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Abstract—The Computation-in Non-volatile Memory (NVM-
CiM) approach addresses the growing computational demands
and the memory-wall problem faced by traditional processor-
centric architectures. CiM capitalizes on the parallel nature of
memory arrays enabling effective computation through multi-row
memristor reading and sensing. In this context, the conventional
design of memory decoders needs to be accordingly modified for
efficient multi-row activation and parallel data processing.

This paper presents the design and optimization of address
decoders for NVM-CiM system architectures, employing a cross-
layer co-optimization approach that integrates circuit and archi-
tecture design with application requirements. Our methodology
starts at the circuit level, examining various decoder designs,
including cascaded, hierarchical, latched, and hybrid models. An
in-depth application-level characterization follows, utilizing an
extended NVM-CiM-capable gem5 simulator to assess the impact
of these decoders on the mapping of CiM-friendly applications
and the resulting system performance, particularly in facilitating
rapid and efficient activation of multi-row memory configura-
tions. This holistic analysis allows us to identify the bottlenecks
and requirements from the application side and adjust the design
of the decoder accordingly.

Our analysis reveals that Hybrid Decoders significantly de-
crease latency and power consumption compared to other de-
coder designs within NVM-CiM systems. This highlights the
crucial role of the decoder’s row selection flexibility, reducing
additional system-level data movement even at the expense of its
performance, can substantially improve the overall efficiency of
NVM-CiM systems.

Index Terms—CiM, Decoder, Latch, gem5, Binary Tree Data
Structure

I. INTRODUCTION

In today’s data-driven computational landscape, the
memory-centric computation paradigm is emerging as a pro-
mising solution to tackle the memory-wall problem posed
by traditional von Neumann computing architectures. Con-
ventionally, computation has always been processor-centric:
data is retrieved from the memory, computed by the processor,
and then results are stored back into the memory. However,
this conventional concept of computation has become less
efficient with the rising demands of modern-day computing,
particularly Artificial Intelligence (AI) applications [1].

The concept of memory-centric computation takes shape
in various forms, considering different methodologies for
integrating computation with memory. A distinct variation is

Process-in-Memory (PiM) as illustrated by UPMEM, a realis-
tic fabricated architecture that embeds lightweight processors
directly within dynamic random access memory (DRAM)
chips to facilitate computation near memory [2]. On the
other hand, in the Computation-in-Memory (CiM) approach,
computation is performed within the memory cores, using
the parallel capabilities of memory arrays through multi-
row memory activation and sensing techniques, hence, further
reducing unnecessary data movement [3]. CiM can utilize a
range of memory technologies including charge-based static
and dynamic RAM (SRAM and DRAM) [4], [5]. However, the
use of memristive technologies as memory devices, with their
non-volatile resistive switching properties makes it feasible
to perform analog computation and eliminates static power
required for data retention, reducing energy consumption [6]
[7].

Computation-in Non-volatile Memory (NVM-CiM) para-
digm not only promises to increase processing efficiency but
also demands a re-evaluation of existing memory peripheral
component designs like decoder to support multi-row activa-
tion and parallel data handling. Despite the critical role of
decoders in the CiM circuitry, architecture, and system, there
remains a significant gap in the literature concerning their
optimized design and the comprehensive evaluation of their
impact on system performance.

The main focus of this paper is the development of address
decoder design within the NVM-CiM framework, facilitated
by a comprehensive hardware-software co-design method-
ology. We investigate various decoder designs for multi-
row access, including widely reported Cascaded and Latched
Decoders, and introduce new hierarchical group activation
decoders assessing their efficiency and impact on system
performance. A significant contribution of our work is the
introduction of a latch-based Hybrid Decoder, designed to
provide flexible support for both pre-defined pattern multi-
row access and the adaptability afforded by latched outputs,
as needed in many applications.

To effectively incorporate these decoders into NVM-CiM
systems, we have developed a cross-layer circuit-to-application
NVM-CiM framework on the gem5 simulator [8]–[10]. This
framework enables a comprehensive evaluation of the circuit
design to application performance. It is within this framework
that we analyze the efficiency of various decoding schemes
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and their impact on overall system performance by considering
the implication on CiM application mapping, pinpointing bot-
tlenecks, and application-specific requirements. We simulate
six real-world workloads within this NVM-CiM framework, a
crucial step for understanding the real-world demands placed
on decoders and facilitating the integration of application-
driven insights into the circuit design process.

The insights from this analysis are crucial in fine-tuning
the design of CiM decoders, especially Hybrid Decoder, to
ensure optimal system performance. Highlighting the benefits
of our approach, the proposed Hybrid Decoder performs better
than widely reported Cascaded Decoders, reducing runtime
by over 35%. Through meticulous co-optimization, our goal
is to ensure that decoder functionality is perfectly aligned
with the operational needs and efficiency requirements of the
intended applications, showcasing the potential for substantial
improvements in NVM-CiM system performance.

II. BACKGROUND & RELATED WORK

As mentioned in the introduction, the CiM architecture ef-
fectively integrates processing capabilities within the memory
units [11]. This section explores the foundational technologies
and techniques and an overview of CiM architecture that
supports this progress.

A. NVM technologies

The core of CiM combines a densely packed non-volatile
memory (NVM) crossbar array with CMOS peripheral cir-
cuitry. An example of the core CiM system is shown in
Fig. 1(a). There are various NVM technologies, and each is
governed by distinct physical phenomena [7] [12]. The pro-
mising NVM technologies are spin transfer torque magnetic
RAM (STT-MRAM), redox-based RAM (ReRAM), and phase
change memory (PCM). These NVM technologies primarily
differ in their writing or switching mechanisms. However,
from a reading perspective, all NVMs share a common feature:
they can exhibit at least two distinct resistive states—low and
high resistance states (LRS and HRS), respectively. Therefore,
resistance sensing is the reading process in these devices. Fig.
1(b) presents the typical current-voltage (IV) characteristics
of ReRAM, highlighting the HRS and LRS states. Moreover,
due to non-volatility and analog CiM utilization, NVM-CiM
has received a significant amount of interest from the frontier
industries in recent years [13]–[15] and show their superiority
against charge-based counterparts [4], [5].

B. NVM-CiM techniques

In the NVM-CiM concept, operations can be distinguished
by whether they employ stateful or non-stateful logic. Stateful
logic, like the Memristor-Aided Logic (MAGIC) method,
executes operations within the memory array using the non-
volatile resistive states and changing the resistive state of
the device to store computational results. Further, non-stateful
logic, utilizes resistive devices mainly as input operands, with
the peripheral devices performing computations. A promising

non-stateful example is the Scouting logic [16]. This method
involves concurrently applying an input voltage across multi-
ple rows of resistive devices, corresponding to the number of
operands in a Boolean operation. By comparing the aggregate
current output from all activated devices against a reference
current, one can determine the outcome of the logic function.
Notably, Scouting logic relies purely on sense operations,
preserving the input data. Fig. 1(c) illustrates the principle
for realizing various bitwise logic operations (OR, AND,
and XOR) by Scouting logic. Fig. 1(a) shows the typical
example of a Scouting-based 2-bit Boolean operation with
a modified Pre-charge Sense Amplifier (SA) as comparator
[17]. Here, input voltages are applied to the specific number
of rows corresponding to the number of operands in a Boolean
operation. To determine the result of this Boolean operation,
the combined resistance from the activated rows is compared
with a reference resistance using a comparator as shown in
Fig. 1(d).

In the pre-charge phase, the output nodes (OUT and OUT-
BAR) are charged to VDD, and in the evaluation phase, both
the output nodes are discharged with different rates (RC time
constant) which are determined based on the resistive values
of the data and reference sides.

In addition, more common arithmetic tasks used in NVM-
based hardware acceleration such as vector-matrix multipli-
cation are also non-stateful [3]. Hence, by employing non-
stateful logic, NVM-CiM architectures can perform a wide
range of computational functions without compromising the
endurance of memory devices, positioning it as a versatile
solution for advanced computing applications.

C. CiM Architecture

Numerous research papers have been published in the fields
of CiM, examining various technologies such as SRAM,
DRAM, and NVM as basic infrastructure [18]–[21]. Each
of them examines existing issues and offers appropriate so-
lutions. In our case, a narrower focus on NVM-based CiM
architectures [22]–[25] reveals a strong emphasis on certain
applications, such as neural network acceleration tasks or
solutions to enable simple Boolean operations. However, this
specialization limits our ability to implement a diverse range of
applications. In this situation, even the decoder design can be
customized for that particular application, eliminating the need
to consider general use-case decoders. The second problem
with these architectures was the necessity for an architecture
that could be correctly modeled at the circuit level, allowing
us to provide precise parameters (such as power, latency, etc.)
for our high-level simulations. As a result, we developed a
straightforward architecture to address these problems and
model the impacts of the decoder with respect to applications.

D. Related Work on Multi-Row Selection Decoder

The design of the decoder plays a crucial role in leveraging
the full potential of CiM. It is worth noting that the type of
Boolean operations or number of operands can change in run-
time, i.e., based on the application’s needs and the particular
executed NVM-CiM operation. So, the decoders are required
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Fig. 1. (a) CiM core architecture with multi-row access decoder. The figure also highlights the scouting-logic operation by activating multiple rows, here
WL0 and WL1, allowing to compute the parallel resistance of M1,1 and M2,1 for the execution of 2-bit Boolean operations like OR, AND, or XOR directly
at the SA. This illustrates how the decoder facilitates memory operations by activating multiple rows for parallel processing. (b) Typical current-voltage
(I-V) characteristics of the ReRAM, showing LRS and HRS. (c) Scouting Logic Principle: Reference resistance selection for basic 2-bit logic operations. (d)
Pre-charge Sense Amplifier (SA) circuit with reference resistance.

to have the flexibility to select a different combination of
rows. After the row selection procedure, the subsequent data
must be sensed and interpreted correctly based on the type
of computation. Despite its fundamental role, there is limited
detailed research specifically on designing the decoders to
adapt to the NVM-CiM framework. A frequent trend, from
the literature [11], [26] and [27], revolves around parallel
cascading of multiple decoders, typically augmented with OR
gates. The design presented in [26] employs dual decoders to
facilitate the concurrent selection of two rows. This is achieved
by linking corresponding output lines to the input of an OR
gate, enabling the simultaneous reading of two memory rows.
While this design satisfies the functional requirements of 2-
bit Boolean computation, it comes at significant costs: a two-
fold increase in input lines, area, and power consumption.
Additionally, it can select only two rows simultaneously, and
it lacks the flexibility to adapt to more number of operands,
as required in many CiM-friendly applications.

Another popular multi-row selection decoder design style
is Latched Decoders like Texas Instruments’ SN74HCS259-
Q1, which serves as an 8-bit addressable latch designed
for a variety of storage applications in digital systems [28].
This design integrates a latch at every output line of the
traditional decoder. The latch enable pin is connected to the
corresponding output line of the decoder while all the data
pins of the latches are interconnected, enabling simultaneous
activation or deactivation of all output lines. To activate three
output lines, the corresponding three input combinations must
be transmitted sequentially over three successive clock cycles.
Hence it requires κ cycles to select κ output lines—selecting
each output line in one cycle. Despite the decoder’s unparal-
leled flexibility in the selection of the rows in the crossbar, it
has drawbacks in performance metrics, especially latency as a
standalone decoder component.

III. CROSS-LAYER CIRCUIT-TO-APPLICATION CIM
ANALYSIS FRAMEWORK

The foundational step in evaluating the effect of differ-
ent decoder designs involves developing a robust NVM-
CiM architecture framework capable of supporting various
applications and accurately modeling the circuit-level backend,
as mentioned in the previous section II-C. For this purpose,
we utilize gem5, a well-established event-driven architecture
simulator, enabling us to conduct our full-system simulations.
Additionally, we employ other tools such as SPICE, NVSim
[29], and Synopsis to extract circuit-level parameters (such as
power, area, and latency) for our gem5 simulations. In the
subsequent paragraphs, we elaborate on our implementation
of the CiM architecture within gem5.

Fig. 2(a) illustrates a conventional main memory interface,
consisting of a memory controller and memory storage. Given
our focus on NVM technologies rather than conventional
DRAM technologies, we adopt the naming conventions uti-
lized in NVSim for memory storage organization. The memory
storage is partitioned into multiple banks, each featuring sev-
eral MATs (Memory Array Tile) connected to the internal data
bus to facilitate data exchange with the memory controller.
Additionally, each MAT is composed of a row decoder, column
multiplexer, and multiple side-by-side sub-arrays. A sub-array
includes a crossbar of NVM cells, a local SA for analog-to-
digital conversion, and write circuitry. We assume 64 columns
for the sub-array crossbar, aligning with the width of the
internal data bus.

To enable CiM, we introduced modifications to the conven-
tional main memory interface, as depicted in Fig. 2(b).

• CiM Controller: A dedicated CiM controller has been
added to oversee CiM operations and manage signal
assignments effectively.

• Additional logic has been integrated into the memory
controller. This logic is responsible for filtering CiM
commands and routing them appropriately to the CiM
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controller for processing, which will be discussed more
in section III-B.

• Modification of MAT: The last MAT in each bank has
been specifically modified to execute CiM operations.
These CiM-capable MATs feature a multi-row activation
decoder, a buffer to store intermediate results at the
output of SA, and a CiM logic, incorporating a 64-bit
register with left/right rotate operation, bitwise NOT, and
bytewise comparison by 0x00 capabilities.

• By implementing a single CiM logic at the output of
each CiM-capable MAT, we can achieve bank-level par-
allelism. Alternatively, copying the CiM logic into the
SA circuitry allows for sub-array-level (or word-level)
parallelism.

A. CiM Operations

After analyzing various workloads, we determined that data-
intensive tasks, which can be parallelized through simple
Boolean-based single instruction multiple data (SIMD) opera-
tions such as AND, OR, and XOR, represent the most suitable
applications for harnessing CiM capabilities. However, relying
solely on Boolean operations is insufficient for effectively
leveraging CiM. The continuous offloading of data to CiM
units and retrieving results back to the central processing unit
(CPU) prove to be more time- and energy-consuming than
conducting these operations internally within the CPU. Nev-
ertheless, certain workloads, some falling under the category
of Embarrassingly Parallel [30], allow for the majority of their
execution to be offloaded to CiM units. Subsequently, the CPU
can utilize the prepared results to carry out the final post-
processing tasks.

To execute the primary portion of these workloads within
the CiM, in addition to basic Boolean operation support,
a COPY operation with the capability of data rotation and
bytewise comparison by 0x00 is required to implement basic

Listing 1. An example of bitwise NOR operation on two vectors in our CiM
API

1cimModule.OR({ 1, 3});
2cimModule.NOT_COND(2, true, false); // bitwiseNOT

if statements. Bytewise comparison by 0x00 involves per-
forming an OR operation on all 8 bits in a byte. Based on
the result, the corresponding output byte will be either 0xff
or 0x00. Bytewise comparison with 0x00 is almost equivalent
to the PCMPEQ command in the MMX extension for Intel
architectures [31].

B. Interaction with CiM from Application-layer

While the CiM controller is inactive, the memory controller
can execute regular read/write operations in the CiM region,
similar to other memory regions. However, when the CiM
controller is active, the memory controller must wait for the
CiM controller to complete its tasks before accessing the
corresponding regions. To facilitate communication from the
application layer to the CiM controller, we have considered a
fixed physical shadow address, i.e., a virtual address without
a specific physical location. Commands issued from the app-
lication layer are written to this address, and upon detection
by the memory controller, the content is directly forwarded to
the CiM controller.

It is essential to note that we considered this memory map-
ping as non-cacheable and non-shareable. Non-cacheability is
necessary as we directly write data into the main memory.
Non-sharability is crucial to prevent a process from acquiring
this hardware resource while another process has not released
it, ensuring data consistency. To enforce these requirements,
an operating system driver is provided. Additionally, an appli-
cation programming interface (API) allows programmers to
interact with this hardware resource. Listing 1 presents a
simple code snippet of this API for bitwise NOR operation
on two vectors, while Fig. 3 illustrates the actual operations
within the CiM units.

In Listing 1, it is assumed that certain content is already
stored in row #1 and row #3 within the CiM units (shown
as idle state in Fig. 3(0)), the OR operation is executed
simultaneously inside the sub-arrays, by activating the two
lines (row #1 and #3 in Fig. 3(1)). Subsequently, the NOT
operation is performed on the intermediate results using the
CiM logic (Fig. 3(2) and Fig. 3(3)), and finally, the outcomes
are written back to row #2 (Fig. 3(4)). Since bitwise NOT
and bytewise comparison are combined in a single operation
(NOT_COND in Listing 1), two argument flags are utilized to
distinguish between them: one for bitwise NOT and another
for bytewise comparison with 0x00. Moreover, NOT_COND
can accept an optional source row argument to specify the row
to operate on, instead of operating on the output of buffers in
CiM units (see lines 15 and 17 in Listing 3).

To demonstrate the implementation of an if statement in
the CiM API, we can consider the ternary operator in C++
(since it closely resembles what executed inside the CiM
units.), as illustrated in Listing 2. The difference between
sequential code for the CPU and code for CiM is that, in the
case of the CPU, when a conditional statement is not satisfied
during an iteration, the if statement is simply skipped.
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Listing 2. An example of a ternary operator in C++ language
1for(size_t i=0; i< MAX_ROW_SIZE; i++)
2a[i] = (b[i]==0x12) ? c[i] : d[i];

However, in the case of CiM, there is no mechanism to skip
commands; every command is executed on all elements. To
avoid changing the content of some elements when a condition
is not met, it is necessary to copy their content back in some
way. This is achieved using condition masks generated by
NOT_COND in combination with other CiM commands to
ensure correct functionality. To translate this sequential C++
code into CiM commands, we assume that each vector has a
maximum size equal to the CiM row size. In our simulations,
we consider 16 banks, each equipped with one CiM-capable
MAT. Each CiM-capable MAT includes 64 sub-arrays with
a column size of 8 bytes. Therefore, in this example, the
MAX_ROW_SIZE would be 16× 64× 8 = 8KiB. Of course,
larger vectors can be divided into aligned sizes.

Listing 3 presents the equivalent code using the CiM API. In
this scenario, the programmer copies each vector to a dedicated
row. Consequently, operations on each byte are executed in
parallel from the programmer’s perspective, eliminating the
need for the for loop. If our application includes other types
of loops, they will be unrolled during the CiM code generation,
considering the absence of loop control commands in our CiM
Controller. Similar to someone using SIMD instructions in
assembly language to convert a sequential code into a parallel
version, the responsibility for this conversion lies with the
programmer in the CiM context as well.

Each CiM application operates with a fixed number of
commands and is designed to function independently of CPU
interaction during CiM operations. Consequently, issuing CiM
commands individually from the application level, loading
files into the cache, and subsequently offloading them to the
CiM region, is found to be inefficient, proves inefficient,
and goes against the CiM concept. Instead, a more efficient
approach involves storing all these commands in the main
memory, triggering the CiM controller to read and execute
these commands, and performing intra-main memory data
loading if necessary. To achieve this, we must integrate internal
direct memory access (DMA) and share the internal memory
bus between the DMA and the memory controller, and the
details are outside the scope of this paper.

C. Application Implementation for Different Decoders

In this section, we discuss our approach to implementing
the same application across different decoders, detailing the

Listing 3. Converting sequential ternary operators to parallel CiM commands
1// row0 <- b...
2cimModule.copy_to_cim(0, (void *)&b[0]);
3// row1 <- 0x12...
4cimModule.copy_to_cim(1, (void *)&CONSTx12[0]);
5// row2 <- c...
6cimModule.copy_to_cim(2, (void *)&c[0]);
7// row3 <- d...
8cimModule.copy_to_cim(3, (void *)&d[0]);
9// row4 <- a...
10cimModule.copy_to_cim(4, (void *)&a[0]);
11

12// (b[i]==0x12)
13cimModule.XOR({0,1})
14// row5 <- 0xff if result is 0, otherwise 0x00
15cimModule.NOT_COND(5, false, true); // Condition
16// row6 <- ˜row5
17cimModule.NOT_COND(6, 5, true, false); //Bitwise
18// row7 <- row2 & row5
19cimModule.AND({2,5})
20cimModule.COPY(7)
21// row8 <- row3 & row6
22cimModule.AND({3,6})
23cimModule.COPY(8)
24// a <- row7 | row8
25cimModule.OR({7,8})
26cimModule.COPY(4)

crucial steps and considerations involved.
Considering the limitations of the decoder, allocating rows

for different vectors becomes extremely challenging during
application implementation. Implementing an application for
a latch-based decoder is relatively straightforward, as the
programmer can easily assign a vector to any desired row,
allowing all rows to be freely activated in combination with
others. However, this simplicity is not reflected in tree-based
decoders. For instance, in a tree-based decoder, row #1 can
only be activated simultaneously with row #0. To address this
challenge, we tried to automate the row allocation process. In
other words, the programmer can initially write the application
for a latch-based decoder, and later, using our CiM API, it will
be converted to the desired decoder.

Register Allocation is a well-known problem in compiler
optimization. While high-level language programmers can use
numerous variables in their applications, the limited number of
physical CPU registers necessitates efficient register allocation
by compilers. This problem can be mapped to the graph
coloring problem, a known NP-complete problem. In our case,
each row can be considered analogous to a physical CPU
register. However, the decoder limitations introduce additional
constraints to this graph-coloring problem since multiple rows
need to be activated together. In other words, each node of
the register allocation graph becomes a sub-graph in our case,
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leading to an exponential runtime to solve.
To address this challenge, we utilized a heuristic method that

scans through the intermediate codes generated by the CiM
API for the latch-based implementation of a particular appli-
cation. It identifies all unique combinations of rows and counts
their occurrences in the intermediate code. Subsequently, it
maps these rows to CiM rows while considering the decoder
limitations. This approach ensures that high-demand rows are
efficiently allocated to the CiM region, maximizing perfor-
mance and minimizing unnecessary data relocation. Hence,
we are not optimizing application implementation rather we
are optimizing row allocation.

As discussed in Sec. III-B, data-dependent control flow is
not present in our CiM applications at the application layer.
In other words, there are no ‘if/else’ statements to selectively
execute CiM commands based on individual vector or ele-
ment values. Instead, CPU-version code must be manually
converted to CiM-version code, and mask flags generated by
the NOT_COND command are used to achieve the desired
functionality, similar to the PCMPEQ instruction in Intel MMX.
Since all CiM commands are constant expressions, they can
be evaluated and optimized at compile time. However, as
conventional compilers are not capable of optimizing these
type of commands, a heuristic method is employed to optimize
row allocation based on the target decoder.

In our heuristic method, the focus is solely on multi-row
commands (AND, OR, and XOR), as each decoder can easily
activate any single row, with no consideration given to the
operation type, as they are uniformly treated by the decoders.
Consequently, a unique collection of sets is obtained based
on the input row arguments (e.g., {1, 2}, {0, 5}, {7, 8, 9, 2}).
In the context of sets, the order of elements does not matter,
and the number of occurrences of each set is considered in
an unrolled manner. By ‘unrolled manner,’ it is meant that all
loops in our applications are unrolled by simply executing
them. The goal is to map these unique sets as closely as
possible to the unique sets of the target decoder, giving priority
to the sets that occur most frequently. For example, the set
{2, 7, 9, 12} might be mapped to the set {0, 1, 2, 3}. All the
row labels 2, 7, 9, and 12 in the application are then renamed
to 0, 1, 2, and 3, respectively, as if they were chosen by the
programmer in the first place.

IV. CIM DECODER DESIGNS

In this section, we propose three novel decoder designs,
each with its distinct architectural or algorithmic underpinning
and the core objective of enabling multi-row selection. They
are namely, in this paper, κ-Grouped Hierarchical Decoder
which is based on the traditional decoder, Tree Decoders which
are inspired by binary tree data structure, and Hybrid Decoder.
Importantly, Tree and κ-Grouped Decoders form hierarchical
group pattern activation decoders as they are engineered to
activate κ = 2i output lines simultaneously, where i varies
from 0 to log2(WL) (WL being the number of output lines of
the decoder or number of word-line in the memory crossbar).
We then compare these designs against the cascaded and
latch-based decoder from the literature. Each design proposed

TABLE I
TRUTH TABLE FOR (n+ 1) : 2n κ-GROUPED HIERARCHICAL DECODER

FOR n = 2

Input Output

A B C WL3 WL2 WL1 WL0

1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0κ=1

1 1 1 1 0 0 0

0 1 0 0 0 1 1
κ=2 0 1 1 1 1 0 0

κ=4 0 0 1 1 1 1 1

0 0 0 0 0 0 0

offers unique advantages and when implemented, promises to
overcome the noted shortcomings of its predecessors and also
adapt to CiM requirements.

A. κ-Grouped Hierarchical Decoder

The κ-Grouped Hierarchical Decoder presents a nuanced
enhancement to the traditional decoder paradigm. This design
integrates an extra input line, a minor change that gives rise to
an increase in decoding versatility by twice. Consequently, the
architecture of this decoder transitions from the usual n :2n to
(n+1) :2n configuration, where n is the number of input lines
to the decoder. To illustrate, consider a (2+ 1) to 22 decoder.
The logic behind its operation is detailed in the Table I. From
the table,

• to individually activate WLs, set the most significant bit
(MSB) of input lines to logic 1. The next 2 input bits then
determine which one of the 4 output lines gets activated.

• to activate two consecutive (2-Grouped) WLs, set the
top two MSB bits to ”01”. The remaining last input bit
is then used to decode 2 out of 4 consecutive output lines
simultaneously.

• to activate the four WLs, set the top three MSB bits to
”001”.

This decoder design is extended to higher order up to (7+1):27

configuration in this work.

B. Tree Decoders

The hierarchical nature of binary tree data structure provides
a template that can be flexibly adapted for decoding purposes,
making it an ideal choice for multi-row access. The implemen-
tation method may vary depending on the specific application
requisites. Within the scope of this paper, our emphasis is
on the activation of 2i output lines, proposing two distinct
possible algorithmic approaches to achieve this.

1) Tree Decoder-1: In essence, a binary tree comprises
nodes where each node, excluding the leaf nodes, bifurcates
into two distinct child nodes: the left and the right child. In
the context of the Tree Decoder-1 (refer Fig. 4),

• Node Representation: Each node represents a specific set
of output lines. The root node represents all output lines,
whereas the leaf nodes stand for individual output lines.

• Propagation Logic: The propagation mechanism in the
Tree Decoder-1 takes hints from binary tree traversal.
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κ2

κ2
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k-Group DecoderS0 = 1
S1 = 0
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Leaf Node
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    Y0

Y1

Y3

Y2

En

Node

Fig. 4. Binary tree structure of Tree Decoder-1 showing the activation
propagation logic for WL2− 3.

For activating a specific set of outputs, specific nodes
are activated. Activation of a parent node will inherently
propagate the signal to its child nodes, mirroring the
nature of binary tree traversal.

For instance, a 2 to 4 decoder with a 3-layer (or depth)
binary tree structure is shown in Fig. 4 and its corresponding
truth table is shown in Table II:

• Full Activation: Activate the root node (κ4=1), by setting
the signals S0 and S1 to logic 0 and 1 respectively. This
will inherently activate all underlying nodes. Thus, if the
inputs are A =0 and B =0, then the Y 0 line carries a
logic 1, this is inherently propagated through the entire
tree, resulting in all output lines (WL) having logic 1.

• Partial Activation: For targeted activation, specific
branches or depths of the tree must be activated. For
example, to activate the last two consecutive output lines
(WL2 and WL3), activate the layer containing two nodes
(κ2=1) by setting the signals S0 and S1 to logic 1
and 0 respectively. Now, the logic value of Y 2 will be
propagated to the desired output lines. This mechanism
benefits from the inherent hierarchical structure of binary
trees, allowing for efficient and selective propagation.
This example is clearly illustrated with the red color
highlights in Fig. 4.

• Individual Activation: For individual WL activation, set
both signals S0 and S1 to logic 0. This action selects
the leaf nodes layer (as κ1 will be set to logic 1). With
these settings, the decoder operates in a traditional 2:4
configuration, activating a single output line based on the
values of the two input signals, A and B.

In summary, the depth of the tree offers the granularity of
the activation. A deeper tree enables more specific output line
targeting, whereas the breadth (κ) at any given depth provides
the range of outputs that can be concurrently activated.

2) Tree Decoder-2: In this tree decoder, we have 2n input
lines where the first set of n bits are referred to as the
Both-branch Selection vector and the second set of n bits
as the Side-branch Selection vector. The desired output line
(WL) is activated using the Side-branch Selection vector when

TABLE II
TRUTH TABLE FOR n+ ⌈log2(n+ 1)⌉ : 2n TREE DECODER-1 FOR n = 2.

Input Output

S1 S0 A B WL3 WL2 WL1 WL0

0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0κ=1

0 0 1 1 1 0 0 0

0 1 0 0 0 0 1 1
κ=2 0 1 1 0 1 1 0 0

κ=4 1 0 0 0 1 1 1 1

En=0 x x x x 0 0 0 0

B[3]=1
S[3]=x

B[2]=0
S[2]=0

B[1]=1
S[1]=x

B[0]=0
S[0]=1

WL1
WL2
WL3
WL4
WL5
WL6
WL7
WL8
WL9
WL10
WL11
WL12
WL13
WL14
WL15

WL0

B[3]=0
S[3]=0

B[2]=0
S[2]=0

B[1]=0
S[1]=0

B[0]=0
S[0]=1

WL1
WL2
WL3
WL4
WL5
WL6
WL7
WL8
WL9
WL10
WL11
WL12
WL13
WL14
WL15

WL0

Fig. 5. Two different examples for input configuration in Tree Decoder-2,
where B is Both-branch Selection vector and S is Side-branch Selection
vector.

the Both-branch Selection vector is zero (functioning as a
traditional decoder). Whenever any of the bits in the Both-
branch Selection vector are set to logic 1, the corresponding
bits (with the same indexes) in the Side-branch Selection
vector will be ignored, and both branches of each node in
the corresponding layer of the tree hierarchy will be activated.
Likewise, whenever any of the bits in the Both-branch Se-
lection vector are set to logic 0, the corresponding bits in
the Side-branch Selection vector (based on their values) will
activate the corresponding left or right branch of each node.

For a better demonstration, Fig. 5 shows two different
examples. For 16 output lines, we have 8 input bits (4 bits
for the Both-branch Selection vector and 4 bits for the Side-
branch Selection vector). In Fig. 5, on the left, all the bits in
the Both-branch Selection vector are set to logic 0, and the
value of the Side-branch Selection vector (0001) activates
output row #1. On the right, rows #1, #3, #9, and #11 are
activated by setting the values of the Both-branch Selection
vector to 1010 and the Side-branch Selection vector to x0x1
(x indicates don’t care).

In general, by having 2n input signals, we can activate
3n different combinations of WLs. Table III demonstrates
the truth table for a 2n = 4 Tree Decoder-2. Furthermore,
Fig. 6 comparison study shows the circuit diagram of a Tree
Decoder-2 and how it can be combined in a hierarchical fash-
ion to scale. Moreover, multiple instances of Tree Decoder-2
can be combined with a regular decoder to scale.

C. Hybrid Decoder

The κ-Grouped and Tree decoders mentioned above follow
a hierarchical group pattern for output line activation. While
being innovative, these approaches do not always meet the
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TABLE III
TRUTH TABLE FOR 2n : 2n TREE DECODER-2 (n = 2), WHERE B IS

BOTH-BRANCH SELECTION VECTOR AND S IS SIDE-BRANCH SELECTION
VECTOR.

Input Output

B1 B0 S1 S0 WL3 WL2 WL1 WL0

0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0κ=1

0 0 1 1 1 0 0 0

0 1 0 x 0 0 1 1
0 1 1 x 1 1 0 0
1 0 x 0 0 1 0 1κ=2

1 0 x 1 1 0 1 0

κ=4 1 1 x x 1 1 1 1

En=0 x x x x 0 0 0 0

BOTH & SIDE bits

To En

Sm
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To En

Fig. 6. Circuit diagram of a Tree Decoder-2 with 16 WL (left), and the
combination of a regular small decoder with multiple instances of Tree
Decoder-2 (right). (BOTH=Both-branch Selection vector, SIDE=Side-
branch Selection vector)

dynamic needs of various applications. It often requires addi-
tional COPY operations to activate non-predefined hierarchical
output lines at the system level, creating a significant bottle-
neck in system performance due to the high latency and energy
consumption associated with write operations in NVMs. So
making the decoder more flexible by eliminating the COPY
operation and additional data mapping, even at the expense
of its performance, could significantly benefit overall system
performance in terms of speed and energy efficiency.

To this end, we introduce a latch-based hybrid design that
maximizes flexibility by allowing the selection of specific
combinations of inputs, while still trying to make it efficient.
By minimizing the total number of cycles needed for decoding
across all cases, merging the flexibility of latch-based designs
with the efficiency of combinational designs. Unlike conven-
tional latch-based decoders that require κ cycles to select κ
out of WL output lines—selecting each output line in one
cycle—the Hybrid Decoder selects κ1 outputs in the first cycle,
κ2 outputs in the second cycle, and so on, until all κ outputs
are activated, where

∑m
i=1 κi = κ. The aim is to minimize m,

the total number of cycles necessary to activate all required
decoder outputs/rows in the Hybrid Decoder.

This design is achieved by adapting the κ-Grouped decoder
to integrate the most common output line combinations as
determined by a thorough analysis of application behaviors
and by adding latch functionality for individual line selec-
tion. Thus Hybrid Decoder provides customized, application-
specific activation patterns. Its dual-mode functionality ensures

adaptability to adjust the changing computational demands,
allowing for any combination of output lines to be activated.

The development of this hybrid design was made possible
through our proposed cross-layer CiM framework. This frame-
work is essential for bridging the gap between application-
level requirements and circuit-level design constraints.

1) Design and Functionality of the Hybrid Decoder: The
design process for the Hybrid Decoder begins with a detailed
analysis to identify the most frequently utilized multi-row
output line combinations across a variety of applications. This
step is crucial for making informed decisions about the specific
patterns that need to be readily activatable by the decoder.

For illustrative purposes, consider a 4-output line decoder
scenario. Analysis of application requirements might identify
the four most popular output line combinations as {WL0,
WL1}, {WL2, WL3}, {WL1, WL2}, and {WL0, WL2,
WL3}. Given these combinations, a total of 8 distinct ac-
tivation scenarios emerge, necessitating the use of 3 input
lines for comprehensive coverage. The accompanying Table
IV provides a truth table for the Hybrid Decoder, illustrating
its ability to activate both single output lines and pre-defined
patterns with example configurations. This table serves as a
practical reference for understanding the Hybrid Decoder’s
operation and its application in enabling efficient and flexible
CiM computations. So with a single clock cycle, we can
activate the desired combination if it’s part of a design
like activating {WL1, WL2} together. In the case of the
activation of output combinations like {WL3, WL1, WL0},
the combination for activation is not readily available. In this
case, we can make use of the latched feature in design with
sequential input signals {A, B, C} = {0, 1, 0} followed by {1,
1, 1} in two clock cycles can trigger the desired output, with
the latched state persisting until a reset as shown in Table IV.
Hence, for the activation of uncommon combinations, we can
also have latch functionality to the decoder, giving complete
flexibility in activating any combination. The Hybrid Decoder
combines the high-efficiency multi-row activation capabilities
of pattern decoders with the flexibility of latch-based decoders.

2) Implementation and Coverage: In this work, we have
designed 16 and 32 output line Hybrid Decoder with 4 and 5
input lines respectively to achieve a (n+1) : 2n configuration,
in general. In the 16 output line decoders, the first 8 output
combinations are designated to activate a single output line,
with the subsequent 8 output combinations designed for pop-
ular pattern activation. These selected patterns, determined by
application analysis, covers up-to 96% of application-required
output line combinations within a single clock cycle. Similarly,
the 32-output line decoder achieves up-to 97% coverage in
just one cycle, with the flexibility to activate any remaining
combinations within an additional 2-3 cycles, thanks to the
latch functionality.

D. Design of Sense Amplifier with Decoders
For Boolean-based computations, the reference side of the

pre-charge SA needs to be adjusted to account for the number
of inputs and the type of the Boolean operation. For this aim,
we reuse the reference trimming concept [32]. Reference trim-
ming has been originally introduced to mitigate the effect of
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TABLE IV
TRUTH TABLE FOR HYBRID DECODER WITH 4 OUTPUT LINES WITH

EXAMPLE 4 PRE-DEFINE PATTERN IN ADDITION TO SINGLE OUTPUT LINE
ACTIVATION.

Input Output

Clock A B C WL3 WL2 WL1 WL0

↑ 1 0 0 0 0 0 1
↑ 1 0 1 0 0 1 0
↑ 1 1 0 0 1 0 0

Single
output line
activation ↑ 1 1 1 1 0 0 0

Pre-defined
pattern
activation

↑ 0 1 0 0 0 1 1
↑ 0 1 1 1 1 0 0
↑ 0 0 1 0 1 1 0
↑ 0 0 0 1 1 0 1

Reset=0 ↑ x x x 0 0 0 0
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Fig. 7. Schematic representation of the pre-charge SA adjustments concerning
the Tree Decoder-1 structure for Scouting logic. This showcases the multi-
plexed reference resistance modulation based on Boolean OR (NOR) operation
and operand count.

the process and thermal variation in the normal resistive NVM
read operation [33]. The structure of the trimming circuitry
consists of a series connections of multiple resistances that
can be individually bypassed. This trimming circuitry can be
re-purposed to implement Scouting logic. Hence the periphery
circuitry is added with a trim-controlling mechanism to select
the resistance to be bypassed. This trim-controlling mechanism
requires specific signals and, consequently dedicated circuitry
that is co-optimized with the CiM controller to generate them.

As shown in Fig. 7, the structure of Tree Decoder-1 can
inherently generate the required signals (κ1, κ2, κ4, ..κn) for
controlling the trimming circuitry. Therefore, enabling us to
modulate the balancing resistances based on the Boolean
operation and the number of input operands. In contrast, for the
Hybrid Decoder, Tree Decoder-2, and κ-Grouped Hierarchical
Decoder, an additional multi-bit signal circuitry is introduced
to manage reference side control. This circuitry, designed
with minimal multiplexing overhead, is co-optimized with the
CiM controller for precise trim adjustment. This is done by
embedding the number of operands directly into the command
bits from the application layer, using them as enable inputs for
the trim circuitry. Each proposed decoder design introduces
distinct challenges to the multiplexing framework for adjusting
the sensing reference of the SA. This highlights the necessity
for an integrated design approach combining both the decoder
and SA.

V. SIMULATION SETUP AND RESULTS

Following the exploration of various decoder design styles,
this section outlines the simulation setup and presents the
corresponding results. Initially, each decoder is analyzed at
the circuit level, followed by a detailed evaluation within
an NVM-CiM environment to demonstrate their performance
under practical operational conditions. This approach allows
us to present a comprehensive analysis that highlights how
these decoders interact with and impact the dynamics of an
NVM-CiM system.

A. Simulation Setup

The implementation of the decoder designs was carried
out using Verilog Hardware Description Language (HDL),
and these designs were synthesized using the Synopsys De-
sign Compiler, adhering to the specifications of the Global
Foundry 22FDX library. The synthesized results provided the
performance metrics for incorporating the decoders into a CiM
system, facilitating an in-depth analysis of their impact on the
system’s overall performance in running the application. To
calculate the relative area of the decoders in the CiM system,
we developed NVSim++, a modified version of NVSim [29],
to approximate the latency, energy, and area of the NVM-CiM
functionality. To realize the CiM functionality for NVSim++,
in the memory hierarchy of bank → MAT → sub-array, we as-
sumed that only a few sub-arrays are CiM-capable. Therefore,
the modifications are at the sub-array level, focusing on the
decoder and the sense amplifier. The synthesized results for
the CiM-capable decoders, including area, energy, and latency,
were incorporated into NVSim. For the sense amplifier which
accounts for the number of the activated rows and the intended
logical operation, we conducted electrical-level simulations
using the SPICE tool to gather the necessary information
for updating NVSim. The results of the relative area that
each decoder occupies within a sub-array of size 64 × 64,
as obtained from NVSim++, are shown in Table VI.

For this paper, we implement six CiM-friendly applications
in our framework. We define CiM-friendly applications as
prevalent applications that primarily rely on numerous Boolean
operations for computation, and they typically can be paral-
lelized for execution on vector and/or array processors. While
utilizing CiM for some of these applications might not seem
ideal, the intention was to demonstrate CiM capabilities. These
applications are as follows:

1) BitIndexing [34] (BIT): Bitmap-formatted database
queries are being ORed with each other, and then the
results are being ANDed with another query. At the end,
the number of activated bits is counted and reported as
the final result.

2) BLASTN algorithm [35] (BLS): It is a well-known
algorithm for searching short DNA sequences inside large
DNA protein sequences.

3) Morphological Image Processing [36] (MIP): A variety
of procedures can be applied to images during image
processing. For this study, we implemented Dilation and
Erosion algorithms with binary-coded input images with
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TABLE V
MAIN ASSUMPTIONS FOR THE SYSTEM SETUP IN GEM5

NVM models STT-MRAM / ReRAM / PCM

CPU type / ISA OoO / x86-64

Compiler & Optimization Flag g++ -O3
Clock Frequency 1 GHz

# of Load/Store Queue Entries 32 / 32
# of Reorder Buffer Entries 128
# of Instruction Queue Entries 64
# of Physical Int/FP/Vec Registers 128 / 128 / 128

L1 Inst/Data Cache Size 32 KiB
L1 Tag/Data/Response Latency 2 / 2 / 2 cycles
L2 Cache Size 256 KiB
L2 Tag/Data/Response Latency 20 / 20 / 20 cycles

System Bus Latency 10 ns
Average Memory Controller Latency 15 ns

Read Latency 1 / 1 / 1 cycle
Write Latency 4 / 45 / 40 cycles

various filter sizes 3x3 and 6x6 (MIP-3 and MIP-6
respectively).

4) Marching Squares [37] (MSQ): It is an algorithm used
for extracting contour lines from 2D images. For this
paper, we implement this algorithm for binary-coded
input images.

5) Shifted Hamming Distance [38] (SHD): It is a famous
algorithm used for calculating edit distances in short DNA
sequences. It accepts a minimum-distance number and
checks two sequences with each other to see if they
satisfy this minimum-distance condition or if the number
of insertions, deletions, or mutations is larger than the
minimum-distance number. Here, we set minimum dis-
tance at 3 and 6, giving SHD-3 and SHD-6 respectively.

6) BitWeaving [39] (BWV): A technique presented to scan
database queries in memory and return the results that
satisfy the input conditions (e.g., a ≤ x < b).

Our comprehensive simulation setup, including key assump-
tions, is detailed in Table V. To focus on the decoder impacts,
we limited the number of CiM rows to 16 and 32, while it
was possible to use more rows. Due to this decision, in this
work, we present circuit-level decoder results for 32-bit output
lines, despite having designed and simulated decoders capable
of supporting up to 128-bit output lines. While we investigated
different non-volatile memory (NVM) technologies, we only
report results for STT-MRAM here. Because other technolo-
gies have significant write delay, their results are proportional
to STT-MRAM technology, hence we have excluded them
from this research. To compute the off-chip power and latency
of the memory, we used NVSim, built originally on top of
CACTI [40] with NVM extensions. Moreover, to accurately
model multirow activation property, we performed circuit-
level (SPICE) simulations for NVM components. An NVM
crossbar is simulated with pre-charge SA as shown in Fig. 7.
These circuit simulations were executed in Cadence Virtuoso
with the Global Foundry 22FDX library. All simulations were
carried out at a standard VDD of 0.8 V at the temperature
of 27°C, ensuring a conducive and stable environment for
realistic results.

B. Circuit-level Results

A comprehensive simulation was conducted to evaluate key
performance metrics such as area, power, latency, and the
power-delay product (PDP) across nine distinctive decoder
designs, as detailed in Table VI. Along with decoders men-
tioned until now, this also included an assessment of a 4-
Cascaded Decoder capable of selecting up to four output
lines simultaneously and a Serial-input-parallel-output register
(SIPO), which operates as a decoder by inputting a serialized
binary representation of the desired active output line.

Among the designs, the Hybrid and Sequential decoders
excel in flexibility, but they are not the most efficient in terms
of area, power, or latency. This inefficiency, for instance, in
the Latched Decoder, arises from the additional latching layer
added to the traditional decoder circuitry. In the Hybrid De-
coder, inefficiency stems from merging complex combinational
logic needed for activating predefined output combinations
with latching mechanisms for dynamic selection.

Tree Decoder-2 offers the best area efficiency. It achieves
this by using more input lines, which simplifies the overall
logic required to implement the decoding functionality, hence
reducing the logic area. It slightly outperforms the 2-Cascaded
Decoder. Yet, it is important to note that, specifically for
dual-row active applications, 2-Cascaded Decoder offers a
more flexible selection. It also exhibits the lowest circuit-
level latency among all tested designs, a result of having
fewer stages from input to output ports, closely followed by
Tree Decoder-2. However, cascaded decoder’s design strategy
shows scalability concerns with power-delay product (PDP)
rise unfavorably with increasing size. The efficiency of Tree
Decoder-2 in varying group selection while maintaining a
minimal area footprint renders it an excellent choice when
considering both area and latency.

Despite its larger logic area compared to Tree-Decoder-
2 and 2-Cascaded Decoder, Tree Decoder-1 and κ-Grouped
Decoder show a significant reduction in power consumption
with a reduced number of input lines. Unlike other decoder
schemes, specifically, the Tree Decoder-1 approach ensures
that only the necessary paths are activated to reach the desired
outputs, thereby reducing power consumption. However, Tree
Decoder-1 and κ-Grouped Decoder are less versatile in output
line selection compared to Tree Decoder-2, as observed in Fig.
4 and Fig. 5.

In scenarios where the number of input lines is a concern,
the κ-Grouped Hierarchical Decoder emerges as an optimal
choice. It requires only one additional input line compared
to traditional decoders, yet maintains performance metrics
that are substantially lower or on par with other decoders.
Consequently, this decoder serves as the basis for the design
of the Hybrid Decoder, as detailed in Section IV-C, due to its
balanced performance attributes.

C. System-level Results

After establishing our simulation setup and analyzing stan-
dalone decoder performance, we next assess these decoders
within the NVM-CiM framework using the gem5 simulator.
This framework offers a detailed model that evaluates the
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Fig. 8. Energy Consumption of different applications using CiM with the capacity of 32 rows

Fig. 9. Normalized Runtime Latency of different applications using CiM with the capacity of 32 rows

TABLE VI
CIRCUIT-LEVEL COMPARATIVE SIMULATION OUTCOMES FOR 9 DISTINCT

DECODER DESIGN STYLES OF SIZE 32 OUTPUT LINES. NOTE: κ IS THE
NUMBER OF OUTPUT LINES TO BE ACTIVATED

Decoder
Design

Area
(µm2)

% of CiM
Area

Power
(mW )

Latency
(ps)

Input
Lines

PDP
(fJ)

Traditional 77 4.89 0.63 19 5 12
2-Cascaded [26] 92 5.40 5.60 20 2× 5 112
4-Cascaded [11] 167 7.12 8.51 32 4× 5 273
Latched [28] 198 7.59 2.3 54× κ 5 125× κ
SIPO 100 5.64 2.2 48× κ 1 106× κ

κ-Grouped Hier. 142 6.66 0.54 41 5 + 1 23
Tree Decoder-1 122 6.22 0.45 45 5 + 2 21
Tree Decoder-2 60 4.20 0.53 29 2× 5 16
Hybrid 367 9.05 2.45 80 5 + 1 190

impact of decoders’ energy and latency on system-wide per-
formance.

We conducted simulations on six applications, as detailed in
Section V-A, measuring the runtime latency and energy con-
sumption of the CiM system across different decoder designs.
The number of rows within the CiM region was limited to
16 and 32. This limitation ensures that the application data
does not fully utilize the CiM region, making the differences
among decoders more noticeable. The results of CiM system
simulations for energy consumption and normalized runtime
latency are respectively shown in Figs. 8 and 9. For instance, in
the BIT application, where all data fit within the CiM region,
the energy consumption and normalized runtime remain almost
the same, except for the normalized runtime of the 2-Cascaded
Decoder. The 2-Cascaded Decoder performs poorly because
most operations involve more than two operands. Breaking
down operations into two operands and storing intermediate
results in the CiM region requires 4x runtime and slightly
more energy. In the case of κ-Grouped Decoder and Tree
Decoder-1, their capability of activating more than 2 rows in
the form of hierarchical group combinations allows them to
outperform the 2-Cascaded Decoder. This advantage is espe-
cially noticeable in the BWV, MIP-3, and MIP-6 applications.
However, MSQ, SHD-3, and SHD-6 applications need more
complex combinations of rows that exceed the range of sup-
ported hierarchical combinations, necessitating frequent data
relocation and leading to performance degradation. Whereas

the Tree Decoder-2, benefiting from a broader range of row
selection options comparing to κ-Grouped Decoder and Tree
Decoder-1 shows improved performance.

Notably, the standout performance at the system-level comes
from the inclusion of the Latched or Hybrid Decoders. The
Latched Decoder’s flexibility in selecting any row combination
eliminates the need for data relocation, enhancing system
efficiency. This advantage is significant, highlighting that
data relocation is more energy-intensive and time-consuming
for the system than selecting multiple rows of the decoder
over several clock cycles, despite the suboptimal circuit-level
performance of the decoder. Similarly, Hybrid Decoder excels
in the system-level context while demonstrating less favorable
performance metrics at the circuit level, as shown in Table VI,
due to its sophisticated combinational logic and latching mech-
anisms. As explained in detail in the Section IV-C, this decoder
is specifically engineered to activate the most frequently
required row combinations in a single clock cycle, covering
80-95% of use cases, varying for each tested application as de-
termined from the analysis of application requirements. Hence
reducing number of clock cycles overall to activation further
improving on Latched Decoder. For remaining patterns, acti-
vation is efficiently managed through the additional latching
functionality. Hence, this decoder outperforms other designs in
the system-level performance by effectively minimizing data
movement and reducing the clock cycles.Finally, despite the
Hybrid’s enhanced performance over the Latched Decoder, its
impact on overall system efficiency—in terms of energy and
latency reductions—remains limited, as decoder operations
account for only a small portion of the total execution time of
CiM operations. Nevertheless, with advancements in memory
technology, the impact of these improvements is expected to
become noticeable, leading to further enhancements in system
performance.

In conclusion, integrating the Latch and Hybrid Decoder
within our NVM-CiM framework results in a 35% average
reduction in runtime and a 3% decrease in energy consumption
compared to popularly reported 2-Cascaded Decoder. These
findings emphasize the importance of evaluating decoder de-
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signs within their operational context, rather than in isolation,
providing a deeper understanding of their potential impact on
NVM-CiM system-wide performance.

VI. CONCLUSION

In this work, we have explored the design and optimization
of address decoders within NVM-CiM systems for multi-row
activation of the memory array and parallel data processing.
We have evaluated various decoder designs, including cas-
caded decoder styles, hierarchical group activation decoders,
latched decoders, and hybrid decoders, within our NVM-CiM
framework on the gem5 simulator. This framework has enabled
the implementation of six applications at the architectural
level. This phase has been vital for capturing the practical
demands on decoders and integrating those insights into our
circuit design strategy. A notable finding from this exploration
has been the significant improvement in system performance
by enhancing decoder flexibility—which has reduced the re-
liance on data remapping operations, despite the increase in
operation time or energy consumption of the decoder.

Our co-optimization strategy has been designed to ensure
that decoder functionality is finely tuned to meet the specific
demands and efficiency criteria of various applications. This
has been demonstrated by the superior performance of the
Latched and Hybrid Decoders compared to other decoders
within the NVM-CiM framework. The Latched Decoder, with
its ability to directly select any output line combinations
in multiple cycles, has reduced latency and power usage
by eliminating unnecessary data movement. Meanwhile, the
Hybrid Decoder has further improved on this by offering
quicker row activation for a diverse array of line combinations,
thereby boosting system performance. Consequently, this de-
coder stands out not only for its adaptability to application-
specific requirements but also for its ability to effectively
manage system resources, thus explaining its enhanced perfor-
mance in system-level evaluations compared to its circuit-level
drawbacks. Although the impact of these decoder operations
on the overall energy and latency of CiM systems has been
relatively modest compared to Latched Decoder, the potential
of the Hybrid Decoder design for future advancements in CiM
technology is undeniable.
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