
1

Co-designing Perception-based Autonomous
Systems on CPU-GPU platforms

Suraj Singh, Ashiqur Rahaman Molla, Arijit Mondal, Member, IEEE,, Soumyajit Dey, Senior Member, IEEE

Abstract—Perception-based autonomous system design meth-
ods are widely adopted in various domains like transportation,
industrial robotics, etc. However, attaining safe and predictable
execution in such systems depends on the platform-level integra-
tion of perception and control tasks. This paper presents a novel
methodology to co-optimize these tasks, assuming a CPU-GPU-
based real-time platform, a common choice of compute resource
in this domain. Unlike traditional methods that separately ad-
dress AI-based sensing and control concerns, we consider that
the overall performance of the system depends on the inferencing
accuracy of perception tasks and the performance of the control
tasks iteratively executing in a feedback loop. We propose a
design-space exploration methodology that considers the above
concern and validates the same on an autonomous driving use
case using a novel simulation setup.

Index Terms—Control Scheduling Co-Design, CPU-GPU Op-
timizations, Object Detection, Model Predictive Control, Au-
tonomous Driving.

I. INTRODUCTION

Design and deployment of controllers for autonomous
Cyber-Physical Systems (CPS) activated by perception inputs
from the environment has been greatly aided by Artificial
Intelligence (AI) enabled computer vision. Such systems typ-
ically involve the usage of complex inference pipelines that
fuse the periodically sampled data from various sensors. The
pipelines infer environmental states and pass the information
to decision systems for real-time control and actuation. For ex-
ample, emerging technologies like (semi-autonomous vehicles
that employ real-time object detection pipelines for various
image-based control applications like Autonomous Emergency
Braking (AEB), Lane Keep Assist System (LKAS), etc. Note
that the corresponding control tasks need to wait for the
AI pipeline to provide output while also requiring to satisfy
the end-to-end sense-to-actuation delay of each control loop.
Even in the weakly-hard paradigm of control task execution
and scheduling [1], deadline misses beyond the minimum
requirement may hamper the safety and stability of the system.

From the platform side, the usual practice has been to
execute AI pipelines for perception systems on accelerators
like Graphics Processing Units (GPUs). These are usually
provided in modern heterogeneous System-on-Chips (SoCs)

Manuscript accepted June 30, 2024.
Suraj Singh and Soumyajit Dey are with the Department of Computer

Science and Engineering, and Ashiqur Rahaman Molla is with the Center
of Excellence in Artificial Intelligence at the Indian Institute of Technol-
ogy Kharagpur, Kharagpur, India (email: surajsingh11@kgpian.iitkgp.ac.in,
soumya@cse.iitkgp.ac.in, ashiqur.rahaman@kgpian.iitkgp.ac.in)
Arijit Mondal is with the Indian Institute of Technology Patna, Bihar, India.
The authors acknowledge the generous grants received from “AI4ICPS I-Hub
Foundation - IIT Kharagpur” for partially supporting this work.

Fig. 1. Perception and control task allocation in CPU-GPU systems.

along with the CPU that runs the host firmware with control-
intensive functionalities. Let us consider a task allocation
scenario for an AI-based perception pipeline (e.g. YOLO [2])
and a control task (MPC) on such a platform, as shown in Fig.
1. We build our methodology around this specific use case,
though the system model assumed will remain applicable in
more generic settings.

To illustrate the overall interdependency of object detection
performance with adaptive control strategies, we set up several
driving scenarios in CARLA [3] simulator where the ego
vehicle navigates through a dynamic environment with various
challenging settings. The widely adopted object detection
pipeline YOLO [2] processes visual data in real-time for iden-
tifying and classifying objects. A Model Predictive Control
(MPC) based periodic controller task uses this information
to generate optimal control commands. Note in Fig. 1 that
the MPC task instances on the CPU can only start when
the corresponding GPU-based object detection task instances
finish execution. If all the stages of the detection pipeline
are executed, the detection inferences happen with higher
confidence score but leave less time for the control task to
execute. This may lead to a deadline miss scenario. However,
suppose the detection pipeline architecture uses a preemptable
model following [4]. In that case, it may be possible to attain
early inferencing and provide the MPC task with a sufficiently
large execution window. Such flexible task mappings for
perception and control tasks is next described in the system
model.

System Model and Contributions

We consider the perception task instances in Fig. 1, running
on a GPU, to be a YOLO detection pipeline, implemented in a
preemptable [5] manner, allowing to skip complete execution

2

and sample the output from an intermediate depth layer.
A generic perception pipeline comprises a sequence of 2-D
convolution layers followed by max-pooling, where the final
output is derived from a series of fully connected (FCN)
layers. In a preemptable architecture (as shown in Fig. 2), the
inference results from an intermediate convolution-pooling op-
eration can be transformed by flattening, then passing through
specific FCN layers to preserve the original output dimensions.

However, for ensuring detection-aided safe control, the
choice of preemption stages should start from an intermediate
depth layer l whose output satisfies a threshold confidence
score CSmin. It is to be noted that the later the stage, higher the
confidence score associated with the detection but the larger
the execution time (due to the large number of parameters
in a deeper network architecture). In Sec. II, we choose this
initial preemptive stage via Algorithm 1 and formally define
the selection of later depth stages.

Fig. 2. Overview of stage preemption of perception pipeline

Using the sensory camera frames, the YOLO pipeline
running on the GPU detects the class of objects present in the
image and predicts the corresponding bounding box coordi-
nates. The output of the detection system is fed to an MPC task
running on the CPU. The MPC objective is to keep the vehicle
within the lane boundary with minimal deviation while safely
driving on a given trajectory to the destination. The required
state information, namely the vehicle’s position, orientation,
and velocity, is estimated from the onboard sensors. Based
on the current state and a given desired reference state, the
MPC control task solves an online quadratic cost function J ,
as defined in Eq. 1, over some time horizon length H (i.e.,
the timesteps [k, k +H]) and generates a sequence of control
inputs Uk, . . . ,Uk+H−1. The system actuation uses Uk and the
problem is again solved with updated states for the next time
horizon. The cost function J , balancing state (Xk) and control
input (Uk) deviations from their references (X ref

k ,U ref
k), can be

given as

min
Uk...Uk+H−1

J =

k+N−1∑
t=k

[
(Xk −X ref

k)TQ(Xk −X ref
k)

+(Uk − U ref
k)TR(Uk − U ref

k)
]
+ X T

NPXN (1)
subject to X0 = Xinit

Xk+1 = AkXk + BkUk, k = 0, 1, . . . , N − 1

Xmin ≤ Xk ≤ Xmax, k = 0, 1, . . . , N

Umin ≤ Uk ≤ Umax, k = 0, 1, . . . , N − 1

where U is the control input vector, X is the state vector,
X ref and U ref are the reference state and control input vectors,

Q and R are the state and control input weight matrices,
P is the terminal weight matrix, Ak and Bk, define system
dynamics at each timestep, [Xmin,Xmax], [Umin,Umax] are the
bounds on the state and control input respectively, and Xinit
is the initial state. At each timestep, the MPC objective is
to minimize the lateral deviation from the centerline of the
road lanes, i.e cross-track deviation error (CTDE), and track
a reference set velocity with minimum actuation effort while
ensuring that the vehicle safely reaches the terminal waypoint
in a given driving scenario.

We formally define a driving scenario DS as a 3-tuple
{S,W,V} for a given scene S, set of predefined waypoints
W , and a reference tracking velocity V . For performance
evaluation, we calculate mean square error (MSE) on CTDEs
across the entire trajectory T over a window size B at timestep
k as,

MSE(k) =
1

B

k+B∑
k′=k

[CTDE(k′)]
2
, ∀ k ≤ length(T)− B.

It is to be noted that the execution time of the MPC increases
with horizon size due to the need to optimize a larger set of
constraints. However, larger horizon choices improve control
quality. Given a periodic control loop with sampling period
h and a bounded sense-to-actuation delay τ ≤ h, the total
execution time of the YOLO on GPU and MPC on CPU must
be within τ while satisfying the precedence constraint between
perception and control for each task instance. In summary, our
major contributions are as follows.

1) Given a driving scenario DS, the joint parameter space
of perception and control tasks, and a target CPU-GPU
platform, we provide a methodology that reports suitable
task parameter choices for attaining the least MSE.

2) We validate our methodology on an experimental testbed
for various driving scenarios and report encouraging
results.

II. METHODOLOGY

Fig. 3. Overall flowchart for finding suitable task configurations

A. Configurations for Multi-Stage Perception Pipeline

Let the depth layers of perception CNN architecture be
indexed as 1, 2 . . . , L where L-th layer denotes the final
output. Then all the stages up to depth i can be defined
as di ∈ {d1 ≤ d2,≤ . . . ≤ dL}. Let the associated
confidence score for a depth-d perception task’s prediction

3

at k-th timestep be defined by CSd(k). As discussed earlier
(Sec. I), the confidence score of the initial preemptive stage
should be ≥ CSmin. Hence, the initial preemptive layer l
defined by depth dl is that lowest possible layer for which
CSdl(k) ≥ CSmin ∀k ≥ 0.

Given a predefined driving scenario DS, Algorithm 1
identifies dl for the given pipeline using Binary Search over
the choices {dlow = d1, · · · , dhigh = dL}. For each current
choice of dl = (dlow + dhigh)/2, it evaluates the confidence
scores for K timesteps (by running a nominal MPC with
prediction horizon H and YOLO preempted at depth dl using
calc_confidence. The algorithm compares the lowest
confidence score in the entire run with CSmin and updates
search limits to find dl efficiently. Accordingly, we select a
set of stage depths ds = {di | i ∈ [l, L]}. The YOLO inference
timings for each stage depth di are obtained through multiple
profiling runs in closed loop simulation and are denoted by
edi

Y . Executing deeper stages yields better confidence scores
but higher execution time values.

Algorithm 1 Find CNN preemption stages
Require: CSmin, {d1, d2, . . . dL}, DS, H , and K

1: dlow ← d1
2: dhigh ← dL
3: while (dlow ≤ dhigh) do
4: dl = (dlow + dhigh)/2
5: for timestep k ← 1 to K do
6: CSdl(k)← calc_confidence(DS, H, dl)
7: score← min(CSdl(k), CSdl(k − 1))
8: end for
9: if (score ≥ CSmin) then

10: dlow = dl
11: else
12: dhigh = dl − 1
13: end if
14: end while
15: return dl

B. Platform-Aware Design Space Exploration
As shown in Fig. 3, the CPU task (MPC) starts only after

it receives updated inputs from the GPU task (YOLO). As
previously defined in Sec. I, it is required for the tasks to sat-
isfy the overall deadline requirement in every sampling period
(i.e. the combined execution time must be ≤ τ). Let the MPC
task running on CPU have N prediction horizons as available
options, i.e. Hj for j ∈ {1, 2, . . . , N} to determine the optimal
control actuation values. The higher the prediction horizon, the
better the quality of control, but the larger the computation
cost, thus, the execution time. Let e

Hj

M be the computation
time required when the prediction horizon is Hj . For a given
platform, eHj

M is computed through multiple profiling runs in
closed-loop simulation. Given these profiled timing executions,
our framework uses Algorithm 2 (as depicted in Fig. 3) to
select a suitable pipeline stage depth di for the GPU task, and
a corresponding admissible MPC prediction horizon for the
CPU task such that overall timing constraint is satisfied and
the MSE is minimized for a given driving scenario DS.

Algorithm 2 considers as input the following: (i) a set of
preemptable pipeline depth choices ds = {di | i ∈ [l, L]},
(ii) their inference computation times esY = {edi

Y | di ∈ ds}
(iii) a set of N selected MPC prediction horizons Hs =
{Hj | j ∈ 1, 2, . . . , N}, (iv) their task execution times
esM = {eHj

M | Hj ∈ Hs}, (v) sensing-to-actuation delay τ,
(vi) a maximum allowable MSE for deviation MSEmax, (vii)
driving scenario DS.

For each choice of pipeline depth (i ∈ [l, L]) (line 2),
the algorithm creates a list of feasible (w.r.t. timing) task
configurations [di, Hj] (lines 7-10). For each element in such
a list of configurations, the simulation loop computes MSE
values over scenario DS as long as all the waypoints inW are
not covered and the maximum observer MSE is stored. If this
value is less than MSEmax, the configuration is considered
admissible and stored in configs (lines 12-23). Finally, the
configuration with minimum MSE is returned.

Algorithm 2 Exploring Configurations for Perception and
Control Tasks
Require: ds, esY , Hs, esM , τ , MSEmax and DS

1: configs← []
2: for i← L down to l do
3: if di /∈ ds then
4: continue
5: end if
6: list← []
7: for j ← 1 to N do
8: if edi

Y + e
Hj

M ≤ τ then
9: list.append([di, Hj])

10: end if
11: end for
12: for each C :=< di, Hj > ∈ list do
13: k ← 0
14: while (W not covered) do
15: MSE(k)← evaluate_MSE(C,DS)
16: mse← max(MSE(k),MSE(k − 1))
17: k ← k + 1
18: end while
19: if mse < MSEmax then
20: configs.append([mse, C])
21: end if
22: end for
23: end for
24: sort_ascending(configs,key=’mse’)
25: return head(configs)

III. EXPERIMENTAL SETUP AND RESULTS

We conduct our experiments on CARLA [3], a state-of-
the-art simulator for self-driving vehicle research. However,
for in-the-loop simulation of driving scenarios with an actual
embedded platform running CPU-GPU tasks, we execute the
corresponding compute tasks on a NVIDIA Jetson Xavier NX
board, which features a 6-core ARM v8.2 64-bit CPU, a 384-
core NVIDIA Volta GPU with 48 Tensor Cores, and 8 GB
LPDDR4x RAM, running Ubuntu 20.04. We run the CARLA

4

simulator server on a desktop with Intel(R) Core(TM) i7-
10700 CPU @ 2.90GHz, 16 GB RAM, and NVIDIA GeForce
RTX 2070 Super GPU. We adjust the CARLA server settings
to run the simulator in an interrupt-driven manner based on
the commands of a client-side script running in the embedded
platform. The communication between the simulator on the
desktop and the compute task on Jetson is set using the widely
known Robot Operating System (ROS) framework. The pre-
empted perception tasks are specifically modified architecture
of pre-trained ultralytics YOLOv8 model, accelerated through
TensorRT framework. We implement the following sequence
of executions in the aforementioned setup.

1) The simulator server script waits for a tick to be passed
by the client script running on Jetson. Only upon receiv-
ing the tick, the server computes and updates the next
snapshot of the simulator.

2) The (updated) observations (i.e. vehicle states and cam-
era frames) are transmitted from the server to the Jetson
client through ROS publisher nodes at a fixed rate. The
required information is received from respective tasks
running on Jetson through ROS subscriber nodes.

3) The YOLO task (with specified di) runs on Jetson GPU
to perform inference on the received image and updates
the buffer with its results. The MPC task (with specified
Hj) then executes to compute the optimal control input.

4) The Jetson client sends the control command, simulation
tick, and time spent information back to the server so
that the server knows up to what time the simulation
should progress with the older control input followed
by the latest computed input.

We consider three driving scenarios DS based on the
scene S selected from the set {‘day’, ‘night’, ‘rainy’}. The
number of waypoints W and the reference tracking velocity
V are set to 60 and 10 m/s respectively. We specify the
parameter ranges for di and Hj within [dl = 168, dL = 268]
and [H1 = 4, HN = 20] respectively, after l is determined by
Algorithm 1. Then we profile the execution times edi

Y and e
Hj

M

over several simulation runs. We consider the time delay for
a frame (read by the vehicle camera in CARLA) to reach the
YOLO task running on Jetson through ROS communication
nodes to be negligible. Finally, we evaluate Algorithm 2 to
get a set of best possible configurations.

We consider two baselines: (A) YOLO with preemption
depth dL and MPC with prediction horizon H1, and (B)
YOLO with preemption depth dl and MPC with prediction
horizon HN . Fig. 4 illustrates the experimental results for three
driving scenarios: day, night, and rainy. The top row provides
a snapshot of the ego vehicle’s point of view in the simulator
for each scenario, annotating the predicted bounding boxes
from the YOLO task running on Jetson’s GPU. The subsequent
row shows the vehicle trajectories and velocity profiles within
road lanes. The bottom row plots MSE values computed over
a window length 10 (parameter B) for the entire run in each
setting. Comparing MSE of baseline configurations, Baseline
A performs poorly with a very high MSE since it has the
lowest chosen prediction horizon H1. Baseline B performs
well on the day scenario due to sufficiently visible features

captured in the perception task. However, in scenarios night
and rainy, given that the inference takes place at the lowest
depth dl, the YOLO pipeline fails to detect certain features
(like lane markings, bounding boxes etc.) that lead to poor
driving guidance by MPC. This also results in large MSE. On
the other hand, our methodology of executing Algorithm 1
followed by Algorithm 2 for all the three driving scenarios,
leads to choice of suitable task parameters that offer better
perception and control performance. The resulting parameter
configurations, referred as adaptive choice in Fig. 4, yields the
least MSE in all three cases.

Fig. 4. MSE for various driving scenarios with CARLA snapshots.

IV. CONCLUSION

The present work uses a novel testbed setup to demonstrate
a basic offline method, establishing the benefits of resource-
aware co-designing of perception and control for autonomous
CPS. For a realistic and deployable solution, there needs to
be several possible future extensions like 1) considerations for
other controller design paradigms, and 2) incorporating delay
awareness and dynamic task mappings for sudden changes
in driving scenarios. Another option can also be to consider
various perception pipeline choices instead of one pipeline
with preemption support.

REFERENCES

[1] N. Vreman, P. Pazzaglia, V. Magron, J. Wang, and M. Maggio, “Stability
of linear systems under extended weakly-hard constraints,” IEEE Control
Systems Letters, vol. 6, pp. 2900–2905, 2022.

[2] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, (Honolulu, HI, USA), pp. 7263–7271, IEEE, 2017.

[3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator,” in Proceedings of the 1st Annual
Conference on Robot Learning, vol. 78 of Proceedings of Machine
Learning Research, pp. 1–16, PMLR, 13–15 Nov 2017.

[4] C. Hobbs, D. Roy, P. S. Duggirala, F. D. Smith, S. Samii, J. H. Anderson,
et al., “Perception computing-aware controller synthesis for autonomous
systems,” in 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 457–462, IEEE, 2021.

[5] S. Yao, Y. Hao, Y. Zhao, H. Shao, D. Liu, S. Liu, T. Wang, J. Li, and
T. Abdelzaher, “Scheduling real-time deep learning services as imprecise
computations,” in 2020 IEEE 26th International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), pp. 1–10,
IEEE, 2020.

