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Abstract—The emergence of Design Space Exploration (DSE)
technology has reduced the cost of searching for pragma con-
figurations that lead to optimal performance microarchitecture.
However, obtaining synthesis reports for a single design candidate
can be time-consuming, sometimes taking several hours or even
tens of hours, rendering this process prohibitively expensive.
Researchers have proposed many solutions to address this issue.
Previous studies have focused on extracting features from a single
modality, leading to challenges in comprehensively evaluating
the quality of designs. To overcome this limitation, this paper
introduces a novel modal-aware representation learning method
for the evaluation of HLS design, named MORPH, which
integrates information from three data modalities to characterize
High-level synthesis (HLS) designs, including code, graph, and
code description (caption) modality. Remarkably, our model
outperforms the baseline, demonstrating a 6%-25% improvement
in RMSE loss. Moreover, the transferability of our predictor has
also been notably enhanced.

Index Terms—HLS, Multi-modality, Design Space Exploration

I. INTRODUCTION

With the termination of Dennard scaling [1], Field-
Programmable Gate Arrays (FPGAs) have emerged as a
potential choice for data center accelerators due to their
reconfigurability and energy-efficient characteristics [2]–[4].
However, their steep learning curve has hindered widespread
adoption. The advent of HLS [5], [6] has alleviated the limi-
tations of FPGAs by translating high-level code into hardware
description languages and efficiently restructuring underlying
microarchitectures through the insertion of pragmas [7]. How-
ever, it requires repetitive trials along with time-consuming
synthesis to identify efficient pragma combinations. Therefore,
an efficient and accurate prediction model is urgently needed
to evaluate the current design point during DSE.

Some previous studies treated HLS tools as black boxes
and focused on developing efficient heuristic methods [8]–[11]
to minimize synthesis times. Despite these efforts, the DSE
process is still time-consuming. Other research introduced
surrogate models as alternatives to HLS tools. For instance,
some studies utilized analytical models [12], [13], while
others represented HLS designs as graphs and employed graph
neural networks (GNNs) for quality prediction [14], [15].
However, despite the promising performance demonstrated by
GNNs, they have been limited to unimodal data, hindering
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the exploitation of all potentially beneficial information for
prediction, thereby impacting accuracy.

To address the aforementioned challenges, we propose the
Modal-Aware Representation Learning model for HLS, re-
ferred to as MORPH, to quickly and accurately evaluate candi-
date design points generated during the HLS DSE process. The
core of MORPH is Graph, Code, Caption transformer (GCC-
Former) which utilized contrastive learning [16] and cross-
attention mechanisms [17] to align the multi-modal features
produced by encoders to generate robust embeddings that can
be used for downstream prediction tasks. The experimental
results demonstrate that our model architecture significantly
improves prediction performance.

In summary, in this paper, we make the following contribu-
tions:

• We propose MORPH to leverage information from var-
ious modalities, enhancing the performance of design
point evaluation in the DSE process to address issues
of time consumption and low accuracy in the evaluation
process.

• We introduce GCC-Former as an essential module in
MORPH to bridge the gap between graph, code, and
caption for robust feature extraction. It is a staged pre-
trained query transformer consisting of representation
learning and prediction learning stages.

• The experimental results demonstrate that, compared to
the SOTA HARP [15] method, our approach signifi-
cantly reduced the RMSE loss by 6%-25%. Additionally,
through transfer learning experiments, we validated the
adaptability of our proposed model architecture to various
versions of HLS tools.

• Compared to HARP, our method increased the average
design point performance by 21% and 11% on two
datasets from varying versions of HLS tools in design
space exploration experiments due to its high prediction
accuracy.

II. RELATED WORK

As machine learning advances, it’s increasingly applied
across Electronic Design Automation (EDA) stages like high-
level synthesis [19], logic synthesis [20], floorplanning and
placement [21]. Specifically, in HLS, there is a growing trend
of incorporating advanced deep learning techniques into au-
tomatic optimization processes, like leveraging reinforcement
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Fig. 1. Overview of MORPH: (A)The processing order of our method. (B)Model architecture of MORPH.

learning for design space exploration [22] or using machine
learning algorithms to model HLS tools. One promising ap-
proach involves processing Control Data Flow Graphs (CD-
FGs) of input designs by employing Graph Neural Networks
(GNNs) [14], [15] as surrogate of the HLS tools which
can predict the latency and resource utilization for BRAM,
DSP, FF, and LUT. Previous research on surrogate models
predominantly utilized unimodal data for quality prediction.
Although optimizing HLS designs’ graph representations can
improve prediction performance, unimodal information is not
comprehensive enough to meet the demand for accurately
predicting current design point performance during DSE. This
limitation becomes apparent when facing the challenges posed
by task shifts.

III. MORPH METHODOLOGY

In this study, we introduce MORPH, a multi-modal model
aimed at efficiently and accurately evaluating design points
during HLS DSE. Inspired by Q-Fromer architecture in BLIP2
[18], we proposed GCC-Former to effectively align multiple
modalities into a unified latent space, providing a comprehen-
sive view of HLS designs.

A. Multi-modality Data

The diversity of data modalities allows models to capture
global information about HLS design, thereby enhancing rep-
resentational capabilities and predictive performance. In our
work, we utilized information from three modalities: graph,
code, and captions.

For graph modality, we adopt a hierarchical representation
augmented with pragma nodes proposed in HARP [15] to
provide control and data flow information. This approach
abstracts LLVM [23] Blocks into high-level pseudo-nodes to
mitigate long-range dependency issues. We retrained HARP
to serve as a graph encoder for encoding graph modality. For
code modality, we simply replace the pragma placeholders
in the original code with configuration options. Finally, since
pragmas constitute only a small part of the overall design, it is
challenging to extract the influence of pragmas. Therefore, we
utilize TongyiLingma, a code generation model, to extract code
structure, key parameters, and pragmas in order to balance
the code and pragma ratio. To better suit the HLS design
optimization scenario, we utilized the Jina-embeddings [24]
model, which is specifically designed for code text to encode

data from code and caption modalities. The multi-modality
data format is illustrated in Fig 2.

...

for1.cond

for1.body

for2.cond

for2.end

for1.end

...

Hierarchical GraphCode Snippet with pragmas Caption(Code Description)
#pragma ACCEL PIPELINE off

#pragma ACCEL TILE FACTOR=4

#pragma ACCEL PARALLEL FACTOR=4

  for (i = 0; i < 80; i++) {

#pragma ACCEL PARALLEL FACTOR= 16

    for(j = 0; j < 80; j++) {

     if(j <= i){C[i][j] *= beta;}

}

Apply a scalar multiplication to the lower
triangular part of a matrix C 

Scalar: beta
outer loop:
  80 iterations
  PIPELINE:off 
  TILE:4
  PARALLEL：4 
inner loop:
  80 iterations
  PARALLEL:16

icmp node pragma node pseudo node

Fig. 2. A toy example of our multi-modality data

B. GCC-Former

Inspired by BLIP2, we propose the GCC-Former, a trans-
former architecture designed to align data from different
modalities. Although current multi-modal models primarily
focus on visual and language tasks, our GCC-Former leverages
information from graph and text modalities, as illustrated in
Fig 1 (B). The GCC-Former consists of two sub-modules with
shared self-attention layers: (1) a graph transformer, which
interacts with a frozen graph encoder to extract graph features,
and (2) a text transformer which acts as a text encoder. More-
over, we create a set of learnable queries as input to the graph
transformer, these queries can interact with each other through
self-attention layers, and interact with frozen graph features
through cross-attention layers (inserted every other transformer
block). The queries can additionally interact with the text
through the same self-attention layers. The GCC-Former was
trained in two stages: (1) the representation learning phase and
(2) the predictor training phase. The representation learning
stage utilizes attention mechanisms and contrastive learning
methods to align data from diverse modalities. Subsequently,
during the predictor training phase, we create a Multi-layer
Perceptron (MLP) for each prediction target and train it on
our database.

C. Representation Learning

In the representation learning phase, we froze the graph en-
coder. Subsequently, the trainable GCC-Former employs self-
supervised learning techniques, including matching learning
and contrastive learning, as well as cross-attention mechanisms
to bridge the modality gap.

Graph-Text Contrastive Learning (GTC) aims to align
graph representations with text representations to maximize



TABLE I
TOTAL ROOT MEAN SQUARED ERROR (RMSE), MEAN ABSOLUTE ERROR (MAE), AND PERF RANKING (TAU) OF THE MODELS.

v1 database v2 database
Name Model Modal Train from scratch Train from scratch Fine-tuned from v1

RMSE MAE perf tau RMSE MAE perf tau RMSE MAE perf tau
M1 HARP graph 0.6930 0.2746 0.8629 0.6386 0.2808 0.8375 0.6239 0.2729 0.7950

M2 Concate Fusion graph+code 0.5911 0.2519 0.8250 0.6628 0.2953 0.7841 0.7739 0.3138 0.7840
(-14%) (-8%) (-4%) (+4%) (+5%) (-6%) (+24%) (+15%) (-1%)

M3 Weight Fusion graph+code 0.6066 0.2645 0.8163 0.6644 0.3035 0.7833 0.6404 0.3063 0.7761
(-12%) (-4%) (-5%) (+4%) (+8%) (-6%) (+3%) (+12%) (-2%)

M4 MORPH 2modal graph+code 0.5623 0.2440 0.8714 0.5695 0.2732 0.8359 0.6119 0.2724 0.8104
(-19%) (-11%) (+1%) (-11%) (-3%) (+0%) (-2%) (-0%) (+2%)

M5 MORPH 3modal graph+code+caption 0.5188 0.2087 0.8960 0.5627 0.2285 0.8628 0.5878 0.2473 0.8350
(-25%) (-24%) (+4%) (-12%) (-19%) (+3%) (-6%) (-9%) (+5%)

their mutual information. Our training strategy generates pos-
itive and negative graph-text pairs within each batch through a
permutation mechanism. In this work, we employ 32 learnable
queries where each query has a dimension of 768, so we
calculate the similarity between each query’s output and the
output text embedding Et, selecting the highest value as the
similarity of each graph-text pair. Learnable queries and text
tokens are simultaneously input into a shared self-attention
layer. To prevent information leakage, we employ an unimodal
self-attention mask, ensuring that queries and text cannot
attend to each other. We calculate I(Ez, Et) and I(Et, Ez)
and compute the losses individually, taking the average as the
loss. The formula is shown as follows:

I(Ei, Ej) = Ei · Ej (1)

Lossgtc =
1

2
∗ (

∑
cross entropy(Ii, y)) (2)

Graph-Text Matching (GTM) aims to learn the fine-
grained alignment between graphs and textual data, where tex-
tual data refers to data in the form of code and caption. GTM
also generates positive and negative graph-text pairs in each
batch. Utilizing bidirectional self-attention masks, the model
facilitates mutual attentiveness between learnable queries and
textual content, enabling the output query embeddings Z
to capture multimodal information comprehensively. These
embeddings are subsequently fed into a binary classification
linear layer to compute matching scores for different queries.
The average of these scores is then utilized to calculate the
cross-entropy loss against the true labels.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

Our study utilized the HARP Database [15] consisting
of 40 kernels of varying complexities selected from the
Machsuite benchmark and Polyhedral benchmark. The dataset
comprises quality reports obtained from two versions of
HLS tools (SDAccel 2018.3 and Vitis 2020.2) for various
design points of different kernels. These reports encompassed
DSP/BRAM/LUT/FF utilization and latency measured in cycle
counts. Specifically, the datasets from the two versions of the
HLS tool are denoted as the v1 and v2 databases, respectively.
To deploy and train our framework, PyTorch was utilized on
the NVIDIA Tesla A100 GPU.

B. Model Accuracy

To validate our approach, we retrained HARP using the
same database and hyperparameters as in this paper as baseline
(M1). Subsequently, we explored two Early Fusion methods:
(1)simply concatenating the embeddings of different modali-
ties (M2) and using a learnable weight to aggregate different
embeddings (M3). Finally, experiments were conducted with
our proposed model for both bimodal (M4) and trimodal (M5)
scenarios. Each model was trained from scratch on datasets v1
and v2 and then proceeded to fine-tune the v1 model on the
v2 dataset. For transfer learning fine-tuning, we trained for an
additional 200 epochs.

Table I illustrates the performance of each model on the
test set. Kendall’s tau metric is used to gauge the similarity
between predicted rankings of design points and their ground
truth rankings. It is observed that early fusion methods (M2,
M3) show reduced RMSE loss on the v1 dataset. However, it
performs worse on the v2 dataset, whether trained from scratch
or fine-tuned. In contrast, our proposed MORPH approach,
both M4 and M5, significantly reduces RMSE/MAE loss
across all three scenarios and shows marked improvement in
the tau metric. Furthermore, when fine-tuning the v1 model
on the v2 dataset, it achieves similar performance compared
to training from scratch with just a few training epochs. This
demonstrates the transferability of our approach, alleviating
the need to repeatedly generate large datasets for various HLS
tools.

TABLE II
PERFORMANCE OF BEST DESIGN FOUND BY DSE

Approach Time v1 kernels v2 kernels
Limit avg geo mean avg geo mean

GNN-DSE 1.5h/kernel 1x 1x 1x 1x
HARP 1.5h/kernel 1.07x 1.28x 1.34x 1.37x
[Ours] 1.5h/kernel 1.29x 1.33x 1.49x 1.51x

C. Performance Results

To demonstrate the benefits of our predictor for DSE,
we utilized the HARP’s depth-first search method [15] for
design space exploration to find low-latency design points
that meet resource constraints (BRAM, DSP, FF, LUT), while
evaluating candidate design points during DSE using different
predictors. To facilitate this process, a classification model was
employed to prune ineffective design points. The classifier first



determines the effectiveness of the current design point and
then a regression model was used to evaluate the quality of
the current design point. We evaluated the assessment time
for all kernels, with an average evaluation time of 50ms per
design point. We set the DSE time limit to 1.5 hours per
kernel, which allows us to explore approximately 108,000
design points within this time frame. Following the completion
of DSE, we synthesize the top ten design points to get their
true performance for comparison.

As shown in Table II, our proposed MORPH for DSE
achieved significant improvements in both the average and
geometric mean of the optimal perf values for 35 kernels
in dataset v1 and 27 kernels in dataset v2. We present the
performance improvement factors of HARP and our MORPH
model relative to GNN-DSE. Compared to the state-of-the-
art HARP, our method achieved an average performance
improvement of 21% on v1 kernels and a 11% acceleration
on v2 kernels.

V. CONCLUSION

In this work, we developed a multi-modal surrogate model
for High-Level Synthesis (HLS) to address the challenges of
long evaluation time and low evaluation accuracy in HLS de-
sign point assessment. We proposed the GCC-Former module,
which aligns and integrates information from multiple modali-
ties using contrastive learning and cross-attention mechanisms
to enhance the model’s performance. In the future, we intend
to incorporate reinforcement learning techniques to enable
efficient automatic design space exploration in HLS.
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