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MetaTinyML: End-to-End Metareasoning
Framework for TinyML Platforms

Mozhgan Navardi, Edward Humes, Tinoosh Mohsenin

Abstract—Efficiently deploying deep neural networks on
resource-limited embedded systems is crucial to meet real-
time and power consumption requirements. Utilizing metarea-
soning as a higher-level controller along with Tiny Machine
Learning (TinyML) can enhance energy efficiency and reduce
latency on such systems by overseeing available resources. This
study introduces MetaTinyML, a comprehensive metareasoning
framework for self-guided navigation on TinyML platforms. The
framework adapts its decision-making process by factoring in
environmental changes to select the most suitable algorithms
for the current scenario. Implementation of MetaTinyML on
an NVIDIA Jetson Nano 4GB system integrated with a Jetbot
ground vehicle demonstrated up to 50% power consumption
enhancement. View a video demonstration of the MetaTinyML
framework at: Video.

Index Terms—Metaresoning, TinyML, Embedded Systems,
Edge Computing, Autonomous Systems.

I. INTRODUCTION

T INY MACHINE LEARNING (TinyML), as an edge
computing concept, is a rapidly expanding field that

establishes a connection between embedded systems and
Machine Learning (ML) by effectively optimizing hardware
and software components. This optimization enables battery-
powered smart devices to execute ML inferences via Deep
Neural Networks (DNN) or Reinforcement Learning (RL)
algorithms. The primary goal of TinyML is the deployment
of ML inference on extremely low power devices with limited
sources of onboard memory to process collected data from
on-device sensors without necessitating communication with
cloud devices [1]–[5]. By moving ML inference to the edge,
there are multiple key challenges that must be addressed
including latency and throughput to meet real-time require-
ments, power consumption and energy efficiency, all while
maintaining an acceptable level of accuracy [1].

Figure 1 shows the TinyML design flow, which eliminates
the necessity for any external processing resources, leading
to both improved real-time decision-making capabilities and
minimal latency: a critical attribute for applications character-
ized by real-time applications, such as self-driving automobiles
and Unmanned Ground Vehicles (UGV). However, energy
efficiency and latency in terms of hardware and accuracy in
terms of software are key challenges that need to be addressed
when applying TinyML to autonomous systems.
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Fig. 1. TinyML design flow overview includes TinyML system design inputs
(resource constraints, dataset and search space) and optimization level in
software and hardware [1].

Metareasoning [6]–[12] can be utilized for efficient de-
ployment of ML algorithms by switching between different
algorithms in real-time based on environmental changes. Thus,
real-time tasks on embedded system can be scheduled in
such a way that reliability target levels are met while reduc-
ing power/energy consumption. Metareasoning consists of a
ground level, an object level, and a meta-level. The ground
and object levels can be likened to the environment and agent
components in reinforcement learning, with the meta-level
monitoring the object level to guide real-time adjustments in
the agent’s behavior.

In this paper, we propose a novel approach to improve
the latency and power consumption of RL and DNN models
while maintaining acceptable accuracy levels. We build upon
the existing state-of-the-art works that have suggested soft-
ware and hardware level techniques to optimize these mod-
els. However, unlike previous approaches that focused solely
on deploying highly computationally intensive models onto
resource-constrained devices, the proposed approach takes into
account environmental changes and leverages metareasoning
to make online situationally-aware decisions. Metareasoning is
an online decision-making approach that allows us monitoring
of the agent and changes in the environment in real-time
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Fig. 2. A high-level diagram for the proposed energy-efficient (E2) Metareasoning framework for TinyML platforms: MetaTinyML. Based on the proposed
meta policy, a complex model, YOLO based, or a lighter model, CNN based, will be picked for energy efficient object detection and autonomous navigation.

and thus select the most suitable algorithm accordingly [13].
To the best of our knowledge, no prior work has explored
the application of metareasoning for improving the power
consumption of TinyML models in an end-to-end deployment
scenario. To address this gap, we introduce a meta policy in
this paper, leading to significant improvements in throughput
(inferences per second) and energy efficiency (GOPS/J) in
goal-oriented RL-based autonomous navigation systems.

II. METAREASONING IN TINYML PLATFORMS

A. Framework Overview

Fig. 2 depicts a high-level diagram for the proposed
MetaTinyML: a Metareasoning framework in TinyML plat-
forms which has a k-goal Reinforcement Learning (RL) model
for autonomous navigation and reaching k goals in a specific
order within an environment. The proposed framework in-
cludes three main parts: (1) ground level (environment), object
level (agent), and meta level (metareasoning). In the ground
level, the agent performs its assigned mission and sends its
state (captured image) in each step to the object level in order
to determine the next action. Within the object level, an RL
model with a high level and low level policy is responsible for
agent navigation and giving the next action. To improve the
RL model’s performance, rather than feeding the whole image
as input to the RL model, a simplified input of a 1xk+(4+k)
vector will be passed to the RL model. In order to generate
the RL model input, a pre-processing module including an
object detection model and multi-label image classification
model is used in this framework. In each step, one of these
models will be picked by the meta-level module to process the
captured image. If the YOLO object detection model processes
the image, new generated Boundary Boxes (BBox) coordinates
will be saved in memory, otherwise the previous BBox will
be kept in memory. The RL model input is the BBox (4xk)
concatenated with the generated sub-goal (1xk).

In each step, the meta-level monitors the agent and any
environmental changes in order to switch between the YOLO
and CNN models. To do this, we update four values in
memory: the BBoxes, the new model output (out t), model
output’s previous step (out t-1) and a counter. The meta-level
reads out t, out t-1, and the counter. Based on the proposed
meta policy, it will then pick the YOLO or the CNN model.
The goal is to maximize the number of times the CNN model

is picked, as it is a lighter and faster model, resulting in
increased energy-efficiency and higher throughput.

B. Proposed Meta Policy
For the meta-level, we proposed a meta policy to efficiently

switch between a lighter CNN based object detection model,
and a more intensive YOLO model. The CNN model provides
a list of detected objects within the captured image, but lacks
information on object locations or BBoxes. However, BBoxes
are crucial for goal-oriented navigation in an RL model as they
help determine the distance between the agent and the goal.
Therefore, we cannot completely replace the YOLO model
with the CNN model, however, we can decrease the number
of times that the YOLO model must be run. To do this, we
added a meta-level to the framework to monitor the agent and
any environmental changes to determine whether we need a
new BBox, or can simply rely on the previous generated BBox
can be used. The meta-level will switch between these two
models and try to pick the CNN model as much as possible
based on the proposed meta policy.

Fig. 2 depicts the proposed MetaTinyML policy’s meta-
level. The intuition behind MetaTinyML is to utilize the
previous BBox if there is a minor change in the agent’s view,
as the newly captured BBox would be similar to the previous
one. By comparing the last two object detection model outputs
saved in memory, MetaTinyML decides whether to use the
CNN model with the previous BBox or to pick the YOLO
model for generating a new BBox. On the other hand, if the
detected objects in the last two outputs are not the same or the
goal is in the detected objects in the last output we can pick
the YOLO model to generate a new BBox. To further enhance
the MetaTinyML policy, a counter n can be incorporated to
optimize the frequency of running the YOLO model based on
the detection of the goal within the model outputs. Therefore,
we do not need to pick the YOLO model each time the
goal is detected within the model outputs, we instead run
YOLO every n steps. The selection of an optimal counter
value is crucial to maintain a balance between efficiency and
performance in reaching the goal. To achieve even further
power consumption improvement, we added a small sleep time
after each execution of the lighter CNN model. Additionally,
introducing a small sleep time after executing the lighter CNN
model results in a notable improvement in power consumption
called as MetaTinyML-sleep.
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TABLE I
END-TO-END POWER CONSUMPTION AND TIME TO COMPLETION FOR REACHING THE GOAL ON A JETBOT BY A NVIDIA JETSON NANO 4GB BOARD.
TWO VERSIONS OF THE PROPOSED METATINYML ARE COMPARED WITH STATE-OF-THE-ART WORK NAMED REPROHRL [15] AND METAE2RL [16].

Power Consumption (W)Model Freq. (MHz) CPU GPU Time (Sec)

ReProHRL [15] 1.3 2.4 95
MetaE2RL [16] 1.3 2.4 179

MetaTinyML 1.0 2.6 60
MetaTinyML-Sleep

High (GPU: 921, CPU: 1479)

0.8 (40% impr.) 1.2 (50% impr.) 151
ReProHRL [15] 0.7 1.2 133
MetaE2RL [16] 0.7 1.2 250

MetaTinyML 0.6 1.1 95
MetaTinyML-Sleep

Low (GPU: 640, CPU: 918)

0.5 (26% impr.) 0.7 (44% impr.) 173E2 Model

E2 Video Streaming and Augmented Reality 
(E2VSAR)

GAP8 Processor

Energy-Efficient DNN Deployment on a Tiny UAV - CrazyFlie

Drone captures images of 
environment, moves if directed 

by server

https://en.wikichip.or
g/wiki/greenwaves/g
ap8
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Camera
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Fig. 3. (a) Experiment setup with a robotic Jetbot UGV equipped by NVIDIA
Jetson Nano 4GB. (b) UGV agent in action trained to reach the blue box [14].
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III. EXPERIMENTAL RESULTS

A. Experimental Setup

A Jetbot equipped with a Jetson Nano featuring 4GB of
memory, as depicted in Fig. 3, is utilized for real-world ap-
plication. We have developed two models for detecting target
objects within the environment: one utilizing YOLOv5n and
the other a simple CNN-based light model. The architecture
of the CNN-based light model is illustrated in Fig. 4. For the
light model, which focuses on object presence detection, we
utilized a 3-channel 256x256 image resolution. In contrast, the
YOLOv5n model, designed to run less frequently and tasked
with recording object bounding boxes, utilizes a larger input
image size of 416x416. Both models were trained using a
custom dataset comprising images of colored shapes captured
in simulation and in real-world scenarios.

B. End-to-End MetaTinyML Result

Hardware Results. We deployed the end-to-end
MetaTinyML on on a Jetbot equipped with a Jetson
Nano containing 4GB of RAM and compared it with a

Fig. 5. Power consumption and inference latency trace while deploying
MetaTinyML and MetaTinyML-sleep on Jetson Nano 4GB

Fig. 6. Picked CNN model/YOLO model ratio during training the RL model.
The proposed approach, MetaTinyML, picks the lighter model, up to 80% for
processing the captured image which is 30% more than MetaE2RL [16].

state-of-the-art work named ReProHRL [15]. Table I results
show power consumption and time to task completion
for ReProHRL with no meta policy, MetaE2RL [16],
MetaTinyML, MetaTinyML-sleep. Based on the provided
results, MetaTinyML-sleep is the most energy-efficient
approach, however task completion time is increased in
comparison to other versions due to the added sleep time.
Applying metareasoning in TinyML autonomous navigation
leads to up to 50% energy improvement in comparison with
the proposed approach in [15].

Switching Overhead. To analyse the model switching over-
head, we measured power consumption and traced inference
latency. Fig. 5 depicts the GPU+CPU power consumption
and latency while deploying end-to-end MetaTinyML and
MetaTinyML-sleep on Jetson Nano for 60 seconds. Based on
the results, the switching point can be extracted when power
consumption or latency drop as the lighter model will consume
less power and is faster. On the other hand, there is no sharp
line in the plot when switching happens meaning there is
negligible overhead for switching. Moreover, Fig. 5 (a) depicts
MetaTinyML-sleep consumes less power than MetaTinyML,
however it has approximately twice the latency. Additionally,
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Fig. 7. Sim to real implementation of MetaTinyML-sleep approach for
reaching one goal.

we extracted the number of times we run CNN model and
YOLO model and reported the CNN model/YOLO model ratio
on Fig. 6. The results show that MetaTinyML picks the lighter
model up to 80% of the time to process the captured image,
which is 30% more than MetaE2RL [16].

Sim to Real Transfer. Fig. 7 depicts the sim to real transfer
of the proposed MetaTinyML-sleep approach. The captured
images show the implemented framework switches between
the two models based on the presented meta policy.

IV. RELATED WORK

There are surveys [1], [4], [5] addressing TinyML system
challenges, and conducting state-of-the-art work within this
domain. Work in [1] discusses the design flow of TinyML
along with a variety of related works within TinyML for
software and hardware level optimization.

Metareasoning approaches [8], [13], [16]–[20] can be con-
sidered as a promising solution for scheduling tasks and
managing memory usage and power consumption at the edge
and TinyML systems. Work in [18] proposed a meta policy to
switch between cloud and onboard implementation to fulfill
a mission in autonomous systems. Moreover, [16] applied a
metareasoning approach for multi-goal reinforcement learn-
ing navigation while proposing squeezed edge YOLO on a
Crazyflie drone with GAP8 Processor. However, in these work
they did not deploy the metareasoning approach end-to-end on
the platform and there is no evaluation result on the end-to-end
efficiency of proposed metareasoning approach.

V. CONCLUSION

In this work, an end-to-end metareasoning framework,
MetaTinyML, is proposed for goal-oriented autonomous nav-
igation on TinyML platforms. In the proposed framework, a
new meta policy is presented to make real-time decision for
using CNN or YOLO based models to do the process. To
evaluate the proposed MetaTinyML framework, the end-to-
end framework is deployed on a Jetbot equipped by NVIDIA
Jetson Nano 4GB board. A demo of the proposed approach
which the jetbot could successfully reach the goal while
switching between two models is provided in this link.
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