reflected the addi- 562

tional consumption introduced by the FFT/IFFT, quantization, 563

and BN operation in (17). The consumption of BRAM (R) 564

typically hinges on the requisite port width and depth. Within 565

both computing cores, BRAM is primarily utilized to construct 566

input and output buffers, which can be estimated as follows: 567

Rcu = 2 ·
(⌈

Tcu
n · 8b

36b

⌉
·
⌈

lencu
in

512

⌉
+ Tcu

m ·
⌈

Tcu
r · Tcu

c

512

⌉)
568

Rbu = 4 ·
(

Tbu
n ·

⌈
lenbu

in

2048

⌉

+ Tbu
m ·

⌈
Tbu

r · Tbu
c

512

⌉)

(18) 569

where lenin denotes the maximum depth required for input 570

buffers. Tr and Tc denote the tiling size in the feature map’s 571

row and column dimensions. The factor of 4 accounts for 572

double buffering of complex data. A single BRAM18K block 573

can be configured as 9×2048 or 36×512. 574

B. Fast Hardware Generation 575

In the joint search of parameter compression and hardware, 576

the framework necessitates not only an accuracy assessment 577

but also a hardware assessment for the sampled subnets. 578

This process involves generating hardware parameters for the 579

subnet on the target FPGA and providing feedback on its 580

hardware performance, as shown in the following equation: 581

min
�:{vcu,vbu}

max(Lcu(θcu, vcu), Lbu(θbu, vbu)) 582

s.t. Dused,Rused, BWused < hwlimit (19) 583

where θcu and θbu denote the layer set assigned to the 584

ConvPU and BCMPU, respectively. vcu and vbu denote the 585

hardware (HW) parameter variables of ConvPU and BCMPU, 586

respectively. The two HW variables have the same param- 587

eter term, both requiring the determination of values for 588

[Tr, Tc, Tm, Tn, bwin, bwwt, bwout]. hwlimit represents FPGA 589

resource limitation. Due to the vast sampled subnets in joint 590

search, the traditional work’s minute-level evaluation time 591

becomes impractical [39]. For example, one search epoch 592

on the ImageNet-1k training set often involves thousands of 593

subnet samples and evaluations. 594

To this end, we design a fast hardware generation algorithm, 595

as shown in Algorithm 1, to reduce the hardware evaluation 596

time. Specifically, we apply genetic algorithms to accelerate 597

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Algorithm 1: Fast Hardware Generation Algorithm

1 Initialize the target latency (lattarget) and hwlimit

2 Initialize population size (M), iteration number (I)

3 Function FitScore(·) call latency and resource model to
evaluate individuals

	 coarse-grained search
4 Randomly initialize the individuals in Popu[M] with the

index values in Table III
5 while iteration < I do

	 multiprocess parallel
6 for ind in [1,M] do

// Get the fitness index with accelerator model
7 Evaluate: Fitind = FitScore(Popu[ind])

8 Update the top-k global optimal individuals
9 for ind in [k,M] do

10 Select parents (s, t) according to probability
11 Crossover: Temp = cross(Popu[s],Popu[t])
12 Mutation: Popu[ind] = mutat(Temp)

13 Keep the best Lbest = Obj[1] and �
∗ = Popu[1]

14 if Lbest ≤ lattarget then
15 break

16 Return best latency (Lbest) and hardware parameters (�∗)

TABLE III
HARDWARE ARCHITECTURE SEARCH SPACE

the exploration of the hardware search space and further598

conduct a coarse-grained search with multiprocess parallel599

optimization. In the coarse-grained search, we restrict the600

search for decision variable (�) to a candidate list, as shown in601

Table III, to significantly speed up the search process. The val-602

ues in the list are determined based on the convolutional layer603

parameters and hardware execution efficiency (e.g., integer604

divisibility). On the other hand, considering the independence605

of individual evaluations within the population, we employ606

multiprocess parallelism to leverage modern CPUs’ computing607

power fully. In this study, we set the values of M and I to608

250 and 50, respectively. The search process exhibits a stable609

convergence behavior, reaching a definitive value after about610

40 iterations. Finally, on a desktop-class CPU i7-8700K with611

32GB of DDR4, the search took just 1.63 s at parallelism 4. It612

is noteworthy that our aim is not to pursue the optimal solution613

but rather to rapidly attain an optimized solution, facilitating614

the hardware assessment of the subnet.615

VII. EVALUATION616

A. Experimental Setup617

To evaluate the effectiveness of FlexBCM, we conduct618

a joint search to deploy RN18 and RN34 models on the619

embedded Xilinx ZCU102 platform, aiming for 100 FPS and620

80 FPS, respectively. FlexBCM searches on ImageNet-100,621

TABLE IV
COMPRESSION PARAMETERS OF RN18 ON ZCU102

TABLE V
COMPRESSION PARAMETERS OF RN34 ON ZCU102

TABLE VI
HW PARAMETERS FOR BCM-BASED RN18 RUNNING ON ZCU102

TABLE VII
HW PARAMETERS FOR BCM-BASED RN34 RUNNING ON ZCU102

a random subset of ImageNet-1k training set that consists 622

of 1000 classes to optimize both supernet weights (w) and 623

the compression parameters (α). We train the supernet for 624

60 epochs, with a batch size of 256, a learning rate of 625

0.1, and cosine annealing, where we freeze α in the first 626

20 epochs. It takes 12.2 and 21 h on a single NVIDIA 627

A100 GPU (80 GB video memory), respectively. The searched 628

compression parameters of the RN18 and RN34 are shown in 629

Tables IV and V, respectively. We train the searched subnets 630

for 250 epochs with a batch size of 512 on the complete 631

training set to obtain the final accuracy. 632

The corresponding FPGA accelerator parameters are shown 633

in Tables VI and VII, respectively. The accelerator design is 634

implemented using HLS-compatible C++ code in Vitis HLS 635

(v2021.2), with a clock cycle of 200 MHz. RTL simulation 636

is performed through the tool’s C/RTL co-simulation feature. 637

The exported RTL is synthesized and placed-and-routed in 638

Vivado (v2021.2). The built-in reports in Vivado provide 639

power consumption data for the accelerator. Detailed power 640

and resource consumption data can be found in Table VIII. 641

B. Quantization Algorithm Validation 642

We evaluate the proposed quantization method on RN18 643

and RN34 models using the classical CIFAR10 and ImageNet- 644

100 datasets. For comparison, we present the accuracy of the 645

floating-point model and the baseline scheme in which the real 646

and imaginary parts are quantized separately. 647

LOU et al.: FlexBCM: HYBRID BLOCK-CIRCULANT NEURAL NETWORK AND ACCELERATOR CO-SEARCH ON FPGAs 9

TABLE VIII
COMPREHENSIVE COMPARISON WITH PREVIOUS FPGA IMPLEMENTATIONS

(a) (b)

Fig. 9. Accuracy of frequency domain quantization algorithms under different
BS values. (a) RN18 on CIFAR10. (b) RN34 on ImageNet-100.

The results are shown in Fig. 9. We observe that both648

quantization schemes achieve comparable accuracy under the649

INT8 quantization for both the RN18 model and RN34 model650

with different block sizes. The maximum accuracy drop for651

RN18 on CIFAR10 and RN34 on ImageNet-100 in our652

quantization is 0.2% and 0.9% (adopting BS-16), respectively.653

Kindly note that we here do not focus on the full recovery654

of accuracy but rather on validating the effectiveness of the655

quantization scheme. Therefore, we only perform a limited656

number of 90 training epochs on the ImageNet-100 dataset.657

At this point, a precision error of 0.9% is acceptable. The658

quantized model can improve its accuracy further as training659

epochs increase. Despite the broader numerical representation660

range exhibited by the baseline method in comparison to661

the approach we propose, performance between the two is662

similar in most cases. This phenomenon is mainly attributed663

to the fact that the RN18 and RN34 models possess sufficient664

feature extraction capability. Ultimately, considering hardware665

friendliness, our approach exhibits a marked superiority in666

overall performance.667

C. ConvPU/BCMPU Validation668

To validate the effectiveness of the computational cores,669

we select the configurations of the main convolutional lay-670

ers in ResNet-18/34 networks and conduct performance and671

efficiency tests on the computational core based on different672

Fig. 10. Throughput and DSP busy rate of ConvPU and BCMPU running
the same convolutional layer with the same parallel parameters.

compression parameters (BS-1/4/8/16). The specific network 673

layer configurations (layer1/2/3/4) are {(56/28/14/7)2 × 674

64/128/256/512} → {(56/28/14/7)2 × 64/128/256/512}, 675

with K/S/P values of 3/1/1 and a W8A8 bitwidth. For a fair 676

comparison, we separately deploy ConvPU and BCMPU on 677

Xilinx ZCU102, both executing the above four convolutional 678

layers with the same level of parallelism. ConvPU has a 679

parallelism of 16×16, while BCMPU has a parallelism of 680

32×16/8×4 (complex computation). We obtain performance 681

through C/RTL co-simulation in Vitis HLS (v2021.2). 682

Fig. 10 illustrates the performance and efficiency of both 683

cores when executing the respective layers independently. In 684

terms of throughput, it can be observed that BCMPU exhibits 685

a significant throughput advantage (more than 2×) compared 686

to ConvPU. Across layer1 to layer4, as the compression 687

ratio increases (BS-1 to BS-16), BCMPU’s throughput for 688

each layer gradually improves, demonstrating the adaptability 689

of our designed BCMPU to different BS values. Regarding 690

DSP utilization, except for layer1, ConvPU’s DSP busy ratio 691

is consistently above 85%, primarily due to the relatively 692

small channel count (64) in layer1. The optimized BCMPU 693

maintains an acceptable level of DSP utilization. However, 694

compared to ConvPU, BCMPU’s DSP utilization decreases, 695

mainly because the computation after BCM compression is 696

less and more complex than the original convolution. 697

Additionally, we observe the following patterns in 698

BCMPU execution: 1) within the same convolutional 699

layer, DSP utilization during BCMPU runtime decreases 700

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 11. Latency estimation errors of the ConvPU.

as the compression ratio increases and 2) across different701

convolutional layers, the impact of compression ratio on702

DSP utilization gradually diminishes with increasing channel703

depth. The reasons for these phenomena are twofold: 1)704

larger compression parameters imply a smaller computational705

load for the compressed convolutional layer, making it more706

challenging to utilize DSP under the same parallelism and 2)707

we perform tiling in the channel dimension, and as channel708

depth increases, the deepening of the pipeline reduces the709

impact of injection and ejection phases on overall latency. In710

conclusion, our designed ConvPU and BCMPU can effectively711

handle different layers while maintaining an acceptable DSP712

utilization. Furthermore, low-bit-width multiplication packing713

contributes to further enhancing DSP efficiency.714

D. Accelerator Modeling Validation715

To avoid time-consuming hardware deployment, we have716

performed precise modeling of the accelerator’s performance717

and resources to reflect the actual deployment of the model.718

Therefore, this section will verify the prediction accuracy of719

the accelerator model to evaluate its effectiveness. We compare720

the result with the C/RTL co-simulation result in Vitis HLS721

(v2021.2) and the synthesis result in Vivado (v2021.2).722

Here, the tested feature map sizes include [56, 28, 14],723

channel sizes include [64, 128, 256, 512], and the 3 × 3 and724

1 × 1 convolution kernel sizes. Instead of a full permutation,725

we chose 14 representative layer configurations as test cases.726

We perform performance verification on the ConvPU and727

BCMPU units separately and present the verification results728

in Figs. 11 and 12. The hardware parameters in both cores729

are randomly sampled. It can be observed that, for the730

general convolution core, our performance model exhibits731

excellent performance in terms of error rate, remaining within732

0.7%. In contrast, the prediction model described in the733

work [39] fluctuated within 10% in error rate, highlighting734

the significant error reduction we achieved. Compared to735

ConvPU, BCMPU has a slightly higher-error rate, mainly due736

to: 1) BCMPU’s operation is relatively complex, containing737

more pipeline delays and 2) the overall latency is small,738

increasing its memory access delay ratio. Overall, BCMPU’s739

prediction error rate is still acceptable, remaining within 2%.740

Furthermore, we select five common hardware configurations741

where the resource prediction results deviate from the actual742

outcomes by single-digit discrepancies, which will not be743

further demonstrated.744

E. Validation of Co-Search Effectiveness745

To validate the effectiveness of our co-exploration approach,746

we conduct experiments using RN18 on the Xilinx ZCU102747

Fig. 12. Latency estimation errors of the BCMPU.

Fig. 13. Accuracy and latency tradeoffs. (a) Random compressed network-
accelerator pairs versus (b) random networks with Algorithm 1 enhanced.

platform. We randomly sample 100 compressed subnets from 748

the compression parameter space (≈ 1E+10). Each subnet 749

undergoes the same training setting over 36 epochs on the 750

ImageNet-100 dataset to assess the accuracy. Further, for each 751

sampled subnet, we generate 100 distinct hardware configura- 752

tion sets from a pruned parameter space (≈ 1E+11, detailed 753

in Table III), adhering to constraints ensuring DSP utilization 754

exceeds 50% and BRAM utilization does not surpass 90% of 755

the ZCU102’s capacity. 756

Fig. 13(a) shows the distribution of accuracy and latency 757

among randomly generated compressed CNN-accelerator 758

pairs. Notably, even with a limited sample size, we observe 759

accuracy fluctuations reaching up to 5% at matching latencies, 760

suggesting that this effect could be even more significant when 761

extended to larger datasets, such as the ImageNet-1k dataset. 762

Fig. 13(b) depicts the accuracy and latency distribution of 763

compressed CNN-accelerator pairs after optimizing hardware 764

parameters via Algorithm 1, effectively demonstrating the 765

criticality of the hardware generation algorithm. 766

To further elucidate the effectiveness of the co-exploration, 767

we use annotations with different shapes to differentiate 768

model-accelerator pairs under fixed compression strategies 769

(BS-4/8/16) and uncompressed (BS-1). Compared to fixed 770

BCM compression strategies [8], [9], which are commonly 771

used in previous work, our searched solutions notably achieve 772

superior tradeoffs between accuracy and latency. Furthermore, 773

we observe that the hybrid schemes more effectively balance 774

accuracy and latency, underscoring the need for layer-wise 775

hybrid BS strategies. Although random exploration occasion- 776

ally produces near-optimal outcomes (e.g., cases “A” and 777

“B”), it is generally inefficient, which requires 215.4 GPU 778

hours to evaluate 100 random subnets–approximately 17 times 779

more computationally expensive than our method. For deeper 780

networks, such as ResNet34, the random method becomes 781

impractical. In contrast, our differentiable search method 782

LOU et al.: FlexBCM: HYBRID BLOCK-CIRCULANT NEURAL NETWORK AND ACCELERATOR CO-SEARCH ON FPGAs 11

Fig. 14. Performance comparison with CPU and GPU versions.

scales efficiently with model training overhead and offers tai-783

lored tradeoff strategies to meet various latency requirements.784

F. Comparison With CPU and GPU785

In this section, we undertake a comparative analysis of786

performance and energy efficiency across CPU, GPU, and787

the searched FPGA accelerators. We use the PyTorch (v2.0.1)788

framework with CUDA 11.7 and cuDNN 8.5.0 to run789

model inference on CPU and GPU platforms, and detailed790

information is listed as follows.791

1) CPU Baseline: Intel i7-8700K processor with 12-MB792

cache, six physical cores, 12 threads operating at793

3.7 GHz, and the thermal design power (TDP) is 95 W.794

2) GPU Baseline: NVIDIA Tesla V100S with 32-795

GB HBM2 and 5120 hardware threads operating at796

1.245 GHz.797

We also implement the original model on CPU and GPU,798

denoted as “Orig..” We exclusively perform FP16 inference on799

the original model due to the absence of half-precision support800

in PyTorch’s FFT/IFFT operations. CPU power consumption801

is estimated as the product of CPU utilization and TDP power,802

and GPU power is measured using nvidia-smi. Both the CPU803

and GPU versions run with a batch size of two.804

Fig. 14 illustrates the performance comparison between the805

accelerator and CPU/GPU during the execution of BCM-806

compressed RN18 and RN34. Our accelerators demonstrate807

substantial throughput improvements of 10.92× and 14.0×,808

respectively, in comparison to the CPU baseline. Our accel-809

erators, when benchmarked against the GPU baseline, deliver810

performances at 70% and 79% of the GPU’s level, respectively,811

indicating that they are indeed outpaced by GPUs. This812

discrepancy can be attributed to the embedded nature of813

the ZCU102 platform, which possesses constrained hardware814

resources. Despite the reduction in model computation result-815

ing from BCM compression, we observe a noteworthy decline816

in performance rather than an enhancement in both CPU and817

GPU performance. This phenomenon is primarily attributable818

to the PyTorch framework’s specific optimizations for standard819

convolution operations, including computational and memory820

optimizations on the CPU and TensorCore optimizations on821

the GPU. In contrast, the BCM compression operations,822

relying on FFT/IFFT, are inherently intricate and lack dedi-823

cated optimizations. In terms of energy efficiency (FPS/W),824

as depicted in Fig. 15, our accelerators exhibit noteworthy825

enhancements of 63.0× and 73.8× for BCM-RN18 and826

BCM-RN34, respectively, when juxtaposed with their CPU827

counterparts. Relative to the GPU versions, our accelerators828

also realize improvements of 6.42× and 7.96×, respectively.829

Furthermore, within the GPU version employing FP16, the830

half-precision inference reduces the video memory and power831

Fig. 15. Energy efficiency comparison with CPU and GPU versions.

consumption instead of performance improvements for RN18 832

and RN34. Considering these factors, it is reasonable that our 833

accelerators tradeoff some performance for substantial gains 834

in energy efficiency when compared to GPUs. 835

G. Comprehensive Performance Comparison 836

We compare the solutions generated by FlexBCM with some 837

state-of-the-art FPGA accelerators in terms of throughput, 838

computational efficiency, and model accuracy, as shown in 839

Table VIII. 840

Regarding throughput, our accelerators demonstrate out- 841

standing performance compared to prior research, achieving 842

throughputs of 448 and 589 GOP/s on RN18 and RN34, 843

respectively, representing improvements of 1.10–2.56 times 844

over previous works. Regarding computational efficiency, our 845

accelerators achieve 45.21 and 51.67 GOP/s/W on RN18 and 846

RN34, respectively, showcasing improvements of 1.21–3.02 847

times compared to prior work. These significant enhance- 848

ments primarily stem from two aspects: 1) the application of 849

BCM regular compression and frequency domain quantization 850

algorithms facilitates hardware gains and 2) the efficient and 851

flexible hardware core design exploits the algorithmic poten- 852

tial. Specifically, on the same platform [34] and [43], based 853

on the INT16 quantization strategy, achieve high throughput 854

on the compressed VGG16. However, it is noteworthy that 855

the irregular pruning adopted in both works cannot guarantee 856

the requirement of common multipliers during INT8 data 857

packing. Therefore, INT8 quantization does not ensure the 858

DSP efficiency improvement reported in [34] and [43]. We 859

compare our work with [9], which similarly employs BCM 860

compression but applies further pruning to enhance flexibility. 861

Nonetheless, this work sets a fixed compression rate for 862

each network layer, requiring manual tuning and leading to 863

a noticeable decline in accuracy (3% in Top-1 accuracy). 864

Therefore, our design excels beyond [9] in both accuracy and 865

computational efficiency, owing to our implementation of more 866

flexible compression strategies and optimized quantization 867

algorithms. 868

Regarding model accuracy, following [41] and [43], we opt 869

for accuracy degradation as a metric to assess the impact of 870

compression on accuracy. This metric mitigates the variations 871

caused by different models and settings. The results show 872

that the accuracy of the model compressed by FlexBCM is 873

comparable to previous research results [5], [41]. By incor- 874

porating innovative quantization algorithms, Sun et al. [42] 875

achieved higher accuracy in RN18, yet our design maintains 876

an advantage in resource consumption and energy efficiency. 877

Moreover, our automated search method demonstrates superior 878

scalability. FlexBCM can rapidly explore the algorithm- 879

hardware design space and yield efficient model-accelerator 880

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

pairs in various application scenarios without requiring manual881

iterative experimentation.882

VIII. CONCLUSION883

In this article, we propose an automated framework,884

FlexBCM, for co-exploring hybrid BCM-compressed CNNs885

and accelerators, which overcomes the limitations of prior886

BCM compression methods and further explores the hardware-887

algorithm joint design space. First, we efficiently explore the888

compression space in a differentiable manner. Then, we design889

and model the hardware architectures that flexibly support890

different compression parameters. Finally, we efficiently inte-891

grate algorithm exploration and hardware design based on fast892

hardware generation. Compared with prior works, FlexBCM893

achieves significant computational efficiency improvement.894

REFERENCES895

[1] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator896

for ubiquitous machine-learning,” ACM SIGARCH Comput. Archit.897

News, vol. 42, no. 1, pp. 269–284, 2014.898

[2] M. Blott et al., “FINN-R: An end-to-end deep-learning framework for899

fast exploration of quantized neural networks,” ACM Trans. Reconfig.900

Technol. Syst., vol. 11, no. 3, pp. 1–23, 2018.901

[3] C. Wang, L. Gong, X. Li, and X. Zhou, “A ubiquitous machine902

learning accelerator with automatic parallelization on FPGA,” IEEE903

Trans. Parallel Distrib. Syst., vol. 31, no. 10, pp. 2346–2359, Oct. 2020.904

[4] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and905

hardware acceleration for neural networks: A comprehensive survey,”906

Proc. IEEE, vol. 108, no. 4, pp. 485–532, Apr. 2020.907

[5] S. I. Venieris, J. Fernandez-Marques, and N. D. Lane, “unzipFPGA:908

Enhancing FPGA-based CNN engines with on-the-fly weights genera-909

tion,” in Proc. FCCM, 2021, pp. 165–175.910

[6] S. Dave, R. Baghdadi, T. Nowatzki, S. Avancha, A. Shrivastava, and911

B. Li, “Hardware acceleration of sparse and irregular tensor compu-912

tations of ML models: A survey and insights,” Proc. IEEE, vol. 109,913

no. 10, pp. 1706–1752, Oct. 2021.914

[7] C. Ding et al., “CirCNN: Accelerating and compressing deep neural915

networks using block-circulantweight matrices,” in Proc. MICRO, 2017,916

pp. 395–408.917

[8] J. Yue et al., “STICKER-T: An energy-efficient neural network processor918

using block-circulant algorithm and unified frequency-domain accel-919

eration,” IEEE J. Solid-State Circuits, vol. 56, no. 6, pp. 1936–1948,920

Jun. 2021.921

[9] H. Song, J. Yoon, D. Kim, E. Kwon, T.-H. Oh, and S. Kang, “FPGA-922

based accelerator for rank-enhanced and highly-pruned block-circulant923

neural networks,” in Proc. DATE, 2023, pp. 1–6.924

[10] W. Jiang et al., “Hardware/software co-exploration of neural architec-925

tures,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39,926

no. 12, pp. 4805–4815, Dec. 2020.927

[11] Y. Li et al., “EDD: Efficient differentiable DNN architecture and928

implementation co-search for embedded ai solutions,” in Proc. DAC,929

2020, pp. 1–6.930

[12] H. Fan et al., “Algorithm and hardware co-design for reconfigurable931

CNN accelerator,” in Proc. ASP-DAC, 2022, pp. 250–255.932

[13] Y. Zhang et al., “DIAN: Differentiable accelerator-network co-search933

towards maximal DNN efficiency,” in Proc. ISLPED, 2021, pp. 1–6.934

[14] K. Choi et al., “DANCE: Differentiable accelerator/network co-935

exploration,” in Proc. DAC, 2021, pp. 337–342.936

[15] W. Lou et al., “Unleashing network/accelerator co-exploration937

potential on FPGAs: A deeper joint search,” IEEE Trans. Comput.-938

Aided Design Integr. Circuits Syst., early access, Apr. 19, 2024,939

doi: 10.1109/TCAD.2024.3391688.940

[16] B. Zoph and Q. Le, “Neural architecture search with reinforcement941

learning,” in Proc. ICLR, 2017, pp. 1–16.942

[17] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural943

architecture search via parameters sharing,” in Proc. Int. Conf. Mach.944

Learn., 2018, pp. 4095–4104.945

[18] H. Liu et al., “DARTS: Differentiable architecture search,” in Proc.946

ICLR, 2019, pp. 1–13.947

[19] B. Wu et al., “FBNet: Hardware-aware efficient ConvNet design 948

via differentiable neural architecture search,” in Proc. CVPR, 2019, 949

pp. 10734–10742. 950

[20] H. Benmeziane et al., “Hardware-aware neural architecture search: 951

Survey and taxonomy,” in Proc. 13th IJCAI, 2021, pp. 4322–4329. 952

[21] X. Luo, D. Liu, H. Kong, S. Huai, H. Chen, and W. Liu, “LightNAS: 953

On lightweight and scalable neural architecture search for embedded 954

platforms,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 955

vol. 42, no. 6, pp. 1784–1797, Jun. 2023. 956

[22] H. Bouzidi, M. Odema, H. Ouarnoughi, M. A. Al Faruque, and S. Niar, 957

“HADAS: Hardware-aware dynamic neural architecture search for edge 958

performance scaling,” in Proc. DATE, 2023, pp. 1–6. 959

[23] L. Gong, C. Wang, X. Li, H. Chen, and X. Zhou, “MALOC: A fully 960

pipelined FPGA accelerator for convolutional neural networks with all 961

layers mapped on chip,” IEEE Trans. Comput.-Aided Design Integr. 962

Circuits Syst., vol. 37, no. 11, pp. 2601–2612, Nov. 2018. 963

[24] R. Xu, S. Ma, Y. Wang, Y. Guo, D. Li, and Y. Qiao, “Heterogeneous 964

systolic array architecture for compact CNNs hardware accelerators,” 965

IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 11, pp. 2860–2871, 966

Nov. 2022. 967

[25] Y. Liang, L. Lu, Q. Xiao, and S. Yan, “Evaluating fast algorithms for 968

convolutional neural networks on FPGAs,” IEEE Trans. Comput.-Aided 969

Design Integr. Circuits Syst., vol. 39, no. 4, pp. 857–870, Apr. 2020. 970

[26] C. Wang, L. Gong, X. Ma, X. Li, and X. Zhou, “WooKong: A ubiquitous 971

accelerator for recommendation algorithms with custom instruction 972

sets on FPGA,” IEEE Trans. Comput., vol. 69, no. 7, pp. 1071–1082, 973

Jul. 2020. 974

[27] Q. Liu, M. Sun, J. Sun, L. Lu, J. Zhao, and Z. Wang, “SSiMD: 975

Supporting six signed multiplications in a DSP block for low-precision 976

CNN on FPGAs,” in Proc. FPT, 2023, pp. 161–169. 977

[28] S. Huang et al., “Mixed precision quantization for ReRAM-based DNN 978

inference accelerators,” in Proc. ASP-DAC, 2021, pp. 372–377. 979

[29] W. Lou, L. Gong, C. Wang, Z. Du, and X. Zhou, “OctCNN: A 980

high throughput FPGA accelerator for CNNs using octave convolution 981

algorithm,” IEEE Trans. Comput., vol. 71, no. 8, pp. 1847–1859, 982

Aug. 2022. 983

[30] B. Liu et al., “Frequency-domain inference acceleration for convolu- 984

tional neural networks using ReRAMs,” IEEE Trans. Parallel Distrib. 985

Syst., vol. 34, no. 12, pp. 3133–3146, Dec. 2023. 986

[31] W. Lou, J. Qian, L. Gong, X. Wang, C. Wang, and X. Zhou, “NAF: 987

Deeper network/accelerator co-exploration for customizing CNNs on 988

FPGA,” in Proc. DATE, 2023, pp. 1–6. 989

[32] E. Luo et al., “DeepBurning-MixQ: An open source mixed-precision 990

neural network accelerator design framework for FPGAs,” in Proc. 991

ICCAD, 2023, pp. 1–9. 992

[33] N. Fasfous et al., “AnaCoNGA: Analytical HW-CNN co-design using 993

nested genetic algorithms,” in Proc. DATE, 2022, pp. 238–243. 994

[34] Y. Liang et al., “An efficient hardware design for accelerating sparse 995

CNNs with NAS-based models,” IEEE Trans. Comput.-Aided Design 996

Integr. Circuits Syst., vol. 41, no. 3, pp. 597–613, Mar. 2022. 997

[35] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with 998

Gumbel-Softmax,” 2016, arXiv:1611.01144. 999

[36] A. Kouris, S. I. Venieris, and C.-S. Bouganis, “A throughput-latency co- 1000

optimised cascade of convolutional neural network classifiers,” in Proc. 1001

DATE, 2020, pp. 1656–1661. 1002

[37] B. Jacob et al., “Quantization and training of neural networks for 1003

efficient integer-arithmetic-only inference,” in Proc. CVPR, 2018, 1004

pp. 2704–2713. 1005

[38] Y. Li et al., “MQBench: Towards reproducible and deployable model 1006

quantization benchmark,” in Proc. NeurIPS, 2021, pp. 1–26. 1007

[39] X. Zhang et al., “DNNExplorer: A framework for modeling and 1008

exploring a novel paradigm of FPGA-based DNN accelerator,” in Proc. 1009

39th ICCAD, 2020, pp. 1–9. 1010

[40] Q. Xiao and Y. Liang, “Zac: Towards automatic optimization and 1011

deployment of quantized deep neural networks on embedded devices,” 1012

in Proc. ICCAD, 2019, pp. 1–6. 1013

[41] X. Xie, J. Lin, Z. Wang, and J. Wei, “An efficient and flexible 1014

accelerator design for sparse convolutional neural networks,” IEEE 1015

Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 7, pp. 2936–2949, 1016

Jul. 2021. 1017

[42] M. Sun et al., “FILM-QNN: Efficient FPGA acceleration of deep neural 1018

networks with intra-layer, mixed-precision quantization,” in Proc. FPGA, 1019

2022, pp. 134–145. 1020

[43] W. Sun, D. Liu, Z. Zou, W. Sun, S. Chen, and Y. Kang, “Sense: Model- 1021

hardware codesign for accelerating sparse CNNs on systolic arrays,” 1022

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 31, no. 4, 1023

pp. 470–483, Apr. 2023. 1024

http://dx.doi.org/10.1109/TCAD.2024.3391688

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

