
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Runtime Monitoring of ML-Based Scheduling
Algorithms Toward Robust Domain-Specific SoCs

A. Alper Goksoy , Member, IEEE, Alish Kanani , Satrajit Chatterjee, and Umit Ogras , Senior Member, IEEE

Abstract—Machine learning (ML) algorithms are being rapidly1

adopted to perform dynamic resource management tasks in2

heterogeneous system on chips. For example, ML-based task3

schedulers can make quick, high-quality decisions at runtime.4

Like any ML model, these offline-trained policies depend crit-5

ically on the representative power of the training data. Hence,6

their performance may diminish or even catastrophically fail7

under unknown workloads, especially new applications. This8

article proposes a novel framework to continuously monitor the9

system to detect unforeseen scenarios using a gradient-based10

generalization metric called coherence. The proposed framework11

accurately determines whether the current policy generalizes to12

new inputs. If not, it incrementally trains the ML scheduler13

to ensure the robustness of the task-scheduling decisions. The14

proposed framework is evaluated thoroughly with a domain-15

specific SoC and six real-world applications. It can detect whether16

the trained scheduler generalizes to the current workload with17

88.75%–98.39% accuracy. Furthermore, it enables 1.1×–14×18

faster execution time when the scheduler is incrementally trained.19

Finally, overhead analysis performed on an Nvidia Jetson Xavier20

NX board shows that the proposed framework can run as a21

real-time background task.22

Index Terms—Domain-specific system on chip (SoC), imitation23

learning (IL), reinforcement learning (RL), resource manage-24

ment, robustness, runtime monitoring, task scheduling.25

I. INTRODUCTION26

HETEROGENEOUS architectures integrate diverse com-27

puting elements, each tailored to optimize specific28

objectives, resulting in enhanced performance across various29

optimization fronts. Among these architectures, domain-specific30

systems on chip (SoCs) are meticulously designed to excel31

in particular domains, such as augmented/virtual reality,32

autonomous driving, and telecommunication [1], [2]. They33

maximize energy efficiency by integrating domain-specific hard-34

ware accelerators while supporting general-purpose computing35

by including general-purpose cores [3], [4], effectively blending36

Manuscript received 12 August 2024; accepted 13 August 2024. This work
was supported by the Air Force Research Laboratory (AFRL) and Defense
Advanced Research Projects Agency (DARPA) under Agreement FA8650-
18-2-7860. This article was presented at the International Conference on
Hardware/Software Codesign and System Synthesis (CODES + ISSS) 2024
and appeared as part of the ESWEEK-TCAD Special Issue. This article was
recommended by Associate Editor S. Dailey. (Corresponding author: A. Alper
Goksoy.)

A. Alper Goksoy, Alish Kanani, and Umit Ogras are with the Department
of Electrical and Computer Engineering, University of Wisconsin–Madison,
Madison, WI 53706 USA (e-mail: agoksoy@wisc.edu).

Satrajit Chatterjee is with the Research Division, Kepler AI, Palo Alto, CA
94303 USA.

Digital Object Identifier 10.1109/TCAD.2024.3445815

Fig. 1. Illustration of incremental training. The gray dotted line represents
the arrival of the unknown application, whereas the green line represents when
the policy is updated with the incrementally trained version. The deployed
and incrementally trained policies are IL-based scheduling algorithms. The
execution time is 8× lower after incremental training.

adaptability and efficiency. In the context of scheduling, the NP- 37

complete nature of the task scheduling problem poses significant 38

challenges to traditional algorithms as the number of processing 39

elements (PEs) and tasks increase due to the concurrent 40

execution of multiple applications [5], [6]. This challenge has 41

recently led researchers to develop machine learning (ML)- 42

based task scheduling and other dynamic resource management 43

(DRM) techniques [7], [8], [9], [10], [11], [12]. 44

ML-based policies can deliver fast and high-quality deci- 45

sions tailored to a particular domain by leveraging system, 46

application, and task information as features. They are trained 47

using diverse workloads representing a target domain to 48

achieve this objective. Like any ML model, ML-based sched- 49

ulers operate reliably within the confines of the datasets and 50

applications used during training. Consequently, they may fail, 51

or their performance may deteriorate when faced with new 52

workload scenarios, especially those involving new applica- 53

tions [13], [14], [15]. Therefore, there is a strong need to 54

monitor the scheduling decisions to detect nonrobust decisions. 55

Fig. 1 illustrates the variation in the execution time as an 56

ML policy schedules streaming tasks to the PEs in an SoC. 57

Initially, the SoC runs a mixture of applications that were 58

used while training the ML scheduler. An unknown application 59

replaces the previous mix at the instance marked by the gray 60

dotted line. The average execution time begins to increase 61

substantially after the unknown application arrives and con- 62

verges to the execution time of the new application. A close 63

inspection of the decisions reveals that the scheduler makes 64

incorrect decisions. As a concrete example, it fails to recognize 65

that one of the tasks in the new application could utilize a 66

hardware accelerator PE. Due to the incorrect decisions, the 67

execution time is 8× longer than a scheduler trained with this 68

new application could achieve. Indeed, if one could detect the 69

arrival of a new application class and incrementally train the 70

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8679-9842
https://orcid.org/0009-0000-8585-9241
https://orcid.org/0000-0002-5045-5535

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

scheduler, it could achieve significantly higher performance,71

as depicted by the green vertical line in Fig. 1. This example72

shows two crucial needs when an ML-based resource manager,73

such as a scheduler, is used in domain-specific SoCs. First,74

it must recognize the input changes (e.g., the arrival of a75

new application) to which the scheduler does not generalize.76

Second, an on-the-fly incremental training technique must77

adapt the scheduler to changes in data distribution over time78

while retaining knowledge from past data.79

This article proposes a novel framework that achieves the80

following goals: 1) it monitors the actions of an ML-based81

scheduler; 2) it detects the input changes that deviate from82

the training data; and 3) it incrementally trains the ML83

policy to adapt to the new application. To present a concrete84

implementation of the proposed framework, we employ two85

runtime task schedulers, one trained using imitation learning86

(IL) and the other with reinforcement learning (RL). The87

proposed runtime monitoring is performed as a background88

task while an ML scheduler assigns incoming tasks to the89

PEs in the SoC. It first reads the features used by the ML90

scheduler, such as expected task execution times and PE91

states. Then, it computes the gradient of the trained ML92

policy and a coherence value using the gradient. When the93

gradient of the trained policy and information added by the94

new data samples are aligned, the coherence value is low,95

indicating that the current model generalizes well to the latest96

data samples. In contrast, when the latest data samples are97

not aligned with training, the coherence increases, indicating98

the need for retraining. When this happens, the proposed99

framework incrementally updates the ML policy, adapting it100

to new applications while retaining past information.101

The efficacy of the proposed framework is assessed using102

six real-world communication and radio frequency (RF) appli-103

cations running on a domain-specific SoC with sixteen PEs,104

including general-purpose big core clusters alongside fixed-105

point accelerators. Two instances of the proposed framework106

tailored to IL and RL schedulers monitor the SoC while a107

subset of the domain applications are launched. The proposed108

framework determines whether the IL scheduler generalizes to109

incoming data with over 98% accuracy. It misses only 0.59%110

of data points the scheduler fails to generalize. Furthermore,111

incrementally training the scheduler enables, on average,112

4.21× faster execution time. The detection accuracy drops113

to 88.75% while monitoring an RL scheduler since RL114

policies rely on a reward function, a weaker feedback than115

the reference label available in IL. The proposed framework116

can still effectively flag when incremental training is needed117

and enable, on average, 1.32× faster execution. Finally,118

we implemented the proposed monitoring framework on the119

Nvidia Jetson Xavier NX board [16] to assess its runtime120

overhead. Since the proposed framework is not on the crit-121

ical path, the execution time affects only 1) how fast poor122

scheduling decisions can be detected and 2) how frequently123

the monitoring process can be repeated. Even when all the124

steps of the proposed framework run sequentially, the worst-125

case execution times of the IL and RL instances are 83.74 and126

117.53 ms, respectively. Hence, they can be effectively used127

as real-time background processes that run periodically, as128

detailed in Section V.129

The main contributions of this article are as follows. 130

1) A framework that continuously monitors the system, 131

identifying unforeseen tasks and incrementally training 132

the model as needed. 133

2) Integration of a coherence-based detection mechanism 134

within reinforcement and IL approaches. 135

3) Comprehensive experiments showcasing the effec- 136

tiveness of the proposed framework in restoring 137

performance. 138

4) Runtime overhead analysis with hardware 139

measurements. 140

The remainder of this article is organized as follows. 141

Sections II and III review the related work and present the 142

background on the coherence metric and ML schedulers. 143

Section IV describes the proposed framework and its applica- 144

tion to IL/RL schedulers. Section V presents comprehensive 145

experimental evaluations and hardware measurements. Finally, 146

Section VI summarizes our conclusions. 147

II. RELATED WORK 148

Domain-specific SoCs have gained traction in recent years 149

following the demand for specialized processing and energy- 150

efficient solutions. Recent work discussed these architectures 151

and proposed accelerations frameworks across different appli- 152

cation domains [17], [18], [19], [20]. Modern computing 153

systems, including domain-specific SoCs, often rely on run- 154

time heuristics for task scheduling [21], [22], [23]. Alongside 155

heuristic schedulers, list-based schedulers [24], [25], [26], 156

[27], [28], [29] have been proposed for task scheduling, aiming 157

to optimize performance metrics at design time. However, one 158

limitation of list-based schedulers is their inability to account 159

for scenarios involving multiple streaming applications with 160

varying initialization times. Furthermore, optimization-based 161

schedulers, such as those utilizing integer linear or constraint 162

programming techniques [30], [31], [32], aim for optimal 163

decision making but suffer from infeasible runtime overheads 164

due to computational complexity. 165

ML-based task schedulers have recently emerged as alter- 166

natives to conventional algorithms and heuristics [7], [8], [9], 167

[10], [11], [12], [33], [34], [35], [36], offering reduced over- 168

head while achieving near-optimal outcomes. They leverage 169

various features, including performance counters, task, and 170

application-related data, to make informed decisions. These 171

features encompass a broad spectrum of metrics, ranging from 172

task execution durations on diverse resources to communi- 173

cation latencies and resource availability, chosen strategically 174

to optimize decision making. At the same time, a deep 175

neural network or decision tree policy enables predictable 176

execution time and runtime overhead optimization. These 177

schedulers leverage various ML methods, such as support 178

vector machine (SVM) [36], IL [10], [11], and RL [7], [8], [9], 179

[33], [34], [35]. IL models, for instance, emulate the behaviors 180

of complex schedulers impractical for runtime usage, showcas- 181

ing efficiency by eliminating the need for exhaustive search or 182

optimization algorithms. However, they are prone to sensitivity 183

toward their training datasets and inherent biases from expert 184

behaviors, rendering them vulnerable to unseen changes and 185

generalization issues. In contrast, RL-based schedulers learn a 186

GOKSOY et al.: RUNTIME MONITORING OF ML-BASED SCHEDULING ALGORITHMS 3

policy that optimizes a performance metric [8], [9] or multiple187

metrics [34] by exploration. For instance, Decima [7] spe-188

cializes in cluster-level scheduling for streaming applications189

using graph and deep neural networks. These schedulers also190

allow runtime adaptability, iteratively refining their weights191

to accommodate changes in response to evolving workload192

dynamics. They provide a significant advantage over static193

approaches, such as heuristics, particularly in swiftly changing194

environments inherent to domain-specific SoCs. Nonetheless,195

all these methods necessitate a monitoring framework to196

1) confirm the generalization of the ML policy to new data197

encountered at runtime and 2) adapt the policies if needed.198

Monitoring frameworks for ML models focus on detecting199

data and concept drifts. Data drift detection methods [37], [38]200

typically employ statistical models to assess whether201

the observed data deviate significantly from a reference202

distribution. In contrast, concept drift detection meth-203

ods [39], [40], [41] focus on detecting shifts in the relationship204

between input and output using statistical and ML-based clas-205

sifiers. However, these methods often have high computational206

complexity and execution times in the order of seconds,207

making them impractical for runtime applications, especially208

in scenarios with short task durations typical of domain-209

specific SoCs. Additionally, their ability to adapt to evolving210

data distributions may be limited due to inherent assumptions.211

In contrast, our proposed framework takes a different approach212

by leveraging changes in gradients to quantify generalization213

to new data without making assumptions about the input214

data. Moreover, recent work has explored the robustness of215

ML models using mixed-integer linear programming (ILP),216

resulting in runtime requirements ranging from seconds to217

minutes [42]. On the task scheduling problem, researchers218

discuss the robustness of task scheduling methods [43], using219

metrics, such as expected execution time and missed deadlines,220

often overlooking considerations related to generalizing to221

new applications. To the best of our knowledge, our proposed222

framework is the first runtime monitoring framework tailored223

for ML-based task scheduling on domain-specific SoCs.224

III. BACKGROUND ON COHERENCE AND ML SCHEDULERS225

This section first introduces coherence and its implications226

for the generalization of ML policies. Then, it overviews the227

use of ML schedulers in the domain-specific SoC context and228

describes the schedulers used in this work.229

A. Background on the Coherence230

Deep learning models trained with gradient descent have231

shown promising results in various fields, often demonstrat-232

ing impressive generalization capabilities on unseen data.233

However, recent work notes that these networks theoretically234

have the capacity to memorize the training data. So, they235

could fail on any new input data [44], [45], [46]. Indeed,236

studies have shown that training with even entirely random237

data can lead to good training accuracy. Still, the models238

fail to generalize and exhibit poor accuracy on new data,239

indicating memorization. Hence, it is crucial to understand240

how gradient descent and the training process find solutions241

Fig. 2. Evolution of the coherence and accuracy throughout training. The
examples exhibit stronger mutual support in the early epochs, resulting in
higher coherence (the right y-axis). As training progresses, the expected
gradient of samples approaches zero, indicating that the samples no longer
provide significant assistance to one another. Consequently, coherence tends
to diminish toward zero by the end of the training period.

that generalize well among all possible solutions that fit the 242

training data [45], [46]. 243

One of the recent ongoing attempts to explain generalization 244

in deep learning is “Coherent Gradients” [44], [47]. The core 245

idea is that gradients calculated from similar training samples 246

should be coherent, meaning they point in similar directions, 247

allowing generalization (rather than memorization) to occur. 248

In other words, the theory suggests that the interaction and 249

reinforcement between gradients from different training exam- 250

ples lead the model to learn features that generalize well to 251

unseen data. 252

Suppose z is a sample from a batch (M) with M = |M| 253

data samples. Further, let lz(w) denote the loss function for 254

this sample, where w represents the trainable parameters of 255

this model. One can compute the gradient for this sample as 256

gz = [∇lz](w). Chatterjee and Zielinski [44] quantified the 257

coherence over these M samples using per-sample gradients. 258

Specifically, they refer to the similarity between per-sample 259

gradients as coherence and define it as 260

αM = M ·
E

z∼M
[
gz

] · E
z∼M

[
gz

]

E
z∼M

[
gz · gz

] . (1) 261

When the gradients (gz) are perfectly aligned, the numer- 262

ator and denominator will be equal, leading to maximum 263

coherence (M). When all samples are fit, coherence will 264

be zero, meaning the individual gradients will become 265

zero. 266

During the initial training epochs, training data often shares 267

many common features. This results in aligned gradients and, 268

consequently, a higher coherence value. As training progresses 269

and trainable parameters converge, new features become more 270

specific, and the model tries to learn them individually. 271

Consequently, the coherence value tends to decrease, as 272

illustrated in Fig. 2. 273

Using Coherence for Runtime Monitoring: Gradients rein- 274

force each other when learning takes place during the early 275

training phases, leading to high coherence, as shown in the 276

first few epochs of Fig. 2. After the model has learned what 277

is common to all the samples and the samples have been 278

fit (in a well-generalizing manner), the coherence drops and 279

stabilizes to a low value. When the workload falls within the 280

generalized set at runtime (not necessarily identical to the 281

training data), its behavior resembles the end of the training 282

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

phase illustrated in Fig. 2. Consequently, it is characterized283

by a low coherence value (like the latest data sample during284

training. However, if the new data samples deviate from285

the training data, their gradients would align, leading to a286

rise in the coherence value. Therefore, increasing coherence287

indicates that the model processes features from an application288

that it has not generalized yet. The coherence will remain289

high unless the ML policy, e.g., the scheduling algorithm,290

is incrementally trained. We leverage this observation in the291

proposed runtime monitoring framework. A low coherence292

for generalized workload indicates good performance, while293

a sustained high coherence suggests encountering new data294

that requires retraining. Using a smaller sample size of M295

would result in a smaller overall coherence range [zero to M296

in (1)], making the framework more susceptible to random297

noise during inference and negatively impacting accuracy. In298

contrast, a larger M would result in increased overhead, as299

discussed in Section V-D (see Tables II and III).300

While Chatterjee and Zielinski [44] and Chatterjee [47]301

focused only on neural network models, we observe that the302

generalization theory using coherence can be used with any303

ML policy trained with gradient descent. Hence, we applied304

this framework to two scheduling algorithms: IL and RL. The305

IL model is trained with neural networks, while the RL model306

is trained with differential decision trees (DDTs), as elaborated307

in the following sections.308

B. ML-Based Scheduling for Domain-Specific SoCs309

Domain-specific SoCs are designed to deliver high310

performance when running applications from a target domain.311

A defining characteristic of these applications is processing312

streaming inputs for prolonged periods. For example, consider313

a domain-specific SoC designed for telecommunication. When314

the user starts the WiFi application, it processes received315

frames or transmits new ones for minutes, if not hours.316

Throughout this duration, the SoC continuously schedules the317

tasks comprising the WiFi transmitter and receiver chains.318

We envision that the proposed framework can run when a319

new application launches or periodically. The monitoring can320

repeat in the order of seconds or slower since there is no321

need to check the scheduler operations faster than that due322

to application lifetimes. Notable approaches of ML schedulers323

(IL- and RL-based training) are discussed next.324

IL Schedulers: IL is an ML method where an agent learns325

a policy (π) that mimics the behavior of an expert (π∗)326

using the expert’s actions. IL aims to minimize the error327

between the actions taken by the agent (at) and the expert328

(a∗
t). The expert actions (a∗

t) are collected offline and paired329

with corresponding states (st, a∗
t) for the agent to learn a330

policy (πθ) [48]. However, this approach has limitations, as the331

behavior of the expert confines the agent’s policy. To address332

this issue, the data aggregation (DAgger) algorithm [49]333

enhances the performance of IL by iteratively reinforcing334

incorrect decision–state pairs into the training set, thereby335

correcting deviations and improving overall performance.336

In the context of task scheduling, IL-based models leverage337

offline training capabilities. For example, the training data is338

collected through executing various workloads under different 339

system states to cover low to high congestion. During this 340

process, an expert scheduler makes decisions for these work- 341

loads, with the data representing the system state (st) collected 342

alongside the expert’s policy decisions (π∗(st)). These system 343

states and their corresponding action pairs are then utilized 344

as features and target labels for supervised learning methods 345

within the IL model. Subsequently, the learned IL policy (πθ) 346

is deployed for runtime decision making, replacing the expert 347

policy (π∗). The expert may be a sophisticated heuristic or 348

a constrained programming scheduler, which can make high- 349

quality decisions but with a significant overhead. 350

RL Schedulers: Unlike IL schedulers, RL schedulers do not 351

require an expert scheduler to guide the policy toward optimal 352

behavior [8], [33], [34]. During training, the agent interacts 353

with the environment by taking action (at) based on the current 354

state (st), such as expected task execution and earliest PE 355

availability times. For each action, the environment gives the 356

agent a reward (rt) that reflects how well the action aligns with 357

the performance objectives, such as minimizing the execution 358

time. 359

RL training algorithms commonly use actor–critic architec- 360

tures, where the actor selects the actions (at), and the critic 361

evaluates their expected outcomes. Both the actor and critic 362

are continuously updated based on the feedback from the 363

environment in terms of reward, allowing the agent to refine its 364

policy (πθ) over time [50]. The agent aims to optimize policy 365

(πθ) that takes actions to maximize the total reward over time. 366

The state value function can be used to find expected rewards 367

starting from an initial state following the policy. This value 368

function (Vφ(st)) can be approximated with a critic network 369

with parameter (φ) that returns an expected value according 370

to the state of the environment. 371

IV. ROBUST MONITORING OF ML-BASED SCHEDULING 372

ALGORITHMS 373

This section describes the proposed robust monitoring 374

framework overviewed in Fig. 3. Section IV-A introduces the 375

runtime monitoring component of the framework for detecting 376

workload changes. Then, Sections IV-B and IV-C present 377

the application of the proposed framework to IL and RL 378

schedulers, respectively. Finally, Section IV-D discusses its 379

applicability to other ML-based dynamic runtime management 380

frameworks, and Section IV-E presents the incremental train- 381

ing approach used in our robust monitoring framework. 382

A. Robust Detection of Workload Changes 383

The first step of the proposed robust monitoring frame- 384

work is continuous monitoring to detect the variations in the 385

workload that can lead to incorrect decisions, as shown in 386

Fig. 3. It is implemented as a background process to avoid any 387

performance impact. Suppose the scheduler takes an action 388

at time T0. The system runs as usual by committing this 389

action without interrupting the operation. At the same time, 390

the background monitoring process is invoked to evaluate the 391

quality of this action after the task is completed, as illustrated 392

in Fig. 4. This evaluation is performed by calling a reference 393

GOKSOY et al.: RUNTIME MONITORING OF ML-BASED SCHEDULING ALGORITHMS 5

Fig. 3. Overview of the proposed framework that monitors the scheduler decisions and application features used for decision making. It is activated to
compute the coherence of a batch with M samples. The primary steps are: 1) generating the reference scheduler action for IL or reward calculation for RL;
2) loss, gradient, and coherence calculations; and 3) an optional incremental training step triggered by the coherence value.

Fig. 4. Event diagram illustrating the proposed monitoring framework for IL schedulers. This figure shows the tasks in series for clarity, but multiple parallel
tasks can be scheduled and monitored concurrently. While monitoring IL schedulers, a trustworthy (but slower) scheduler runs in the background to determine
the correct action (a∗

t). This reference and actual policy actions (at) for a batch with M tasks are used for the loss, gradient, and coherence calculations
(detailed in Algorithm 1). The incremental training step is executed if the framework decides the IL model policy (πθ) should be updated.

scheduler with identical inputs and finding the reference394

action when monitoring an IL-based scheduler (detailed in395

Section IV-B). In the case of an RL-based scheduler, the396

reward received for this action is used to assess its quality397

(detailed in Section IV-C). Then, the outcome of this assess-398

ment is used to compute the gradient of the ML policy. Finally,399

the gradient is used to compute the coherence, as described400

in Section III-A. An insignificant change in the coherence401

value shows that the current ML policy handles the monitored402

application well. That is, the policy generalizes well to the403

monitored application. In contrast, a rise in coherence indicates404

new directions in the gradient, signifying the need to adopt the405

policy to address the changes in the workload. The specific406

details of the coherence calculation for IL- and RL-based407

schedulers are described in the following sections.408

Background Process Overhead: The proposed monitoring409

and detection framework is implemented as a background410

process, as mentioned above and illustrated in Fig. 4. The411

system moves on with the current scheduling decision to avoid412

interruption since an incorrect decision only leads to transient413

performance degradation but not catastrophic failure. Hence,414

the proposed framework is not on the critical path. However,415

its overhead is still crucial since it determines how frequently416

the proposed framework can be called and the detection417

speed. Our hardware measurements indicate that the proposed418

monitoring and detection can be performed in the order419

of milliseconds, allowing frequent checks for the robustness420

of the ML policies. Given the types and composition of421

applications running on SoCs do not change in the order of422

seconds, the proposed framework enables runtime monitoring423

with negligible overhead, as detailed in Section V-D.424

B. Application to IL-Based Schedulers 425

This section outlines the runtime detection framework 426

employed for IL-based task scheduling frameworks. Fig. 4 427

illustrates the calculation steps in runtime monitoring for 428

IL-based schedulers, while Algorithm 1 provides a detailed 429

breakdown of these steps in the runtime detection process. 430

Once activated, the proposed monitoring framework 431

processes the actions (at) taken by the policy (πθ) for a 432

sample size of M (Algorithm 1, lines 4 and 5). IL schedulers 433

operate as supervised learning models, wherein an agent learns 434

a policy (πθ) from an expert’s decision-making patterns to 435

guide runtime scheduling decisions by generating actions (at) 436

(line 6). Therefore, the runtime detection framework requires 437

the reference targets (a∗
t) obtained by invoking the expert 438

scheduler and collecting necessary performance metrics in 439

the background to avoid execution time overhead (line 7). 440

In this work, we employ a resource-intensive heuristic, the 441

earliest task first (ETF) scheduler that loops through all ready 442

tasks and PEs to choose the task assignment that minimizes 443

the expected execution time [23]. The authors of the IL 444

scheduler select ETF as the reference scheduler because its 445

overhead grows quadratically, ranging from 0.3 to 8 ms. In 446

contrast, the IL scheduler overhead grows linearly and enables 447

nanosecond-level decisions [10], [34]. The reference actions 448

are used to compute the loss function, denoted as Lθ (line 8), 449

in conjunction with the IL policy actions. We utilize the cross- 450

entropy loss for Lθ . Then, the loss function is used to calculate 451

the gradients gz. Subsequently, we calculate the expected value 452

of the gradient vector, Ez∼M [gz], by adding the gradient 453

vectors and Ez∼M [gz · gz] by adding the dot product of the 454

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 5. Event diagram illustrating the proposed monitoring framework for RL schedulers. As in Fig. 4, the tasks are shown in series for clarity, but multiple
parallel tasks can be scheduled and monitored concurrently. The proposed framework performs the loss calculation using the estimated value function (Vφ(st))
from the critic network and rewards (rt) from completed tasks. Then, the gradient is calculated for mini-batches (lines 13–17 in Algorithm 2), while coherence
is calculated using batch coherence as given in line 19 in Algorithm 2. If the RL policy does not generalize to the current data points, it can be incrementally
trained or turned off until the coherence reduces.

Algorithm 1 Detection Phase for the IL Scheduler
1: Input: Policy action set M with M actions, Call period

of the framework P
2: Output: Coherence value
3: Initialization: ML policy πθ with parameters θ ,

E
z∼M

[gz] := 0, E
z∼M

[gz · gz] := 0

4: Call robust monitoring framework every P timeframe
5: while Total number of actions < M do
6: Get policy action at

7: Get ground truth a∗
t in the background using reference

scheduler
8: Calculate the loss function, Lθ using a∗

t and at as
CrossEntropyLoss(a∗

t , at) [51]
9: end while

10: // gradients and coherence calculation
11: for sample from 1 to M do
12: Calculate gradients (gz) using loss function Lθ from

current sample
13: Update estimate E

z∼M
[gz] := E

z∼M
[gz] + gz

14: Update estimate E
z∼M

[gz · gz] := E
z∼M

[gz · gz] + gz · gz

15: end for

16: Coherence αM = M ·
E

z∼M
[gz] · E

z∼M
[gz]

E
z∼M

[gz · gz]

gradient vectors of weights, respectively. This process can455

be executed efficiently, with expected values computed using456

running sums without storing the gradients, either incremen-457

tally or collectively, at each monitoring session’s conclusion.458

Finally, the coherence is computed using (1). It determines the459

coherence of gradients among all examples in the sample set460

M, thereby detecting the unforeseen task scheduling scenarios461

that differ significantly from those encountered during training.462

We use the loss function for coherence instead of relying on463

accuracy because the accuracy metric misses differences when464

the policy generates the same actions with low confidence.465

Besides, accuracy remains relatively stable when a few new466

application instances are added to the workload mix. The loss467

value, in contrast, is sensitive to such variations.468

C. Application to RL-Based Schedulers 469

This section presents the steps to apply our runtime monitor- 470

ing framework to RL schedulers. During monitoring, the actor 471

policy (πθ) makes scheduling decisions (action at) for new 472

tasks based on the SoC state (st). The selected PEs process 473

the tasks as normal. As described in Section III-B, RL is 474

an unsupervised learning method where both the actor and 475

critic networks are trained during the offline training phase to 476

maximize the reward defined as the negative execution time. 477

Therefore, estimated state values (Vφ(st)) from the trained 478

critic network and rewards (rt) expressed as the negative 479

of the task execution times are used to calculate the loss 480

function Lθ required for the gradient calculation. As new 481

tasks arrive, the trained critic network updates the state 482

values in the background, as illustrated in Fig. 5. Upon task 483

completion, rewards in terms of execution time are acquired 484

from the PEs. These rewards and the state values are used 485

to calculate the advantage function (A(st, at)) for the state– 486

action pair, following the same equation as given in the PPO 487

algorithm [50]: 488

A(st, at) = rt + γ Vφ(st+1) − Vφ(st) (2) 489

where γ represents the discount factor and Vφ(st+1) is the 490

state value after completion of the task. The loss calculation 491

during training also uses the ratio between the updated policy 492

and the previous policy ρ(θ). Since the policy remains fixed 493

during inference at runtime, the probability ratio ρ(θ) remains 494

equal to one. Thus, policy loss Lθ is given by the advantage 495

function in (2) and used in Algorithm 2 (line 10) 496

Lθ = ρ(θ) · A(st, at); ρ(θ) = πθ (at|st)

πθold(at|st)
= 1. (3) 497

Since this loss is not directly derived from the ground truth, 498

the resulting gradient and coherence become noisy. To address 499

this, we split the batch M (with M = |M| samples) into a 500

set of K mini-batches (with K = |K|, each of size M/K). 501

Then, we use the average advantage within each mini-batch for 502

gradient calculation. The coherence for each mini-batch and 503

the overall batch coherence are calculated using [44, Th. 3] 504

(lines 18 and 19 in Algorithm 2). This theorem ensures 505

statistical equivalence of the per-sample coherence described 506

in (1). 507

GOKSOY et al.: RUNTIME MONITORING OF ML-BASED SCHEDULING ALGORITHMS 7

Algorithm 2 Detection Phase for the RL Scheduler
1: Input: Batch M, mini-batch K, Framework activation

period P
2: Output: Coherence value
3: Initialization: Learned policy πθ with parameters θ ,

Trained critic Vφ with parameters φ, E
z∼K

[gz] := 0,

E
z∼K

[gz · gz] := 0

4: Call robust monitoring framework every P seconds
5: // Loss calculation
6: while Total number of actions < M do
7: Get policy actions at

8: Get value estimates Vφ(st) using trained critic Vφ

9: Get rewards (rt = −task execution time) from the
system for the completed tasks

10: Calculate the advantage function as loss, Lθ using
Vφ(st) and rt for all the actions as given in the
equation (2)

11: end while
12: // Mini-batch gradients and coherence calculation
13: for mini-batch from 1 to K do
14: Calculate gradients (gz) using average Lθ from current

mini-batch
15: Update estimate E

z∼K
[gz] := E

z∼K
[gz] + gz

16: Update estimate E
z∼K

[gz · gz] := E
z∼K

[gz · gz] + gz · gz

17: end for

18: Mini-batch Coherence αK =
E

z∼K
[gz] · E

z∼K
[gz]

E
z∼K

[gz · gz]

19: Coherence αM = M · αK
K−(K−1) ·αK

D. Application to Other ML-Based DRM Algorithms508

The proposed framework uses a loss function and gra-509

dients to compute the coherence for detecting workload510

changes. Hence, it can be applied to monitor the decisions511

of other ML-based schedulers and DRM algorithms that512

allow runtime gradient calculation. For example, dynamic513

thermal and power management techniques determine the514

optimal voltage–frequency pairs for computing cores to meet515

thermal constraints while preserving performance. These516

algorithms encompass a variety of approaches, including517

IL [12], [52], [53] and RL [54], [55] methods. Our framework518

can work with all these methods to prevent unexpected519

behavior due to a mismatch between training and runtime520

inputs. For example, Sartor et al. [12] employed a hierarchical521

IL framework featuring distinct policies for frequency, core522

selections, and execution time predictions. Our framework523

can effectively monitor these policies, utilizing the described524

policy and expert actions outlined in the study to compute525

loss and subsequent steps. It can ensure robust performance526

across various scenarios. In summary, our framework offers527

monitoring support for any runtime ML-based framework528

that utilizes gradient-based optimizations, ensuring robustness529

and reliability across various dynamic runtime management530

applications.531

E. Response to Significant Workload Changes 532

The final stage of the proposed runtime monitoring frame- 533

work is the response to significant changes in the workload. 534

The objective of this stage is to detect the substantial changes 535

in the workload to which the trained model does not gener- 536

alize. We compare this detection’s coherence (αM) against a 537

threshold (τ) learned during training. For this purpose, we 538

employ a simple classifier, such as an SVM, to learn the 539

threshold that maximizes the detection accuracy. Coherence 540

values lower than the threshold (αM < τ) indicate that 541

scheduler decisions are trustworthy and no intervention is 542

required. In contrast, larger coherence values (αM > τ) require 543

action since they indicate that the model is not generalizing 544

well to coming samples. 545

There are two possible responses when a significant 546

workload change deems the scheduler unreliable. The most 547

straightforward remedy is to fall back to a traditional algorithm 548

(e.g., the reference scheduler) for actions. The ML scheduler 549

decisions can be monitored during this time until the coherence 550

value moves below the threshold. In this way, the SoC will 551

be protected from unreliable ML decisions. The second option 552

is incrementally training the scheduler to adapt to workload 553

changes, which will conserve the advantages of using ML 554

schedulers. The rest of this section describes how IL and RL 555

schedulers respond when a significant change is triggered. 556

IL Scheduler: The monitoring process for the IL scheduler 557

involves a reference scheduler whose decisions are used to 558

compute the loss function, as shown in Fig. 4. This implies 559

that the reference actions (a∗
t) for the samples received during 560

monitoring (st) are readily available, making incremental 561

training a practical option. To this end, we utilize these state– 562

action pairs (st, a∗
t) to incrementally train the IL policy. We 563

also measure the overhead of this training process. It takes 564

approximately 2 ms per epoch for incremental training of the 565

IL scheduler on the Nvidia Jetson Xavier NX board [16], a 566

timeframe negligible compared to the domain-specific appli- 567

cation lifecycle. The execution of the tasks continues with 568

the previous policy to ensure continuity during this process. 569

Subsequently, the IL scheduler starts using the new policy (π̂), 570

leading to significant benefits detailed in Section V. 571

RL Scheduler: Unlike the IL scheduler case, RL training 572

is unsupervised, learning from rewards (task execution time) 573

provided by the environment (PEs in SoC) rather than a 574

reference. Hence, the corresponding monitoring process does 575

not involve a reference scheduler that gives correct actions. RL 576

scheduler can be trained at runtime using the rewards received 577

at the end of task executions. However, the RL scheduler can 578

make poor decisions during this time, potentially impacting the 579

runtime of tasks it executes. If this degradation in performance 580

is acceptable, the policy can be incrementally updated during 581

the operation. Otherwise, turning it off may be preferable 582

while the coherence value is above the threshold. One can 583

also train an RL policy offline incrementally and update the 584

scheduler if the workload changes are permanent. 585

V. EXPERIMENTAL EVALUATION 586

This section presents the experimental evaluations of our 587

framework. We detail the experimental setup in Section V-A. 588

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Section V-B discusses the results obtained for the IL scheduler,589

while Section V-C presents the findings for the RL scheduler.590

Lastly, Section V-D discusses the runtime overhead of our591

proposed framework for both schedulers.592

A. Experimental Setup593

Domain-Specific SoC Configuration: The selection of the594

SoC configuration is tailored to the requirements of domain-595

specific applications. Our simulation configuration consists of596

sixteen PEs, comprising eight general-purpose cores utilizing597

the Arm big.LITTLE architecture. These cores include four598

Arm A57 performance and four Arm A53 low-power cores.599

Additionally, the SoC incorporates eight fixed-function accel-600

erators designed for handling intensive tasks: four accelerators601

dedicated to Fast Fourier Transform, two for Viterbi decod-602

ing, and two for matrix multiplication. This configuration is603

designed based on the specific demands of the target domain604

applications and the computational intensities of the tasks in605

these applications.606

Domain Applications: The evaluation of the runtime mon-607

itoring framework encompasses six real-world applications608

spanning the telecommunication and RF domains. These609

applications include WiFi transmitter, WiFi receiver, temporal610

mitigation, lag detection, single-carrier transmitter, and single-611

carrier receiver. The number of tasks for these applications612

varies from 7 to 34. They are mixed into the workloads613

spanning from lower to higher intensity levels, ensuring614

comprehensive coverage, as detailed in [56] and [57].615

Simulation Framework: We evaluated our runtime moni-616

toring framework using an open-source discrete event-based617

simulator, DS3 [56]. This simulator has been validated618

against two commercial SoCs, the Odroid-XU3 [58] and the619

Zynq Ultrascale+ ZCU102 [59]. It enables target application620

simulations using different schedulers, providing a flexible621

environment for efficiently implementing new scheduling poli-622

cies and our framework. Each simulation duration is around623

2 s, resulting in a dynamic variation in the number of624

applications running, ranging from 4000 to 40 000 instances,625

and an average task count ranging from 50 000 to 500 000.626

B. Results Obtained With IL Scheduler627

This section delves into the experimental evaluations with628

IL schedulers. The policy adopted for the IL scheduler com-629

prises a neural network architecture consisting of three dense630

layers, each with 32 neurons. The neural network is trained631

using Python and TensorFlow libraries, achieving accuracies632

ranging between 96.1% and 98.3% against the reference633

scheduler, ETF [23]. The policy leverages a combination634

of system, application, and task-level data as features to635

determine the cluster assignment. Then, the task is assigned to636

the PE within the chosen cluster, which is either available or637

set to become available first. We first illustrate the proposed638

framework as a function of time using single- and multi-639

application use cases. Then, we summarize our exhaustive640

accuracy evaluations.641

Single Application Use Case Illustration: This illustrative642

example starts running a domain application represented in643



(a)

(b)

Fig. 6. Illustration of (a) the coherence value and (b) the average execution
time for the runtime monitoring framework with IL scheduler using two
applications. The first application (WiFi transmitter) runs until the black
dotted line. After that, it is replaced by a new application (lag detection) not
represented in the training data.

the training dataset. As the test samples from this application 644

arrive at runtime, the coherence value remains low, as shown 645

in Fig. 6(a). We emphasize that the training and test samples 646

are different except that they come from the same application. 647

Since the execution time varies significantly over time, it 648

cannot be used alone to identify significant workload changes. 649

After running for 0.8 s, this application is replaced with a new 650

one not represented in the training dataset. The proposed mon- 651

itoring framework successfully captures this change, as shown 652

in Fig. 6(a). The coherence increases quickly, indicating the 653

unalignment between the trained policy and the impact of new 654

data samples. If we do not take action (e.g., incrementally train 655

or turn off the scheduler), the coherence remains high, and 656

execution time varies around 200 us. In contrast, incremental 657

training (explained in Section IV-E) successfully adapts the 658

policy to the new application, as revealed by the coherence 659

plot in Fig. 6(a). Furthermore, the execution time reduces 660

on average by 10%. Finally, we note that the incrementally 661

trained policy still runs the first application optimally, i.e., the 662

coherence remains low if it resumes running. This part is not 663

plotted for brevity. 664

Multiple Application Use Case Illustration: The second 665

example starts running a mix of five applications represented 666

in the training dataset. The coherence computed at runtime 667

remains low, as expected, as shown in Fig. 7(a). After running 668

them for about 0.25 s (marked by a dotted line), these applica- 669

tions halt, and a previously unseen application starts running. 670

The proposed framework successfully tracks the increased 671

coherence after this change. As in the previous example, an 672

elevated coherence indicates that new data samples require 673

updating the policy parameters. If the policy is not updated, 674

coherence remains high, and the execution time rises to about 675

2.5 ms, as shown in Fig. 7(b). In contrast, the proposed 676

incremental training rapidly reduces coherence to its original 677

value. Moreover, it achieves a remarkable performance boost 678

(12× lower execution time) compared to no training. 679

Accuracy and Performance Summary: We prepared exten- 680

sive use case scenarios similar to those illustrated above. 681

They start running a randomly selected subset of application 682

GOKSOY et al.: RUNTIME MONITORING OF ML-BASED SCHEDULING ALGORITHMS 9

(a)

(b)

Fig. 7. Illustration of (a) the coherence value and (b) the average execution
time for the runtime monitoring framework with IL scheduler using a
workload composed of six applications. Five out of six domain applications
run concurrently until the black dotted line. After that, the sixth application
(single-carrier receiver) is introduced.

TABLE I
ACCURACY AND EXECUTION TIME IMPROVEMENTS FOR RUNTIME

MONITORING FRAMEWORK ON IL AND RL SCHEDULERS (M = 1024)

mixes and then randomly change the applications. Single683

application examples start running one of the six domain684

applications randomly and switch to another one after a685

random duration. We repeated these simulations at different686

intensities and obtained 1221 batches. 663 out of these 1221687

points indicate inputs the ML scheduler does not generalize.688

The multiapplication experiments start running five out of six689

applications concurrently (leaving one out). Then, the missing690

application replaces the original one. These experiments are691

also repeated to obtain 13 767 batches. 8585 of these 13 767692

batches correspond to input the ML scheduler does not693

generalize. Overall, the combined data set comprises 14 988694

batches, of which 9248 batches indicate a significant input695

change.696

The proposed runtime monitoring framework identifies697

whether the IL scheduler generalizes to new data points698

correctly 98.39% of the time, as summarized in Table I (the699

first row). False positives in Table I occur when our moni-700

toring framework detects activity despite there being no new701

application. False negatives, on the other hand, occur when702

a nongeneralized application appears but is not detected by703

our monitoring framework. The IL scheduler’s false positive704

rate is only 1.02%, which means it incorrectly flags a change,705

although the scheduler generalizes well to the input. More706

importantly, it almost never misses a significant input change707

(0.59%). Finally, the proposed framework enables 4.21×708

lower execution time on average when incremental training is709

performed. These results present that the proposed framework710

can effectively detect when the IL scheduler makes unreli-711

able decisions and adapt the scheduler to achieve substantial712

benefits.713

(a)

(b)

Fig. 8. Result of (a) the coherence value and (b) the average execution time
for the runtime monitoring framework with RL scheduler using a workload
comprising instances from two applications. Until the black dotted line, the
first (WiFi receiver) application instances are in the system. After that, the
new application (temporal mitigation) is introduced.

C. Results Obtained With RL Scheduler 714

This section discusses the performance of the proposed 715

runtime monitoring framework when applied to the RL sched- 716

uler. The RL scheduler comprises an actor policy for decision 717

making and a critic network for evaluation. The actor policy 718

is responsible for scheduling decisions and is situated on the 719

critical path of the main process. Therefore, it is implemented 720

using a DDT, enabling scheduling in approximately 0.18 μs 721

on the Nvidia Jetson Xavier NX board [16]. Once a scheduling 722

decision is made, the main process executes tasks on PEs while 723

our framework concurrently monitors these decisions in the 724

background. Actor–critic policies utilize features encompass- 725

ing task, application, and SoC-level information (similar to 726

the IL scheduler described in Section V-B). These policies are 727

trained using PyTorch with an OpenAI Gym environment [60]. 728

We conducted leave-one-out experiments with all six 729

domain applications for a comprehensive performance eval- 730

uation. The RL scheduler generalizes well to five of these 731

applications, even when they are excluded from training. 732

However, it performs poorly when running the last application 733

(temporal mitigation), indicating that the RL scheduler does 734

not generalize to this application and does not make robust 735

decisions. Our monitoring framework confirms this observa- 736

tion, as coherence values remain consistently low even with the 737

arrival of new applications, except for “temporal mitigation,” 738

where coherence increases when the RL policy schedules it. 739

Each batch (M) used in monitoring comprises 1024 samples, 740

each divided into eight mini-batches (K) with 128 samples. 741

The rest of this section summarizes the results. 742

Single Application Use Case Illustration: Like the IL 743

experiments in Section V-B, this scenario begins by executing 744

a single application represented in the training dataset. The 745

coherence computed by the proposed framework is low during 746

this time, as illustrated in Fig. 8(a). Subsequently, it is replaced 747

with a new application, to which the RL scheduler does 748

not generalize. The coherence value sharply increases from 749

approximately zero to over 20 following this change, as shown 750

in Fig. 8(a). Correspondingly, there is a sudden decrease in 751

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

(a)

(b)

Fig. 9. Result of (a) the coherence value and (b) the average execution time
for the runtime monitoring framework with RL scheduler using a workload
comprising instances from six applications. Until the black dotted line, five
out of six application instances are present in the system. After that, the sixth
application (temporal mitigation) is introduced.

execution time, as shown in Fig. 8(b). This decrease occurs752

because the new application has inherently shorter execution753

times. However, it is essential to note that a shorter execution754

time does not necessarily indicate that the RL scheduler has755

successfully generalized to the new application. As discussed756

in Section IV-E, the policy undergoes incremental offline757

training to adjust to a new application. The policy retains its758

performance for the initial application while being optimized759

for the new one. With the incrementally trained policy, the760

average execution time decreases by 1.47×761

Multiple Application Use Case Illustration: The multiple762

application begins running five out of six domain applications,763

like the IL example. Coherence during this time is low since764

these applications are represented during training, as shown765

in Fig. 9(a). Then, a new application not represented in the766

training replaces the original mix. The proposed framework767

successfully captures this change, as indicated by the abrupt768

increase in coherence after the dotted line. The execution time769

varies widely during the initial period, but it has a similar770

average value with lower variation after the new application771

is launched. This behavior shows that execution time is not772

a reliable indicator of the scheduler’s generalizability. Finally,773

Fig. 9(b) shows training the scheduler incrementally adapts it774

to the new application, enabling 1.48× lower execution time.775

Accuracy and Performance Summary: We conclude this776

section by summarizing the accuracy and performance benefits777

of the proposed framework with RL schedulers. Like the IL778

experiments, we conducted comprehensive simulations with779

varying application loads. For single-application examples, we780

assessed the monitoring framework across a total of 3685781

batches (each comprising M = 1024 tasks). The RL scheduler782

fails to generalize to 666 of these batches coming from the783

new application. In the case of multiple applications, we784

evaluated our monitoring framework for over 1168 batches,785

with 161 batches indicating a lack of generalization. Overall,786

we evaluated our monitoring framework for 4853 batches. As787

discussed previously, the RL scheduler demonstrates inherent788

generalization to five applications, resulting in fewer instances789

of nongeneralized cases than the IL scheduler.790

TABLE II
MONITORING FRAMEWORK OVERHEAD FOR IL SCHEDULER ON NVIDIA

JETSON XAVIER NX BOARD [16]

Table I summarizes the proposed monitoring framework’s 791

accuracy and performance benefits. It can determine whether 792

the scheduler generalizes to the new inputs or not with 88.75% 793

accuracy. Closing inspection reveals a 6.2% false negative 794

rate, i.e., the frequency of failing to detect a new application. 795

Similarly, it incorrectly flags the lack of generalization to a 796

new application (false positive) for 5.05% of the batches. The 797

values are lower than those obtained with the IL scheduler 798

since there is no ground truth label during the training and 799

monitoring of the RL scheduler. Hence, it only relies on the 800

reward signal, a weaker indication of correctness than the 801

ground truth. The accuracy can be improved by checking more 802

than one batch before flagging a lack of generalization at the 803

expense of more significant overhead. This optimization is one 804

of the potential future research directions. Finally, when the 805

proposed framework identifies a new application, incremental 806

training provides, on average, a 1.32× lower execution time. 807

Application to Other Schedulers: The proposed framework 808

can also be used with other scheduling algorithms besides 809

the IL and RL schedulers considered so far. For example, 810

Decima [7] is a graph neural network-based job scheduling 811

algorithm targeting data clusters for streaming applications. 812

The authors show that when the model is trained with low 813

throughput workloads, the model poorly generalizes to high 814

throughput workloads, leading to a 1.6× higher average 815

execution time. This example shows a great use case for our 816

monitoring framework. As it successfully detects the changes 817

in the applications, specifically an unseen level of throughput 818

in this case, it can trigger the system to take proper action, such 819

as incremental training. Indeed, when the incrementally trained 820

version performs similarly to a system trained with both high 821

and low throughput workloads, the proposed framework can 822

achieve 1.37× faster execution time. Therefore, our framework 823

is effective for a wide range of hardware platforms and models 824

that utilize gradient descent optimization. 825

D. Overhead Analysis 826

The proposed monitoring framework is not on the critical 827

path since it operates in the background. An overhead analysis 828

is still helpful since it helps determine how frequently the 829

monitoring can be triggered. As described in Section III-B, 830

this work considers domain-specific SoC, where applications 831

continuously process streaming inputs for extended durations 832

after launch. The proposed monitoring framework does not 833

need to run continuously. It can be triggered 1) when a new 834

application launches or 2) periodically while sleeping most of 835

the time. The overhead analysis in this section summarizes the 836

execution overhead as a function of the batch size (M). These 837

values determine the shortest possible monitoring period. 838

GOKSOY et al.: RUNTIME MONITORING OF ML-BASED SCHEDULING ALGORITHMS 11

TABLE III
MONITORING FRAMEWORK OVERHEAD FOR RL SCHEDULER ON NVIDIA

JETSON XAVIER NX BOARD [16]

Table II summarizes the overhead for monitoring the IL839

scheduler when running on the Nvidia Jetson Xavier NX840

board [16]. The most time-consuming step is the gradient841

calculation, varying from 7.84 to 50.24 ms as the batch size842

grows from 128 to 1024. The second largest contributor is843

running the reference scheduler, which takes 3.2–25.6 ms.844

We emphasize that different components of the monitoring845

framework can be pipelined. For example, the reference846

scheduler can start running for the next task after the loss847

calculation begins. Hence, the total execution time in Table II848

is a loose upper bound. Regardless, our measurements show849

that the entire monitoring process takes 83.74 ms, even for850

the largest batch size used in our experiments, highlighted851

in the table. A smaller batch size can be employed to speed852

up the monitoring process at the expense of accuracy. The853

last row (bold) highlights the setting in our experiments, while854

evaluations shown for all batch sizes are listed in Table II.855

This means the monitoring can be repeated in the background856

with this period if needed. However, in practice, we expect857

a more extended period, on the order of seconds, since the858

application composition in the target SoCs rarely changes.859

Table III summarizes the monitoring and detection overhead860

for RL schedulers as a function of the batch size (M). The loss861

and gradient calculations dominate the total execution time862

for RL schedulers. The loss takes longer than those for the863

IL scheduler since loss for IL is the mean squared error, but864

RL requires solving (2). As in the IL scheduler, the value865

estimate, loss, and gradient calculations can be pipelined. In866

the worst case, when all steps are performed sequentially,867

the total execution time varies from 32.42 to 117.53 ms as868

the batch size grows from 128 to 1024. The last row (bold)869

highlights the setting in our experiments. Like in the IL case,870

all batch sizes in the table lead to effective monitoring. Hence,871

the proposed framework can run as a real-time background872

task to monitor RL schedulers.873

As detailed in Section IV-B, coherence can be calculated874

using a running sum for Ez∼M [gz] and Ez∼M [gz ·gz] vectors.875

This approach ensures that the memory requirement does not876

scale with the batch size M, meaning the memory requirement877

remains constant, or O(1). Using onboard sensors, we also878

monitored power utilization and temperature changes on the879

Jetson Xavier NX. We observed that it consistently consumes880

less than 1 W of power. So, our monitoring framework requires881

a maximum of 83.74 mJ for the IL case and 117.53 mJ for882

the RL case. Due to this very low energy consumption, we883

observed only a 3 ◦C–4 ◦C increase in temperature. This884

analysis shows that our monitoring framework has a negligible885

impact compared to the application running on the target886

SoCs.887

VI. CONCLUSION 888

ML algorithms are increasingly used for runtime decision 889

making in SoC. For example, offline-trained deep neural 890

networks and DDT policies schedule tasks to PEs. Like all ML 891

models that critically depend on training data, these schedulers 892

can exhibit unpredictable behavior when the runtime inputs 893

deviate significantly from the training. Hence, monitoring their 894

robustness and protecting the system from adverse effects is 895

crucial. 896

This article introduces a novel runtime monitoring frame- 897

work for domain-specific SoCs. The proposed framework uses 898

the new input samples and policy gradient to compute a 899

coherence metric. Low coherence indicates agreement with the 900

trained policy and new inputs, while elevated coherence shows 901

that the scheduling decisions are unreliable. We also discuss 902

how the policies can be incrementally trained or turned off 903

until they become reliable. Extensive evaluations show that the 904

proposed framework can detect when the scheduler decisions 905

are unreliable with 88.75%–98.39% accuracy. Our experiments 906

also reveal that 1.1×–14× lower execution time is possible by 907

incremental retraining. 908

ACKNOWLEDGMENT 909

The U.S. Government is authorized to reproduce and dis- 910

tribute reprints for Governmental purposes, notwithstanding 911

any copyright notation thereon. The views and conclusion 912

contained herein are those of the authors and should not 913

be interpreted as necessarily representing the official policies 914

or endorsements, either expressed or implied, of Air Force 915

Research Laboratory (AFRL) and Defense Advanced Research 916

Projects Agency (DARPA) or the U.S. Government. Dr. Umit 917

Ogras has a financial interest in DASH Tech IC, which is 918

developing products related to the research described in this 919

article. This relationship has been reviewed and approved by 920

the University of Wisconsin–Madison based on its outside 921

activities policies. 922

REFERENCES 923

[1] J. L. Hennessy and D. A. Patterson, “A new golden age for computer 924

architecture,” Commun. ACM, vol. 62, no. 2, pp. 48–60, 2019. 925

[2] D. Green, “Heterogeneous integration at DARPA: Pathfinding and 926

progress in assembly approaches,” in Proc. 68th IEEE ECTC, 2018, 927

pp. 1–40. 928

[3] K. Moazzemi, B. Maity, S. Yi, A. M. Rahmani, and N. Dutt, “HESSLE- 929

FREE: Heterogeneous systems leveraging fuzzy control for runtime 930

resource management,” ACM Trans. Embedd. Comput. Syst. (TECS), 931

vol. 18, no. 5, pp. 1–19, 2019. 932

[4] J. Mack, S. Hassan, N. Kumbhare, M. C. Gonzalez, and A. Akoglu, 933

“CEDR: A compiler-integrated, extensible DSSoC runtime,” ACM Trans. 934

Embed. Comput. Syst., vol. 22, no. 2, pp. 1–34, 2022. 935

[5] J. Ullman, “NP-complete scheduling problems,” J. Comput. Syst. Sci., 936

vol. 10, no. 3, pp. 384–393, 1975. 937

[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide 938

to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman 939

& Co., 1979. 940

[7] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and 941

M. Alizadeh, “Learning scheduling algorithms for data processing 942

clusters,” in Proc. ACM Special Interest Group Data Commun., 2019, 943

pp. 270–288. 944

[8] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage- 945

ment with deep reinforcement learning,” in Proc. 15th ACM Workshop 946

Hot Topics Netw., 2016, pp. 50–56. 947

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

[9] Z. Tong, X. Deng, H. Chen, J. Mei, and H. Liu, “QL-HEFT: A novel948

machine learning scheduling scheme base on cloud computing environ-949

ment,” Neural Comput. Appl., vol. 32, pp. 5553–5570, May 2020.950

[10] A. Krishnakumar et al., “Runtime task scheduling using imitation951

learning for heterogeneous many-core systems,” IEEE Trans. CAD952

Integr. Circuits Syst., vol. 39, no. 11, pp. 4064–4077, Nov. 2020.953

[11] X. Wang, Z. Ning, S. Guo, and L. Wang, “Imitation learning enabled task954

scheduling for online vehicular edge computing,” IEEE Trans. Mobile955

Comput., vol. 21, no. 2, pp. 598–611, Feb. 2022.956

[12] A. L. Sartor, A. Krishnakumar, S. E. Arda, U. Y. Ogras, and957

R. Marculescu, “HiLITE: Hierarchical and lightweight imitation learning958

for power management of embedded SoCs,” IEEE Comput. Archit. Lett.,959

vol. 19, no. 1, pp. 63–67, Jun. 2020.960

[13] Y. Wu et al., “Large scale incremental learning,” in Proc. IEEE/CVF961

Conf. Comput. Vis. Pattern Recognit., 2019, pp. 374–382.962

[14] F. M. Castro, M. J. Marín-Jiménez, N. Guil, C. Schmid, and K. Alahari,963

“End-to-end incremental learning,” in Proc. Eur. Conf. Comput. Vis.964

(ECCV), 2018, pp. 233–248.965

[15] W. Liu, X. Wang, J. Owens, and Y. Li, “Energy-based out-of-distribution966

detection,” in Proc. 34th Conf. Neural Inf. Process. Syst., 2020, pp. 1–12.967

[16] “Jetson xavier NX developer kit.” Nvidia. Accessed: Mar. 10,968

2024. [Online]. Available: https://www.nvidia.com/en-us/autonomous-969

machines/embedded-systems/jetson-xavier-series/970

[17] R. Cordeiro, D. Gajaria, A. Limaye, T. Adegbija, N. Karimian, and971

F. Tehranipoor, “ECG-based authentication using timing-aware domain-972

specific architecture,” IEEE Trans. Comput.-Aided Design Integr.973

Circuits Syst., vol. 39, no. 11, pp. 3373–3384, Nov. 2020.974

[18] J. Fickenscher, F. Hannig, and J. Teich, “DSL-based acceleration of auto-975

motive environment perception and mapping algorithms for embedded976

CPUs, GPUs, and FPGAs,” in Proc. Int. Conf. Archit. Comput. Syst.,977

2019, pp. 71–86.978

[19] D. Parravicini, D. Conficconi, E. D. Sozzo, C. Pilato, and979

M. D. Santambrogio, “Cicero: A domain-specific architecture for effi-980

cient regular expression matching,” ACM Trans. Embed. Comput. Syst.,981

vol. 20, no. 5, pp. 1–24, 2021.982

[20] T. Wang et al., “Via: A novel vision-transformer accelerator based983

on FPGA,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,984

vol. 41, no. 11, pp. 4088–4099, Nov. 2022.985

[21] C. S. Pabla, “Completely fair scheduler,” Linux J., vol. 2009, no. 184,986

p. 4, 2009.987

[22] M.-A. Vasile, F. Pop, R.-I. Tutueanu, V. Cristea, and J. Kołodziej,988

“Resource-aware hybrid scheduling algorithm in heterogeneous dis-989

tributed computing,” Future Gener. Comput. Syst., vol. 51, pp. 61–71,990

Oct. 2015.991

[23] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee, “Scheduling992

precedence graphs in systems with interprocessor communication times,”993

SIAM J. Comput., vol. 18, no. 2, pp. 244–257, 1989.994

[24] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-995

complexity task scheduling for heterogeneous computing,” IEEE Trans.996

Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.997

[25] Y.-K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An998

effective technique for allocating task graphs to multiprocessors,”999

IEEE Trans. Parallel Distrib. Syst., vol. 7, no. 5, pp. 506–521,1000

May 1996.1001

[26] R. Sakellariou and H. Zhao, “A hybrid heuristic for DAG scheduling on1002

heterogeneous systems,” in Proc. Int. Parallel Distrib. Process. Symp.,1003

2004, p. 111.1004

[27] S. Baskiyar and R. Abdel-Kader, “Energy aware DAG scheduling1005

on heterogeneous systems,” Cluster Comput., vol. 13, pp. 373–383,1006

Dec. 2010.1007

[28] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for het-1008

erogeneous systems by an optimistic cost table,” IEEE Trans. Parallel1009

Distrib. Syst., vol. 25, no. 3, pp. 682–694, Mar. 2014.1010

[29] L. F. Bittencourt, R. Sakellariou, and E. R. Madeira, “DAG scheduling1011

using a lookahead variant of the heterogeneous earliest finish time1012

algorithm,” in Proc. IEEE Euromicro Conf. Parallel, Distrib. Netw.-1013

Based Process., 2010, pp. 27–34.1014

[30] L. Benini, D. Bertozzi, and M. Milano, “Resource management policy1015

handling multiple use-cases in MpSoC platforms using constraint pro-1016

gramming,” in Proc. 24th Int. Conf. Logic Program., 2008, pp. 470–484.1017

[31] H. Yang and S. Ha, “ILP based data parallel multi-task map-1018

ping/scheduling technique for MPSoC,” in Proc. Int. SoC Design Conf.,1019

2008, pp. I–134.1020

[32] F. Rossi, P. Van Beek, and T. Walsh, Handbook of Constraint1021

Programming. Amsterdam, The Netherlands: Elsevier, 2006.1022

[33] Z. Hu, J. Tu, and B. Li, “Spear: Optimized dependency-aware task1023

scheduling with deep reinforcement learning,” in Proc. IEEE 39th Int.1024

Conf. Distrib. Comput. Syst. (ICDCS), 2019, pp. 2037–2046.1025

[34] T. Basaklar, A. A. Goksoy, A. Krishnakumar, S. Gumussoy, and 1026

U. Y. Ogras, “DTRL: Decision tree-based multi-objective reinforcement 1027

learning for runtime task scheduling in domain-specific system-on- 1028

chips,” ACM Trans. Embed. Comput. Syst., vol. 22, no. 5, pp. 1–22, 1029

2023. 1030

[35] A. Mirhoseini et al., “Device placement optimization with reinforcement 1031

learning,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 2430–2439. 1032

[36] Y. Wen, Z. Wang, and M. F. O’Boyle, “Smart multi-task scheduling for 1033

OpenCL programs on CPU/GPU heterogeneous platforms,” in Proc. Int. 1034

Conf. High Perform. Comput., 2014, pp. 1–10. 1035

[37] A. Mallick, K. Hsieh, B. Arzani, and G. Joshi, “Matchmaker: Data drift 1036

mitigation in machine learning for large-scale systems,” in Proc. Mach. 1037

Learn. Syst., 2022, pp. 77–94. 1038

[38] S. Ackerman, E. Farchi, O. Raz, M. Zalmanovici, and P. Dube, 1039

“Detection of data drift and outliers affecting machine learning model 1040

performance over time,” 2020, arXiv:2012.09258. 1041

[39] L. Yang et al., “CADE: Detecting and explaining concept drift sam- 1042

ples for security applications,” in Proc. 30th USENIX Security Symp. 1043

(USENIX Security), 2021, pp. 2327–2344. 1044

[40] D. M. Dos Reis, P. Flach, S. Matwin, and G. Batista, “Fast unsupervised 1045

online drift detection using incremental Kolmogorov-Smirnov test,” in 1046

Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Min., 2016, 1047

pp. 1545–1554. 1048

[41] A. Haque, L. Khan, and M. Baron, “Sand: Semi-supervised adaptive 1049

novel class detection and classification over data stream,” in Proc. AAAI 1050

Conf. Artif. Intell., 2016, pp. 1652–1658. 1051

[42] V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural 1052

networks with mixed integer programming,” in Proc. Int. Conf. Learn. 1053

Represent., 2019, pp. 1–21. 1054

[43] Z. Shi, E. Jeannot, and J. J. Dongarra, “Robust task scheduling in non- 1055

deterministic heterogeneous computing systems,” in Proc. IEEE Int. 1056

Conf. Cluster Comput, 2006, pp. 1–10. 1057

[44] S. Chatterjee and P. Zielinski, “On the generalization mystery in deep 1058

learning,” 2022, arXiv:2203.10036. 1059

[45] D. Kalimeris et al., “SGD on neural networks learns functions of 1060

increasing complexity,” in Proc. 33rd Conf. Neural Inf. Process. Syst., 1061

2019, pp. 1–11. 1062

[46] S. Fort, P. K. Nowak, S. Jastrzebski, and S. Narayanan, “Stiffness: 1063

A new perspective on generalization in neural networks,” 2019, 1064

arXiv:1901.09491. 1065

[47] S. Chatterjee, “Coherent gradients: An approach to understanding 1066

Generalization in gradient descent-based optimization,” in Proc. Int. 1067

Conf. Learn. Represent., 2020, pp. 1–13. 1068

[48] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from observa- 1069

tion,” 2018, arXiv:1805.01954. 1070

[49] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning 1071

and structured prediction to no-regret online learning,” in Proc. 14th Int. 1072

Conf. Artif. Intell. Statist., 2011, pp. 627–635. 1073

[50] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, 1074

“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347. 1075

[51] “Cross entropy loss.” Accessed: Mar. 21, 2024. [Online]. Available: 1076

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss. 1077

html 1078

[52] K. Bhatti, C. Belleudy, and M. Auguin, “Power management in real 1079

time embedded systems through online and adaptive interplay of DPM 1080

and DVFS policies,” in Proc. IEEE/IFIP Int. Conf. Embed. Ubiquitous 1081

Comput., 2010, pp. 184–191. 1082

[53] R. G. Kim et al., “Imitation learning for dynamic VFI control in large- 1083

scale manycore systems,” IEEE Trans. Very Large Scale Integr. (VLSI) 1084

Syst., vol. 25, no. 9, pp. 2458–2471, Sep. 2017. 1085

[54] F. M. M. u. Islam and M. Lin, “Hybrid DVFS scheduling for real-time 1086

systems based on reinforcement learning,” IEEE Syst. J., vol. 11, no. 2, 1087

pp. 931–940, Jun. 2017. 1088

[55] F. M. M. u. Islam, M. Lin, L. T. Yang, and K.-K. R. Choo, “Task aware 1089

hybrid DVFS for multi-core real-time systems using machine learning,” 1090

Inf. Sci., vols. 433–434, pp. 315–332, Apr. 2018. 1091

[56] S. E. Arda et al., “DS3: A system-level domain-specific system-on- 1092

chip simulation framework,” IEEE Trans. Comput., vol. 69, no. 8, 1093

pp. 1248–1262, Aug. 2020. 1094

[57] “DS3 simulator.” Accessed: Mar. 21, 2024. [Online]. Available: https: 1095

//github.com/segemena/DS3.git 1096

[58] “ODROID-XU3.” Hardkernel. 2014. Mar. 10, 2024. [Online]. Available: 1097

https://wiki.odroid.com/old_product/odroid-xu3/odroid-xu3 1098

[59] “Zynq ZCU102 evaluation kit.” Xilinx. Mar. 10, 2024. [Online]. 1099

Available: https://www.xilinx.com/products/boards-and-kits/ek-u1- 1100

zcu102-g.html 1101

[60] G. Brockman et al. “OpenAI gym,” 2016. [Online]. Available: https:// 1102

github.com/openai/gym 1103

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

