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Abstract—Near-DRAM computing strategies advocate for pro-1

viding computational capabilities close to where data is stored.2

Although this paradigm can effectively address the memory-3

to-processor communication bottleneck, it also presents new4

challenges: The strict resource constraints in the memory5

periphery demand careful tailoring of architectural elements.6

We herein propose a novel framework and methodology to7

explore compute-near-memory designs that interface to DRAM8

memory banks, demonstrating the area, energy, and performance9

tradeoffs subject to the architectural configuration. We exemplify10

this methodology by conducting two studies on compute-near-11

bank designs: 1) analyzing the interaction between control and12

data resources, and 2) exploring the integration of processing13

units with different DRAM standards. According to our study,14

the optimal size ratios between instruction and data capacity15

vary from 2× to 4× across benchmarks from representative16

application domains. The retrieved Pareto-optimal solutions from17

our framework improve state-of-the-art designs, e.g., achieving18

a 50% performance increase on matrix operations with 15%19

energy overhead relative to the FIMDRAM design. In addition,20

the exploration of DRAM shows the interplay between available21

internal bandwidth, performance, and area overhead. For exam-22

ple, a threefold increase in bandwidth rises performance by 47%23

across workloads at a 34% extra area cost.24

Index Terms—Accelerator, compute-near-memory (CnM),25

DRAM, performance evaluation, processing-in-memory, system26

simulation.27
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I. INTRODUCTION 28

MODERN applications, particularly in the high 29

performance computing, machine learning, and 30

data processing domains [1], have grown significantly in 31

memory footprint and computational intensity. This trend 32

poses a challenge for the data transfers throughout the 33

system, exacerbating the performance disparity between 34

computation and memory, the so-called memory wall [2]. 35

As a result, a significant part of execution time and energy 36

is devoted to off-chip communication, stalling computation 37

[3], [4], [5], [6], [7]. 38

Near-data processing architectures alleviate these shortcom- 39

ings by placing computing where the data is stored. These 40

designs reduce the need for communication between main 41

processors and memory elements, decreasing the latency in 42

the system and increasing energy efficiency. In addition, 43

their close access to memory allows high parallelism when 44

executing repetitive kernels [8], [9], [10]. 45

Near-data processing alternatives can be divided into 46

compute-in-memory (CiM), where the array of memory cells is 47

customized to enable computation between the memory words, 48

and compute-near-memory (CnM), which places processing 49

units (PUs) close to the cell arrays without modifying them. 50

Both strategies can be implemented at any point of the 51

system memory hierarchy (caches, main memory, or storage) 52

offering different degrees of parallelism [8], [9], [11]. Among 53

these, CnM at the bank level is a particularly promising 54

strategy [10], [12], [13], [14], [15], [16], [17]. It involves 55

closely interfacing the PUs with DRAM banks, avoiding 1) the 56

costly modification of the cell array IPs; 2) the stringent 57

area restrictions within the bank; and 3) the energy overhead 58

to move data between the bank and the DRAM IO. By 59

also leveraging simultaneous access to the banks, bank-level 60

CnM architectures offer high-throughput, low-latency, and 61

low-energy data processing [9], [10]. 62

Although several bank-level CnM designs have been 63

proposed [10], [12], [13], [14], [15], [16], [17], they 64

highlight individual design points, without an analysis of 65

architectural parameters, DRAM protocols, and their impact 66

on performance. Therefore, they cannot provide general 67

guidelines. Instead, we introduce a new methodology to 68

systematically explore the CnM design space for diverse 69

application domains, conforming to the DRAM protocol 70

modifications introduced by this paradigm. By simulating the 71
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PUs and their interface to the DRAM banks, and providing72

a programming model, we can analyse the effect of a wide73

array of architectural choices on performance, energy, and74

area. To this end, we provide a template based on the state-75

of-the-art FIMDRAM architecture [16]. The template enables76

the parametric definition of CnM solutions that interface77

PUs with the DRAM memory banks in compliance with78

available JEDEC standards. We demonstrate the versatility79

of this methodology through the analysis of two crucial80

dimensions of the CnM design, and quantify their tradeoffs81

for the first time. First, we study the balance between control82

and data resources at the PU (i.e., the storage capacity for83

instructions and variables), which is essential under the CnM84

area constraints to further exploit the data locality at the85

DRAM proximity. Second, we explore how interfacing PUs86

to banks in different DRAM standards impacts computing87

behavior, showcasing that the standard choice can target the88

optimization of different performance metrics to improve upon89

the state-of-the-art designs. In summary, the contributions of90

this article are the following.91

1) We introduce a CnM architectural template that allows to92

model PUs and the interfaced DRAM protocol according93

to the selected architectural parameters. We also provide94

a design exploration framework and a programming95

interface to simulate the execution of applications on the96

individual instances of the template.97

2) We explore the trends in performance, area, and energy98

consumption of bank-level CnM PUs across design99

points, validated with ML and data processing compute100

kernels. For example, we show that FIMDRAM [16] can101

be outperformed by more than 1.95×, with only a 23%102

energy overhead when executing a convolution.103

3) We report Pareto-optimal CnM PU configurations of the104

control and data resources across applications. Thus, we105

show optimal utilization of PU resources when the ratio106

of instruction to the data capacity is set between 2 and 4.107

4) We analyse the integration of CnM PUs into different108

DRAM standards, showing the interplay among the109

clock frequency, parallelism, and computing metrics. We110

find that the use of LPDDR4 can degrade the energy111

efficiency of CnM up to 23% with respect to HBM2,112

and we show that GDDR5 can achieve 77% of the113

performance of Hynix-AiM [14], an application-specific114

design.115

The introduced framework is available at GitHub.116

II. RELATED WORK117

Compute-near-DRAM works have proposed to interface118

the processing elements at different levels of the memory119

structure [10], as illustrated in Fig. 1: (a) channel, (b) die,120

(c) bank, or (d) subarray. Channel-level CnM (i.e., out of121

the DRAM die) interfaces a PU with multiple DRAM dies122

via an interposer [18], 3-D integration [7] or the DIMM123

interconnect [19]. CnM at the die level places a PU within124

the die, shared between the banks [4], [5], [6]. Computing125

near the DRAM bank involves interfacing a PU to the banks126

IO [12], [14], [15], [16], [17]. Finally, subarray-level CnM127

(a) (b)

(c) (d)

Fig. 1. Diagram of the different levels of the DRAM structure where CnM
PUs can be interfaced. (a) Channel level CnM. (b) Die level CnM. (c) Bank
level CnM. (d) Subarray (SA) level CnM.

adds processing logic to each of the subarrays in the DRAM 128

bank [20], [21]. The choice of integration level rests on the 129

tradeoff between the computation potential and design effort. 130

Although computing at lower DRAM levels allows a higher 131

degree of parallelism and reduces the energy consumption, 132

it also increases the design effort due to the resource con- 133

straints [9], [10]. Among these alternatives, bank-level CnM 134

stands out as a tradeoff between performance and cost [10]. 135

This approach allows high-bandwidth and low-energy access 136

to the stored data without modifying the internal bank struc- 137

ture. However, the design of CnM architectures at the bank 138

level needs to address the stringent area limitations in the 139

DRAM context, where resource overhead is expensive [11]. 140

State-of-the-art industrial bank-level CnM solutions show 141

a variety of objectives in their architectural design. 142

UPMEM [12], [13] targets flexibility by implementing com- 143

plex multithreaded PUs with a rich ISA, as well as large local 144

instruction and data memories. Computation is handled via a 145

memory-mapped control interface in each DDR4 die. On the 146

contrary, Hynix-AiM [14] and McDRAMv2 [15] focus only 147

on deep learning workloads. Hynix-AiM accelerates matrix– 148

vector multiplication employing dot product PUs attached to 149

GDDR6 banks. It also implements a data memory and a look- 150

up table to compute activations at each DRAM die, shared 151

among the banks. McDRAMv2 integrates systolic arrays 152

in its PUs to accelerate matrix-matrix multiplication within 153

the LPDDR4 memories. These PUs also include large data 154

memories and perform computation of common ML layers and 155

activation functions. Hynix-AiM and McDRAMv2 completely 156

avoid the use of instruction memories by handling execu- 157

tion through a modified interface with DRAM. In between 158

these works, FIMDRAM [16] and LPDDR-PIM [17] strike a 159

tradeoff between flexibility and kernel-specific performance. 160

Their PUs implement a simple single-instruction-multiple- 161

data (SIMD) pipeline and include small instruction and data 162

memories. 163

However, the works above [12], [14], [15], [16], [17] 164

lack an analysis of the underlying design space. Filling 165

this gap, we present a simulation framework that allows 166

designers to perform the architectural analysis of the bank- 167

level CnM solutions that execute domain-specific workloads. 168

Consequently, it enables hardware–software codesign from the 169

CnM system perspective. Unlike the existing simulators [12], 170

https://github.com/gem5-X/cnm_framework


MEDINA et al.: BANK ON CnM: DESIGN SPACE EXPLORATION 3

(a)

(b)

Fig. 2. Overview of the proposed CnM framework, allowing simulation of ML and data processing compute kernels for performance, energy, and area
estimates. The framework comprises the (a) architectural template modeling the behavior of the DRAM and PU according to design parameters, executing an
application interpreted by the (b) programming interface.

Fig. 3. Architecture of the CnM PU and its interface to the banks. The
design-time tunable parameters are highlighted in red.

[14], [15], [17], [22] it supports the easy configuration171

of the CnM architectural parameters, including the datap-172

ath design and the DRAM banks. Furthermore, we ensure173

JEDEC-compliance as required in the bank-level CnM, which174

published CIM exploratory frameworks [23], [24] have not175

addressed. Through two studies on the storage resources176

of CnM PUs and the choice of the DRAM standard, we177

demonstrate the flexibility and potential of the framework to178

guide design choices of CnM architectures. Our first study179

focuses on the size of the data and control resources not180

explored in previous work [12], [13], [14], [15], [16], [17].181

We showcase the tradeoffs between the area, performance, and182

energy consumption, and provide the Pareto-optimal points183

for the first time for different target metrics when executing184

relevant ML and data processing kernels. Next, while previous185

designs focus on single DRAM configurations [12], [13],186

[14], [15], [17], we explore how the implementation and187

performance of CnM PUs are affected by the choice of DRAM188

standard. This study depicts that CnM parallelism and working189

frequency are governed by DRAM specifications. For example,190

we illustrate that the GDDR5 memories can enable CnM191

performances close to application-specific CnM designs [14],192

and that CnM with LPDDR4 memories displays higher energy193

overheads than HBM2 due to a lower performance that makes194

static power consumption prominent.195

III. COMPUTE-NEAR-MEMORY DSE FRAMEWORK 196

Our framework, depicted in Fig. 2, is composed of 1) a CnM 197

architectural template that provides a configurable model of 198

a PU attached to the DRAM banks and 2) a programming 199

interface with DSE support that interprets an application written 200

in assembler to be executed on an instance of the CnM template. 201

The CnM architectural template itself comprises a tunable 202

SystemC model of a PU, which allows to explore the design 203

tradeoffs and to synthesize specific instances; and a DRAM 204

simulator [25], which provides the timing of the sequence 205

of DRAM commands in Fig. 2(b), conforming to compatible 206

JEDEC standards that trigger CnM execution in the PU 207

model. 208

A. Compute-Near-Memory Architectural Template 209

As depicted in Fig. 3, the architectural template defines a 210

PU interfaced with two DRAM banks (A and B). The PU, 211

described in Section III-B, implements an SIMD pipeline 212

that supports addition, multiplication, multiply-add (MAD), 213

and multiply-accumulate (MAC) operations, which are widely 214

present in the data-intensive applications. It also implements 215

simple control and data movement instructions as defined in 216

Section III-C. By instantiating one PU per every two banks 217

and exploiting concurrent access to all the banks in a channel, 218

this architecture enables massively parallel execution. The 219

template supports integration with different DRAM standards 220

as described in Section III-D. The architectural template is 221

inspired by industry-proven FIMDRAM [16], which facilitates 222

a domain-specific starting point and ensures compliance with 223

JEDEC standards [26], [27], [28], [29]. The template gen- 224

eralizes the FIMDRAM design through parameter tuning to 225

enable the extraction of prevailing trends and can emulate it 226

as a specific instance. 227

B. Processing Unit Architecture 228

To support the functionality of the architectural template, 229

the PU is composed of three main elements shown in Fig. 3: 230

1) register files holding scalar and vector data as well as 231

CnM instructions; 2) an SIMD arithmetic unit (AU) capable 232
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TABLE I
INSTRUCTIONS SUPPORTED BY THE CNM ARCHITECTURAL TEMPLATE

of performing multiplication and addition; and 3) a control233

unit (CU) managing the execution of the instructions, and the234

interface with the host CPU and the memory banks.235

Four different register files are located within the PU. First,236

the control register file (CRF) holds up to C 32-bit instruction237

words to be interpreted by the CU, acting as a local instruction238

memory. The scalar register file (SRF) can store R scalar239

variables for multiplication and R for addition, which are240

replicated in the AU for every SIMD lane. Finally, two vector241

register files (general register files, GRFs) are present, each242

with capacity for R vectors of S words. C and R hence243

indicate the amount of resources devoted to the instructions244

and data. We explore their interplay in Section V. As depicted245

in Fig. 3, GRF_A and GRF_B are interfaced to the banks A246

and B, respectively, to allow for the direct data movement.247

The number of SIMD lanes S and the data type should be248

chosen to correspond with the width of the bank IO (S ×249

word_bits = IO_bits). For instance, if implementing a 16-bit250

data type, S needs to be set to 16 in accordance with the 256-251

bit HBM2 bank IO [26]. As the choice of DRAM standard252

alters the interface between the PU and the bank, Section VI253

analyses the effects of bandwidth changes on computing254

behavior. In the PU, data movement is supported among255

data register files. An optional SIMD ReLU operation is also256

enabled when moving the data to a GRF.257

The AU comprises S multipliers and S adders that perform258

in lock-step for SIMD execution. Inputs can be obtained from259

the GRFs, the SRF, or either of the interfaced banks. The260

result of the operation is written back to one of the GRFs.261

Additionally, to allow for MAD and MAC, the output of the262

multipliers can be supplied into the adders.263

Finally, the CU is in charge of the execution flow. It264

comprises the interface with the DRAM commands that govern265

the execution (described in Section III-D), and the logic to266

retrieve and decode the instructions in the CRF.267

C. Processing Unit ISA268

When the execution of the PU is directed by the DRAM269

commands, a five-stage pipeline is triggered: 1) decode of270

an instruction; 2) load data from the bank; 3) multiplication;271

4) addition; and 5) writeback to the GRF or bank. After272

it starts, the pipeline advances using the memory clock273

without requiring further DRAM commands. Any of the stages274

after decode can be skipped if they are not needed for275

the executed instruction, e.g., instructions can skip the Load276

(a) (b) (c) (d)

Fig. 4. State of the interface between the DRAM banks and the PU when (a)
reading data from DRAM in memory mode, (b) writing to the PU registers,
(c) executing an instruction that writes back to bank A, and (d) executing an
instruction that reads from bank B.

stage if they do not involve reading from a DRAM bank. 277

As in FIMDRAM [16], the PU pipeline implements three 278

types of instructions (described in Table I) which support the 279

execution of the linear algebra kernels present in a broad set of 280

applications, including ML, as shown in Section IV-A. Flow- 281

control instructions (NOP, JUMP, and EXIT) guide general 282

CnM execution. Next, data movement in the PU is handled 283

by MOV instructions. Finally, arithmetic instructions enable 284

SIMD addition, multiplication, MAD, and MAC. 285

D. Interface Between Host and DRAM Banks 286

To support CnM, the host can alternate between two 287

DRAM operation modes: 1) memory mode and 2) CnM 288

mode. Memory-mapped registers are employed to manage 289

the mode changes. In the memory mode, the DRAM acts 290

as a normal memory and the PUs are inactive, as shown 291

in Fig. 4(a). During the CnM mode, instead, the PUs are 292

active, and concurrent access to all the banks is enabled, 293

i.e., a single DRAM command handles the behavior of all 294

the banks in the memory channel. This mechanism allows to 295

govern the execution of the PUs using the standard DRAM 296

commands, avoiding modifications in the memory controller 297

or in the interface between the host CPU and memory. Hence, 298

computation near-memory is managed by issuing read (RD) 299

and write (WR) commands to the correct addresses, which 300

simultaneously arrive at the banks and the PUs. 301

The DRAM command and the address trigger both writes 302

to the memory-mapped PU registers [Fig. 4(b)] and execution 303

of instructions [Fig. 4(c) and (d)]. Specifically, the DRAM 304

address is extended by one bit so that the new most significant 305

bit (MSB) determines which of the two actions is performed. 306

To guarantee synchronization between the PU execution and 307

access to the correct data in DRAM [10], [16], we assume 308

that reordering of commands and squashing of reads during 309

the CnM mode are avoided at the memory controller. 310

Supporting concurrent access to all the banks involves 311

modest modifications to the memory controller. Since memory 312

operations cannot be pipelined across the bank groups, consec- 313

utive commands need to comply with the longer timings for 314

the same-bank access. To simulate this behavior and support a 315

wide range of protocols, we extended an open-source DRAM 316

simulator, Ramulator [25], to 1) model the channel-wide scope 317

of memory accesses; 2) reflect the scheduling modifications 318
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due to the simultaneous bank access; and 3) monitor the state319

of the DRAM rows, i.e., whether they are open or closed.320

E. Programming Interface321

The execution of an application on the CnM architec-322

tural template requires a corresponding sequence of DRAM323

commands governing data movement and PU operation. To324

generate such a sequence while abstracting from the ISA325

implementation and memory-mapping aspects, the program-326

ming interface presented in Fig. 2(b) is employed. Since its327

flexibility matches that of the template, the programming328

interface allows to sweep the available architectural parameters329

for each executed application, supporting a fast exploration of330

the design space.331

The application is implemented using a custom assem-332

bly language with a reduced number of instructions. These333

instructions comprise the ISA defined in Table I, commands334

to write to the different register files in the PU, and an EXEC335

instruction to generate the DRAM sequence which will trigger336

the CnM execution. Taking the application code as input, the337

assembler generates the corresponding sequence of DRAM338

commands as depicted in Fig. 2(b). In addition to writing339

the local data memories, the sequence of CnM instructions is340

written into the CRF starting from the index specified in the341

code. Afterward, to generate the DRAM commands to trigger342

the execution, the instruction memory is considered from the343

initial index until the first EXIT command. If processing a344

JUMP instruction, the assembler generates the corresponding345

commands to decode the instructions in every iteration.346

F. Compute-Near-Memory Execution347

To execute an application on the CnM PUs, first the pro-348

gramming interface is employed to obtain the input sequence349

of DRAM commands. The memory controller, modeled by350

Ramulator [25] with the extensions described in Section III-D,351

receives this sequence and schedules the commands according352

to the selected DRAM standard and the concurrent access to353

all the banks. Consequently, it inserts the additional commands354

required to abide by DRAM protocols, such as activation,355

precharge, and refresh, and specifies the cycle when each356

command is issued. The resulting timed sequence arrives at357

the memory banks and the PUs, modeled by the instance358

of the architectural template in Fig. 2(a) with the chosen359

architectural parameters. There, the commands are interpreted360

at the corresponding cycle to perform writes to the PU registers361

and to trigger the execution of the instructions that implement362

the application.363

Thanks to the matching configurability of the template and364

the interface, an application can be executed on different365

architectural instances without any modification of the code.366

As a result, multiple instances of the execution process can367

be simulated, sweeping architectural parameters to perform a368

rapid DSE. Such flexibility enables the assessment of the data369

representation, level of integration, and usage of resources in370

the CnM context. In the following sections, we showcase the371

latter option, key in the CnM system design, by analysing the372

configuration of the PU instruction and data capacity along 373

with the impact of interfacing to different DRAM standards. 374

IV. EXPERIMENTS 375

A. Kernels Mapped to the CnM Architecture 376

The programming interface described in Section III-E 377

allows the parameterized implementation of different kernels 378

using our bank-level CnM architectural template. Here, we 379

provide the mapping of five kernels, shown in Fig. 5: vector 380

addition, dot product, matrix–vector multiplication, matrix 381

multiplication, and convolution. These linear algebra and data 382

processing operations are widely present in machine learning 383

and scientific computing workloads where the memory com- 384

munication bottlenecks are frequent, e.g., in the transformer 385

models [17]. They also allow to study the behavior of both 386

1-D and 2-D kernels, which exhibit different requirements for 387

computing and communication. 388

The vector addition kernel sums V pairs of n-dimensional 389

vectors. Every vector is stored in memory in row-major 390

order, so that every DRAM column contains S consecutive 391

dimensions of a vector. As shown in Fig. 5(a), to execute 392

the kernel, the PU moves the first element of each vector 393

pair to the general registers, and adds them together with the 394

corresponding second element obtained from the banks. The 395

results are stored back in memory. 396

The dot product kernel performs V dot product operations 397

between two groups of the V n-dimensional vectors. Each 398

vector is transposed and stored in memory in column-major 399

order. During execution, the PU moves the first vector group 400

to the GRF. Then, the elements of this group are multiplied 401

by the corresponding ones from the second group obtained 402

from DRAM, and the result is accumulated in one of the 403

general registers to progressively obtain the dot product results 404

as depicted in Fig. 5(b). 405

The matrix–vector multiplication kernel multiplies a vector 406

An by a matrix Bn×p to obtain the vector Cp. The scalar RF 407

holds the elements of A, while B is stored in DRAM. To 408

execute the kernel [Fig. 5(c)], each element of A performs 409

an SIMD multiplication with the corresponding elements of 410

several columns in B, accumulating the results in the GRF. 411

The matrix multiplication kernel multiplies the two matrices 412

Am×n and Bn×p, obtaining the matrix Cm×p as a result. The 413

elements of A are loaded into scalar registers, while the rows of 414

the matrix B are aligned and sequentially stored in DRAM. To 415

obtain the rows C, the elements of A multiply and accumulate 416

the columns of B in parallel, storing the results in the general 417

register file [Fig. 5(d)]. 418

The convolution kernel convolves a series of co filters 419

(k × k × ci) with the input tensor (hi × wi × ci), resulting in 420

the output tensor of dimensions ho × wo × co. The weights 421

and biases of each filter are loaded into the SRF as depicted 422

in Fig. 5(e). The elements in the SRF operate channel by 423

channel with all the relevant input tensor elements, which are 424

unrolled in the row orientation when stored in DRAM. The 425

different output channels are obtained through repeated MAC 426

operations with the corresponding filter coefficients, storing 427

the results in the GRFs [Fig. 5(e)]. 428
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(a)

(b)

(d)

(e)

(c)

Fig. 5. Mapping of the different kernels to the CnM architecture. The red rectangles show the tilings used for computation, i.e., the elements stored in
one vector or scalar register at a time. (a) Vector addition (A + B = C) (b) Dot product (A · B = C) (c) Matrix–vector multiplication (A × B = C).
(d) Matrix-matrix multiplication (A × B = C). (e) Convolution (A � B = C).

B. Experimental Setup429

We employ our CnM framework to analyse the performance430

of different PU configurations, modeled as instances of the431

architectural template. The DRAM simulator provides the432

scheduling of the DRAM commands, while the SystemC433

model simulates functionality. Across instances, we used the434

half-precision floating point format (16 bits), a common choice435

for efficient HPC and ML implementations [16]. In addition to436

the functional simulation performed with the framework, we437

employ Mentor Catapult to perform high-level synthesis of the438

SystemC-defined designs, and next we utilize Cadence Genus439

and Joules to obtain postsynthesis area and energy results440

using TSMC 28 nm HPC logic technology.441

We realize two explorations analysing different architectural442

design dimensions. In Section V, we obtain different PU443

design points by varying the amount of resources devoted444

to controlling execution (C control registers) and storing the445

kernels dataset (R scalar and general registers). We analyse446

C = {16, 32, 64, 128} registers per CRF and R = {4, 8, 16, 32}447

registers per SRF and GRF. The HBM2 DRAM standard [26]448

with a 2.4 Gb/s interface is considered for this exploration. To449

adapt to its 256-bit IO bank interface, the number of SIMD450

lanes in the datapath (S) is set to 16. The PU designs are451

synthesized targeting 300 MHz, matching the frequency of the452

HBM2 internal clock.453

Next, we analyse in Section VI the performance of the454

CnM PUs when integrated into a channel of different pop-455

ular DRAM standards. The HBM2 interface is set as the456

comparison baseline, resembling the FIMDRAM configura-457

tion [16]. DDR4 [27] is studied as a standard involving a458

low bandwidth interconnect. Exemplifying an alternative high459

bandwidth DRAM standard, GDDR5 [28] is also considered in460

TABLE II
CONFIGURATION OF THE DRAM STANDARDS FOR THE CNM ANALYSIS

the analysis. Finally, we evaluate LPDDR4 [29], a low power 461

standard. The parameters employed in this second study are 462

shown in Table II. To achieve a fair comparison frame, the 463

exploration considers 4 Gb DRAM channels across standards, 464

and the PU instances employ C = 32 and R = 8 as the 465

sizing parameters. The CnM PUs are synthesized targeting 466

the frequency of the internal clock in the standard, and their 467

number of SIMD lanes S is set to adapt to the bank IO 468

interface. 469

To match the design points with different application 470

domains, we use the kernels previously described as the refer- 471

ence points, sized as shown in Table III. To be representative 472

of general trends for arbitrarily sized kernels, the selected 473

dimensions imply data mappings significantly larger than what 474

the PUs can hold for a single kernel iteration. 475

V. EXPLORATION OF BANK-LEVEL CNM PU DESIGNS 476

A. Area Results 477

Before the studies of performance and energy consump- 478

tion, we focus on the area occupation of the analysed PU 479

configurations to examine overhead at the confined DRAM 480
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TABLE III
BENCHMARK PARAMETERS EMPLOYED IN THE EXPLORATION OF PU
DESIGN POINTS (SINGLE PU) AND OF THE INTEGRATION OF PUS IN

CHANNELS OF DIFFERENT DRAM STANDARDS (CHANNEL)

Fig. 6. Synthesized area of the components across PU configurations,
normalized by the baseline design [16].

bank periphery. This exploration allows to assess the cost of481

increasing computing performance via enlarging the register482

files to improve locality. Fig. 6 shows the normalized area483

results after synthesis of the modeled CnM PUs, comprising484

the CU, the AU, and the register files.485

Thanks to the simplicity of the supported instruction set, the486

CU has a low impact on the area of the PU. Its occupation487

remains constant across configurations, barely affected by the488

size variation of the register files. The area of the AU is also489

stable among the studied designs, occupying a considerable490

fraction of the PU. However, the overhead of the design is491

mainly dictated by the storage elements. Particularly, GRFs492

rapidly dominate when increasing the number of registers493

to achieve better locality. Since 256-bit vector registers are494

employed in this round of experiments (S = 16), the PUs with495

the largest R values need to accommodate up to 16 kbit of496

data registers. SRF occupation also presents a linear growth497

but with a lower impact on area. Similarly, expanding the498

instruction capacity to allow the execution of more operations499

per iteration, reducing loop overhead, makes the CRF area sig-500

nificant when comprising more than 64 instructions (> 2 kbit).501

Key Takeaway 1: Register files dominate the area of the502

PU, followed by the arithmetic logic.503

Consequently, the correct sizing of the data and instruction504

register files is key to obtaining good performance and energy505

consumption while optimizing the area of the PU, as explored506

in the next sections.507

B. Performance Results508

Run-time performance of the benchmark kernels is limited509

by the amount of computation that can be mapped to the PU510
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# Data Registers
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0.67 0.67 0.67 0.67

0.96 1 1 1

0.96 1.2 1.2 1.2

0.96 1.2 1.4 1.4

Vector addition

4 8 16 32
# Data Registers

0.61 1 1.3 1.3

0.61 1 1.5 1.8

0.61 1 1.5 2

0.61 1 1.5 2

Convolution

Fig. 7. Performance results (FLOPS) when executing representative kernels,
normalized with respect to the FIMDRAM [16] configuration (C = 32 and
R = 8). Vector addition (representing 1-D kernels) displays a mainly C-
limited behavior (no performance increase when adding data registers), while
convolution (representing 2-D kernels) is primarily R-limited (adding control
registers fails to speed up execution). Detailed performance of all kernels can
be found in the supplementary material.

at once, executed as a loop. Larger computation tiles present 511

a lower loop overhead and an increased data locality. In turn, 512

the size of such tile is limited by two factors: 1) the number of 513

control registers C and 2) the size of the data register files R. 514

The first factor defines the total instruction capacity. Instead, 515

the amount of data registers establishes how many variables 516

can be used in an iteration before needing an update. For a 517

specific kernel we define C and R configurations as C-limited 518

if the number of control registers is more restrictive than R or 519

R-limited otherwise. 520

Illustrating these trends, Fig. 7 shows the performance 521

results when executing representative kernels in different 522

configurations of CnM PUs, normalized with respect to 523

the FIMDRAM configuration [16]. The plots demonstrate 524

C-limited execution when the performance values remain 525

unchanged when moving along the X-axis. Here, for a certain 526

number of control registers, increasing the data capacity 527

fails to achieve a performance improvement. Correspondingly, 528

R-limited performance is exhibited when the values do not 529

vary along the Y-axis. 530

Experiments show that the 1-D kernels (vector addition and 531

dot product) are primarily C-limited workloads. Due to their 532

lack of data reuse, varying the C and R configurations does not 533

alter the number of memory accesses. Thus, the performance 534

improvements when increasing instruction capacity arise from 535

the reduction in loop overhead and the lower average latency 536

between the DRAM commands, as sequential accesses better 537

exploit row locality. Contrarily, Fig. 7 demonstrates that the 538

performance of 2-D kernels (matrix–vector multiplication, 539

matrix multiplication, and convolution, represented by the 540

latter) is mostly R-limited. The data reuse inherent to the 541

matrix operations allows to employ the contents of the data 542

registers in several iterations before being updated. As a result, 543

adding more data registers diminishes the number of memory 544

accesses during execution, which in turn boosts the utilization 545

of the AU, as depicted in the representative convolution 546

example in Fig. 8. 547

Overall, results in Fig. 7 reveal the need to balance the 548

number of instruction and the data registers in order to attain 549

good performance at the lowest area cost, as large register files 550

can increase overhead by more than 100%. Fig. 9 illustrates 551
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(a) (b)

Fig. 8. Analysis of the instruction mix of the convolution kernel across C
and R configurations. (a) Number of memory access normalized with respect
to the FIMDRAM [16] configuration (C = 32 and R = 8). (b) Utilization of
the AU, measured as the ratio between executed arithmetic instructions and
the total number of instructions.

(a) (b) (c)

Fig. 9. Performance speedup over the baseline design [16] for representative
kernels executed on PU with different C and R configurations. The best
performing ratios between instruction and data capacity are highlighted in
yellow. (a) Vector addition. (b) Dot product. (c) Matrix–vector multiplication.

the performance change when varying the amount of control552

registers (C) for set sizes of the data register files (R). Across553

workloads, for each value of R the speed-up stops growing at554

a certain value of C, at which point the instruction memory555

can access all the data registers in one iteration. Notably,556

these plateaus occur at ratios between instruction and data557

capacity that are consistent within the analysed kernel. For558

1-D kernels, the optimal sizing ratio between instruction and559

data capacity is equal to 4. This proportion allows to allocate560

the high number of memory access instructions per iteration561

required by the kernel. For example, an improvement of more562

than 1.6× is achieved when increasing C from 16 to 128563

when R = 16, as shown in Fig. 7. Instead, 2-D kernels564

present a lower optimal ratio of 2 between instruction and565

data capacity [Fig. 9(c)]. The lower number stems from the566

presence of more arithmetic operations per memory access.567

In particular, multiplying the data capacity by eight achieves568

more than 2.6× performance increase for these kernels569

when C ≥ 64.570

According to these results, PU designs can target differ-571

ent tradeoffs through the sizing of register files. Maximum572

performance across workloads can be achieved by choosing573

the more limiting ratio C/2R = 4 on 1-D kernels. However,574

kernels with lower optimal ratios suffer from low utilization.575

For example, while the configurations C = 128 and R = 16576
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Fig. 10. Energy consumption (Joules) of a PU when executing representative
kernels, normalized with respect to the FIMDRAM [16] configuration (C =
32 and R = 8). Energy use in vector addition (representing 1-D kernels)
displays higher sensitivity to data capacity than in convolution (representing
2-D kernels). Detailed energy consumption of all kernels can be found in the
supplementary material.

(a) (b)

Fig. 11. Breakdown of energy results for vector addition (VA) and matrix–
vector multiplication (MVM). (a) Percentage of static energy with respect to
the total consumption. (b) Energy consumption per component.

achieves the best performance in all the kernels for the chosen 577

number of data registers, more than half of the instruction 578

capacity is unused for the 2-D workloads. 579

C. Energy Results 580

The energy consumed by the PU across configurations when 581

executing representative kernels is shown in Fig. 10. These 582

results illustrate a rise in energy consumption across workloads 583

when increasing the data capacity, in dependence on the area 584

of the PU and on the achieved performance. A PU covering a 585

wide area implies both larger static power and a higher number 586

of components consuming switching power. However, higher- 587

performance designs execute the kernels faster, diminishing 588

leakage energy. At a lesser degree, results also show that, 589

when performance is limited by R or C, increasing the other 590

parameter only leads to higher energy consumption due to 591

additional leakage. Since the FLOP count for each operation 592

remains constant across C and R configurations, the heatmaps 593

in Fig. 10 also provide energy efficiency metrics, indicating 594

the power consumed per unit of performance (normalized 595

W/FLOPS). 596

Fig. 10 depicts steeper growths in the energy costs of 1-D 597

kernels: since they are mainly C-limited kernels, the addition 598

of data registers fails to significantly improve the performance, 599

and thus the static component of the power is not offset by 600
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a faster execution. Likewise, reducing R has a low impact on601

the run-time of vector kernels, and thus higher energy savings602

are achieved. Instead, 2-D kernels benefit from the larger data603

RFs, as the improved performance reduces the relative energy604

increase. Illustrating these trends, Fig. 11(a) depicts how for605

the vector addition the ratio of static energy grows more rapidly606

with the number of data registers than for the matrix–vector607

multiplication. Besides, as 2-D kernels exploit data locality608

at the SRF, one of the GRFs can be turned off to decrease609

energy consumption. Thus, the percentage of energy consumed610

by GRFs is larger in 1-D workloads than in 2-D kernels, as611

shown in the breakdown of percomponent energy in Fig. 11(b).612

Consequently,energyresultsof1-Dworkloadsaremoresensitive613

to the addition of the data registers. Overall, optimizing the614

sizing parameters can improve energy consumption by 50% for615

1-D kernels and by 30% for 2-D workloads.616

Key Takeaway 2: Mappings that minimize the use617

of register files reduce the energy overhead in loop618

kernels.619

D. Performance, Power and Area Tradeoffs620

Fig. 12 shows the performance, energy consumption, and621

area tradeoffs at the PU when executing the two representative622

kernels for 1-D and 2-D operations, respectively, dot product623

and convolution. We highlight several C and R configurations624

showing sizing trends: “FIMDRAM” resembling the state-625

of-the-art design [16] (C = 32 and R = 8), a low power626

configurations (C = 32 and R = 4), two designs optimized627

for 1-D (C = 64 and R = 8) and 2-D operations (C = 32 and628

R = 16), and a configuration with good overall performance629

(C = 64 and R = 16).630

In the first row of Fig. 12, the graphs show how improve-631

ments in speed-up come at an energy cost. However, increases632

in energy have more impact on 2-D kernels than on 1-D633

operations, as conveyed by the difference in slope and cor-634

relation coefficient. While energy increases are mainly driven635

by expansions in data capacity that mostly enhance the636

behavior of 2-D computations, adding instruction registers to637

improve 1-D operations has a lower energy overhead. These638

trends are depicted again in the graphs comparing area and639

speed-up, where again area increases have a bigger effect640

on the execution of 2-D kernels. Finally, the final row in641

Fig. 12 showcases the linear relationship between the area642

and energy requirements. The graph depicts how for the 1-D643

kernels, adding more area causes a steeper growth in energy644

consumption. As shown in Fig. 11(a), this difference derives645

from the higher impact of static power, since more GRF646

resources are employed and run-time is not improved enough647

to offset the static power consumption.648

Key Takeaway 3: The relations between performance,649

power, and area are kernel-dependant and linear.650

When compared to the analysed design points, the baseline651

inspired on the FIMDRAM exhibits good performance at652

low energy and area costs, residing at the surroundings of653

the Pareto frontier. However, the PU can be modified to654

achieve lower power consumption and area occupation, or655

better performance. The low power configurations (C = 32656

Fig. 12. Analysis of performance, energy and area tradeoffs for dot product
and convolution kernels. The first row shows performance versus energy, the
second row shows performance versus area, and the third row shows energy
versus area. Highlighted PU configurations are shown in nonblue colors.

and R = 4) achieves 20% decrease in energy consumption 657

and 19% lower area at a 39% performance cost with respect 658

to FIMDRAM. A design doubling the number of instruction 659

registers (C = 64 and R = 8) can improve performance 660

of 1-D operations in 23% with low energy (4%) and area 661

(9%) overheads, and without affecting run-time or energy 662

consumption of 2-D kernels. In turn, multiplying by two the 663

number of the data registers in a PU (C = 32 and R = 16) 664

achieves up to 50% speed-up of 2-D operations with a 40% 665

area cost and a maximum energy overhead of 15%. Finally, 666

performance can be improved across kernels by increasing 667

both C and R (C = 64 and R = 16). While the area of 668

the design increases in 48%, speed-ups as high as 50% are 669

achieved at less than 33% energy overhead. 670

Key Takeaway 4: Area constraints near the bank oblige 671

tuning of instruction and data capacity for CnM viability. 672

Register files should be sized to allow for the instructions 673

held at one time to make use of all the available data storage. 674

Correspondingly, they should display ratios from 2× to 4× 675

between the instruction and variable capacity. By employing 676
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(a) (b) (c)

Fig. 13. Total area of the PUs in a channel (a), area per bank IO bit of
the PUs in a channel (b), and area per CnM throughput (c) across DRAM
configurations, normalized by the FIMDRAM baseline.

our framework, these favorable configurations can be assessed677

and identified.678

VI. INTERFACING DIFFERENT DRAM STANDARDS679

A. Area Results680

As in the previous study, we first explore the area overhead681

of placing PU units near the DRAM banks. However, we now682

focus on the interaction between parallelism, interface width,683

and clock frequency at the channels of the DRAM standards684

listed in Table II. We consider a single PU configuration that685

resembles the FIMDRAM design (C = 32 and R = 8) [16].686

The area occupation of the PUs in the standards is analyzed687

in Fig. 13. The graph on the left shows total PU area in a688

channel, i.e., the area overhead per 4 Gb. With the same width689

of bank interface (S = 16) and number of PUs, HBM2 and690

GDDR5 have equal number of interfaced PU bits (2 kbit and691

128 SIMD lanes). Nevertheless, the higher clock frequency692

increases the area overhead in the GDDR5 channel, mainly693

due to the critical paths in the AU. DDR4 has one fourth of694

the interfaced channel bits of HBM2 (32 lanes), resulting in695

the lowest area overhead despite its faster 400 MHz internal696

clock. Instead, for LPDDR4 the reduced overhead due to the697

1 kbit (64 lanes) interfaced is further decreased by the low698

200 MHz internal frequency.699

The PU area per interfaced bit is shown in Fig. 13(b). Here,700

the effects of clock frequency are better perceived and the701

disparities due to different total number of PUs and SIMD702

lanes are concealed. Among the standards, the size of the AU703

and the GRFs vary according to the clock frequency. Besides,704

the DDR4 standard shows a larger control overhead, since the705

employed PUs compute using four SIMD lanes, instead of the706

16 lanes used in the remainder of standards.707

Fig. 13(c) displays area results per peak PU throughput.708

Considering the values in Table II, we show that, for DDR4709

and GDDR5, the area overhead is offset by the high through-710

put achievable with their faster clock frequencies. Likewise,711

LPDDR4 has low area efficiency due to its limited throughput.712

Key Takeaway 5: The DRAM standard determines the713

achievable throughput between bank and CnM PU.714

An analysis of the area and throughput trade-offs from the715

perspectives of a single channel and total DRAM memory can716

be found in the supplementary material.717

Fig. 14. Relative performance (FLOPS, the higher the better) when executing
MVM with different matrix sizes, normalized with respect to the execution
of 16×16 MVM employing HBM2.

B. Performance and Energy Results and Tradeoffs 718

All the previous results referred to the large kernel dimensions 719

in Table III to leverage CnM massive parallelism. To illustrate 720

the results of instead employing constrained input sizes, Fig. 14 721

shows the interaction between the dimensions of a matrix– 722

vector multiplication kernel and the employed DRAM standard. 723

When executing small kernels, the lower number of SIMD 724

lanes in the DDR4 channel results in a higher fraction of active 725

lanes than in the PUs of the HBM2 channel. For instance, 726

MVM computation with a 32 × 32 matrix can be parallelized 727

over 32 lanes, which represent the total number of SIMD lanes 728

in DDR4, but only one fourth of the lanes in HBM2. As a 729

result, the same number of DRAM commands is needed for 730

executing the kernel in both standards, and the higher clock of 731

DDR4 offsets the lower parallelism offered to match HBM2 732

performance. Nonetheless, when larger kernels are employed, 733

all the SIMD lanes in the HBM2 are used, and thus the higher 734

parallelism reduces the amount of DRAM commands needed 735

for execution. Fig. 14 illustrates the stabilization of speed-up 736

for large kernels, where the performance difference represents 737

the interplay between the level of parallelism and the processing 738

frequency. In both standards, smaller performance increases are 739

experienced as workloads grow further due to the diminishing 740

control overhead. 741

Key Takeaway 6: The lower bound of CnM speed-up 742

depends on workload size. The upper bound depends on the 743

parallelism set by the DRAM standard. 744

To compare the CnM execution of the considered bench- 745

marks using different DRAM standards, Fig. 15 displays 746

performance, energy consumption, and energy efficiency 747

(FLOPS/W) values normalized with respect to the HBM2 mea- 748

surements. Speed-up values show that GDDR5 outperforms 749

HBM2 in all the kernels due to its higher clock frequency. In 750

turn, DDR4 and LPDDR4 do not match HBM2 speed due to 751

their low parallelism. 752

As for energy consumption, HBM2 and GDDR5 exhibit 753

results proportionate to the achieved performance and the 754

employed clock. However, DDR4 and LPDDR4 display sim- 755

ilar or higher energy numbers than HBM2 despite their 756

low area. Percomponent energy results in Fig. 16 show- 757

case the overhead of the CU and CRF in DDR4 due 758

to the higher iteration count to offset the low paral- 759

lelism, particularly in vector addition where the data reuse 760

is low. In LPDDR4, the high run-time intensifies the 761

impact of static power consumption at the AU, specially in 762

2-D kernels. 763
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TABLE IV
COMPARISON OF STATE-OF-THE-ART BANK-LEVEL CNM DESIGNS AND PERFORMANCE WHEN EXECUTING

MATRIX–VECTOR MULTIPLICATION KERNELS

Fig. 15. Performance results when executing the studied kernels, sized as
described in Table III.

Fig. 16. Energy consumption per component when executing different
kernels, normalized by the FIMDRAM baseline [16].

The third graph in Fig. 15 shows how HBM2 achieves good764

energy efficiency across workloads. LPDDR4 and DDR4 also765

obtain good results in 1-D and 2-D kernels, respectively, where766

the low energy overhead is observed. In contrast, CnM in 767

the GDDR5 channel necessitates high power to maintain the 768

obtained speed-up, hampering energy efficiency. 769

C. DRAM Standard Tradeoffs 770

The combined area, performance and energy results allow 771

to optimize different design metrics through the choice of 772

DRAM standard in CnM architectures, as qualitatively illus- 773

trated in the supplementary material. If performance is the 774

focus, GDDR5 offers the lowest run-time when executing 775

different kernels, though it increases area overhead and energy 776

consumption. Instead, HBM2 trades some performance to 777

reduce the power and area overheads. It also allows to increase 778

parallelism with the same device footprint thanks to 3-D 779

stacking, thus improving performance with respect to GDDR5 780

while maintaining a better energy efficiency. Finally, DDR4 781

and LPDDR4 offer lower area overhead alternatives, but with 782

low performance and energy efficiency dependent on the 783

executed kernel. In order to exploit the low frequency clocks in 784

these standards to obtain low power designs, more area should 785

be employed to increase parallelism. 786

VII. COMPARISON WITH RECENT CNM DESIGNS 787

In Table IV, we compare state-of-the-art bank-level CnM 788

architectures that execute the matrix–vector multiplication 789

kernels as reported in [12], [13], [14], and [15]. To show how 790

different configurations can be derived with our framework, 791

we include the four designs highlighted in the PU exploration 792

in Section V: low power (C = 32 and R = 4), optimized for 793

vector (C = 64 and R = 8) and matrix operations (C = 32 794

and R = 16), and good overall performance (C = 64 and 795

R = 16). We also cover the designs studied in the DRAM 796

exploration in Section VI. 797

CnM PUs use the internal clock specified by the standard 798

employed. In the case of McDRAMv2, a clock divider 799

increases the operation frequency of the MAC units in the 800

systolic array, while the remainder of the PU elements use 801

the 250 MHz clock. The size of the instruction memo- 802

ries determines the execution flexibility of the PU. At one 803

end of the spectrum are the large instruction memories of 804

UPMEM [13], which supports a complex ISA. On the other 805

hand, Hynix-AiM [14] and McDRAMv2 [15], oriented to deep 806
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learning, avoid the use of instruction memories by allowing807

control of PU execution via customized DRAM commands.808

FIMDRAM [16] and our designs are in the middle, able809

to target the execution of small kernel loops in the ML810

and data processing domains. Similarly, the size of data811

memory conditions the degree of data reuse possible during812

PU execution. Again, UPMEM shows its aim at flexibility in813

the large data memories it implements, while the remainder814

of designs have smaller ones for the data reuse needed in815

the execution of small kernels. The PU throughput numbers816

demonstrate again a dependency on the targeted flexibility.817

UPMEM does not exploit parallelism within the PU, as it818

would add high complexity overhead to the already intricate819

pipeline. Instead, the rest of the designs leverage both channel820

and PU parallelism to achieve high performance.821

Finally, the performance values display the result of the dif-822

ferent architectural choices. McDRAMv2 exhibits the highest823

performance thanks to the compact data type used and its effi-824

cient application-specific architecture. Conversely, UPMEM825

presents the lowest performance as a result of its flexible826

PU design without data parallelism. Hynix-AiM, FIMDRAM,827

and our designs show mid-way performance values; however,828

Hynix-AiM lacks the adaptability to workloads outside the829

deep learning domain.830

VIII. CONCLUSION831

Bank-level CnM architectures mitigate the communication832

bottleneck between computing elements and memory. When833

PUs are interfaced to the DRAM banks, they enable highly834

parallel and energy-efficient computation while reducing835

system-wide data transmissions. Nonetheless, their implementa-836

tion entails the tuning of parameters in a multidimensional space.837

To assess the design tradeoffs of this novel computing paradigm,838

in this article, we have presented an architectural template839

and a methodology enabling the exploration of the bank-level840

CnM design space. Employing this template, we study the841

impact of design decisions on computing resources and DRAM842

standards. We analyse the balance between control and data843

resources of PUs, providing the Pareto-optimal configurations844

for the execution of common ML and data processing kernels.845

Notably, we show that these design dimensions are key to846

steering the performance, energy, and area tradeoffs. In fact,847

resource utilization is maximized when the local PU memories848

can store between twice and four times as many instructions as849

variables. We also show how high-bandwidth DRAM standards,850

such as HBM2 and GDDR5 present a better performance at851

the bank-level CnM than DDR4 and LPDDR4, while the latter852

two offer a lower area overhead.853
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