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Abstract—Modern real-time systems often involve numer-1

ous computational tasks characterized by intricate dependency2

relationships. Within these systems, data propagate through3

cause–effect chains from one task to another, making it impera-4

tive to minimize end-to-end latency to ensure system safety and5

reliability. In this article, we introduce innovative nonpreemptive6

scheduling techniques designed to reduce the worst-case end-to-7

end latency and/or time disparity for task sets modeled with8

directed acyclic graphs (DAGs). This is challenging because9

of the noncontinuous and nonconvex characteristics of the10

objective functions, hindering the direct application of standard11

optimization frameworks. Customized optimization frameworks12

aiming at achieving optimal solutions may suffer from scalability13

issues, while general heuristic algorithms often lack theoretical14

performance guarantees. To address this challenge, we incor-15

porate the “1-opt” concept from the optimization literature16

(Essentially, 1-opt means that the quality of a solution cannot17

be improved if only one single variable can be changed) into18

the design of our algorithm. We propose a novel optimization19

algorithm that effectively balances the tradeoff between theo-20

retical guarantees and algorithm scalability. By demonstrating21

its theoretical performance guarantees, we establish that the22

algorithm produces 1-opt solutions while maintaining polynomial23

run-time complexity. Through extensive large-scale experiments,24

we demonstrate that our algorithm can effectively reduce the25

latency metrics by 20% to 40%, compared to state-of-the-art26

methods.27

Index Terms—End-to-end latency, optimization, real-time28

system, scheduling, time-triggered scheduling (TTS).29

I. INTRODUCTION30

ENSURING timeliness, short end-to-end latency, and small31

data communication time disparity is a paramount consid-32

eration across various domains, including control engineering,33

body electronics, and automotive systems [1]. For example, the34
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RTSS2021 Industry Challenge [2] underscores the importance 35

of bounding worst-case end-to-end latency and time disparity 36

in nonpreemptive autonomous driving systems. Nonpreemptive 37

systems are becoming more popular due to the wide adoption 38

of single-instruction-multidata (SIMD) computing architec- 39

tures such as GPU. Since preemption with GPU usually 40

has a much higher overhead than CPU devices, embedded 41

GPU devices often only provide limited, if any, support for 42

preemption [3]. 43

Scheduling and optimizing systems with respect to data 44

age, reaction time, and time disparity (DARTD)1 pose sig- 45

nificant challenges [1], [4], [5], [6], [7], [8] due to their 46

nonconvex and noncontinuous characteristics. These attributes 47

hinder the application of standard mathematical programming 48

frameworks, such as integer linear programming (ILP) and 49

convex optimization. However, naively employing highly gen- 50

eral optimization frameworks like meta-heuristics often lacks 51

theoretical performance guarantees. Conversely, developing 52

customized frameworks targeted at yielding optimal solu- 53

tions [7] encounters scalability issues, which is particularly 54

important in modern computation systems, where hundreds of 55

computation tasks may exist [9], [10]. To tackle these chal- 56

lenges, we propose a computationally efficient optimization 57

algorithm with some theoretical performance guarantees. 58

In this article, we leverage the 1-opt concept, drawn from 59

the optimization literature [11], [12] as a foundation in the 60

development of our optimization algorithm. A solution vector 61

x ∈ R
N for an optimization problem is called 1-opt if changing 62

any single component xi ∈ x does not result in an improvement 63

beyond the current solution x. We refer to algorithms that 64

yield 1-opt solutions as 1-opt algorithms. In contrast to heuris- 65

tic algorithms, 1-opt algorithms provide stronger theoretical 66

performance guarantees. Moreover, they often demonstrate 67

superior scalability when compared to algorithms aimed at 68

finding optimal solutions. 69

Nevertheless, constructing 1-opt algorithms for optimizing 70

nonconvex and noncontinuous metrics, such as DARTD, is 71

very challenging. Naively employing brute-force algorithms 72

can result in exponential complexity in worst-case scenarios. 73

To address this, we propose a novel algorithm that employs 74

1Given a cause–effect chain, data age measures the maximum duration
for which a sensor event influences the computational system, while reaction
time measures the maximum latency for the system to first react to a sensor
event. Additionally, time disparity quantifies the maximum difference in the
generation times of multiple source data from which one task reads input.
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a technique to partition the solution space into multiple75

convex subspaces, allowing for the efficient utilization of76

linear programming (LP) to minimize DARTD within each77

subspace. Subsequently, an iterative subroutine efficiently78

traverses among the subspaces, ensuring that the output is79

1-opt. Furthermore, we prove that the solution of each LP80

is local optimal in nonpreemptive single-core systems. In81

comparison with simple scheduling heuristics, such as list82

scheduling [13], scheduling with LP can explore a much larger83

solution space, leading to enhanced performance. Moreover,84

the polynomial run-time complexity of solving LP enhances85

algorithm scalability compared to optimal algorithms that86

exhibit exponential run-time complexities in the worst case.87

Finally, to further improve the efficiency of LP, we propose88

an algorithm capable of efficiently performing nonpreemptive89

schedulability analysis.90

Contributions: Our contributions in this article are as91

follows.92

1) We employ the 1-opt concept in the development of93

schedule optimization algorithms. To the best of our94

knowledge, this is the first work to utilize the 1-opt95

concept in real-time system scheduling problems, and it96

achieves superior performance compared to state-of-the-97

art methods.98

2) We propose a novel optimization framework designed to99

minimize worst-case DARTD, which is proven to yield 1-100

opt solutions with only polynomial run-time complexity.101

3) To the best of our knowledge, this is the first work that102

considers optimizing time disparity with time-triggered103

scheduling (TTS).104

4) Large-scale experiments demonstrate that 1-opt methods105

achieve 20% to 40% latency reductions and enhanced106

scalability compared to state-of-the-art techniques.107

II. RELATED WORK108

As an important indicator of system safety, end-to-end109

latency has been thoroughly studied. Numerous analyses have110

delved into cause–effect chains or task sets structured with111

directed acyclic graphs (DAGs) dependency [1], [4], [5], [7],112

[8], [14], [15]. These analytical approaches address diverse113

scenarios, including different scheduling algorithms (e.g.,114

fixed-priority scheduling and earliest deadline first scheduling)115

and communication protocols (e.g., implicit communication116

and logical execution time (LET)). Moreover, some studies117

explore temporal variations across various contexts [16], [17].118

Beyond the analysis of end-to-end latency, a considerable body119

of work focuses on scheduling and the schedulability of DAG120

task sets [18], [19], [20], [21]. These comprehensive analyses121

build the foundation for the optimization works performed in122

this article.123

General optimization techniques in real-time systems can124

be broadly categorized into two categories: 1) heuris-125

tic algorithms with general applicability but lacking126

solution quality guarantees [10], [22] and 2) optimal algo-127

rithms built with sophisticated assumptions and problem128

modeling [7], [23], [24]. However, the latter may encounter129

scalability issues when facing large-scale optimization130

problems and the performance may also degrade seriously. 131

Considering the challenge of finding the “perfect” algorithms 132

(optimal and fast) for many real-world problems, algorithm 133

designers often face a tradeoff between solution quality and 134

run-time complexity. 135

There are many works that optimize the end-to-end latency 136

with different types of variables. Within the LET proto- 137

col, many works consider optimizing the time to read/write 138

data, where both optimal [25], [26] and heuristic [27], [28] 139

algorithms have been proposed. Some other works consider 140

implicit communication protocol, primarily concentrating on 141

optimizing task schedules [7]. Besides, there are also works 142

that improve different metrics related to end-to-end latency by 143

performing priority assignments [29], [30]. 144

This article differs from existing literature in proposing 145

to use a new concept, 1-opt, to guide the algorithm design 146

process. We also designed a novel optimization algorithm 147

which is proved to find 1-opt solutions and demonstrated to 148

achieve significantly better performance than the state-of-the- 149

art methods. 150

III. SYSTEM MODEL AND PROBLEM DESCRIPTION 151

In this article, bold fonts are used to represent vectors or sets, 152

while light characters denote scalars or individual elements. 153

The double bars notation ‖‖ denotes norm-2. During iterations, 154

the kth iteration is denoted by a superscript, such as x(k). 155

A. System Model 156

We consider a multirate DAG model G = (τ , E), in which 157

each task τi ∈ τ is represented as a node, and a directed edge 158

Ek ∈ E from τi to τj denotes that τj reads input from τi. The 159

total number of tasks in τ is denoted as n. Each task releases 160

jobs (i.e., instances of the task) periodically with a nominal 161

period. A task τi is characterized by a tuple {Ti, Ci, Di}, which 162

denotes the period, worst-case execution time (WCET), and 163

the relative deadline, respectively. We assume Di ≤ Ti. The 164

kth released job of τi is denoted as Ji,k and it is released at 165

the time k · Ti. The DAG G is not necessarily fully connected. 166

Without loss of generality, we assume all the tasks are released 167

simultaneously at time 0. However, if there is an offset when 168

all the tasks are initially released, our optimization algorithm 169

can also be applied by modifying the schedulability analysis 170

algorithms and optimization constraints accordingly. 171

The hyper-period (i.e., the least common multiple of periods 172

of all tasks in G) is denoted as H. Within a hyper-period, 173

each job Ji,k starts execution at time si,k nonpreemptively 174

and finishes at fi,k = si,k + Ci. Such a nonpreemptive policy 175

eliminates preemption overhead, which could be large in GPU 176

computation. The total number of jobs within a hyper-period 177

is denoted as N. Potential generalizations into preemptive 178

systems are discussed in Section VIII-B. 179

In a DAG G, tasks with chained reading/writing depen- 180

dency formulate a cause–effect chain C = {τp0 → τp1 → 181

· · · → τpk}, which represents a data communication path. 182

The implicit communication protocol [31] is utilized in data 183

communication where each job Ji,k reads data at its start time 184

si,k, and writes data at fi,k = si,k + Ci even if Ji,k may finish 185
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earlier than its WCET. Multiple cause–effect chains may share186

tasks, and the set of cause–effect chains is denoted as C.187

In scenarios where a single task reads data from the outputs188

of multiple tasks, we refer to the tasks providing data as189

the source tasks, and the task that reads these outputs as190

the sink task. The source tasks and the sink task collectively191

formulate a “merge” M (For example, see Example 1). The192

set containing all merges to be optimized is denoted as M.193

The DAG task set is processed by a multiprocessor system.194

We assume that each job has a known processor assign-195

ment before performing the schedule optimization, and we196

do not consider processor migration during execution. For197

presentation simplicity, we assume using a homogeneous mul-198

tiprocessor system. However, the heterogeneous computation199

can be handled easily by modifying the resource-bound con-200

straint correspondingly after obtaining processor assignments.201

In experiments, the processor is assigned following the First-202

Come-First-Serve heuristic, same as Verucchi et al. [7] for a203

fair comparison. The proposed optimization framework does204

not optimize processor assignments.205

B. General Schedule Optimization Problem Formulation206

We consider the schedule optimization problem of time-207

triggered systems, focusing on reducing the worst-case208

end-to-end latency and/or time disparity. The optimization209

variables for our scheduling problem are called a schedule.210

Definition 1 (Schedule): Given a DAG G = (τ , E), a211

schedule s ∈ R
N is a vector of the start time of all jobs of all212

tasks in τ within a hyper-period H.213

A general schedule optimization problem consists of an214

objective function and a set of schedulability constraints215

Minimize
s

F(s) (1)216

Subject to:217

∀i ∈ {0, . . . , n − 1} ∀k ∈ {0, . . . , H/Ti − 1}218

k · Ti ≤ si,k ≤ k · Ti + Di − Ci (1a)219

ResourceBound(s) = 0. (1b)220

Constraint (1a) guarantees every job starts and finishes221

within its schedulable range. The resource bound (1b) specifies222

that no computation resources are overloaded (e.g., one CPU223

core executes more than one job simultaneously). The specific224

form of (1b) will be introduced later in Section III-E. A225

schedule s is feasible (or equivalently, schedulable) if it226

satisfies (1a) and (1b). Given a schedule s, the finish time fi,k of227

each job Ji,k in nonpreemptive systems is implicitly decided:228

fi,k = si,k + Ci.229

C. Example Problem—End-to-End Latency Optimization230

Each cause–effect chain C could trigger multiple job chains231

within a hyper-period. The worst-case data age (reaction time)232

of a cause–effect chain C is the length of its longest immediate233

backward (forward) job chain [5], [6]. These definitions are234

briefly reviewed below:235

Definition 2 (Job Chain [5], [6]): Given a cause–effect236

chain C = {τp0 → τp1 → · · · → τpk}, a job chain CJ is a237

sequence of jobs {Jp0,q0 → Jp1,q1 → · · · → Jpk,qk}, where238

Fig. 1. Example DAG.

Fig. 2. Longest immediate forward and backward job chains for cause–effect
chain C = {τ0 → τ2}.

Jpi,qi is the qth
i job of τpi , and the data produced by Jpi,qi is 239

read by Jpi+1,qi+1 . 240

Definition 3 (Length of a Job Chain): The length of a job 241

chain CJ = {Jp0,q0 → Jp1,q1 → · · · → Jpk,qk} is the time 242

interval from the start time of Jp0,q0 till the finish time of 243

Jpk,qk . It is denoted as L(CJ) = fpk,qk − sp0,q0 . 244

Definition 4 (Immediate Backward (Forward) Job 245

Chain [5], [6]): A job chain CJ = {Jp0,q0 → Jp1,q1 → 246

· · · → Jpk,qk} is the immediate backward (forward) chain 247

under schedule s if (2) (3) is satisfied 248

∀i ∈ {1, . . . , k}, fpi−1,qi−1 ≤ spi,qi < fpi−1,(qi−1+1) (2) 249

∀i ∈ {0, . . . , k − 1}, spi+1,(qi+1−1) < fpi,qi ≤ spi+1,qi+1 . (3) 250

Example 1: Fig. 1 shows a simple DAG with three tasks: 251

τ = {τ0, τ1, τ2} and two edges: E = {τ0 → τ2, τ1 → τ2}. The 252

WCET, period, and relative deadline of each task is: {C0 = 1, 253

T0 = 10, D0 = 10}, {C1 = 2, T1 = 20, D1 = 20}, {C2 = 3, 254

T2 = 20, D2 = 20}. The task set is executed on 2 identical 255

processors unless otherwise stated. The hyper-period is 20. 256

The schedule variable contains the start time of N = 4 jobs: 257

s = [s0,0, s0,1, s1,0, s2,0]. 258

Suppose we have a schedule s = [0, 10, 1, 3]. For the cause– 259

effect chain C = {τ0 → τ2}, the job chain CJ
0 = {J0,0 → 260

J2,0} is both an immediate backward job chain and immediate 261

forward job chain with length L(CJ
0) = 6. CJ

1 = {J0,1 → 262

J2,1} is another immediate forward job chain with length 263

L(CJ
1) = 16. Thus, max DAC(s) = 6, max RTC(s) = 16. The 264

longest job chains for this scenario are shown in Fig. 2. 265

Given a schedule s, we use DAC(s) (RTC(s)) to denote the 266

vector of data age (reaction time) for all job chains of a cause– 267

effect chain C within a hyper-period. 268

To summarize, when optimizing the worst-case data age or 269

reaction time, the objective function in (1) becomes 270

F(s) =
∑

C∈C
max DAC(s) (4) 271

or 272

F(s) =
∑

C∈C
max RTC(s). (5) 273
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D. Example Problem—Time Disparity Optimization274

Similar to a cause–effect chain, a merge M may have275

multiple job-level merges.276

Definition 5 (Job Merge): A job merge MJ contains a sink277

job Jj,l and a set of source jobs JSrc
j,l , from which Jj,l directly278

reads data279

∀Ji,k ∈ JSrc
j,l , fi,k ≤ sj,l < fi,k+1. (6)280

Definition 6 (Time Disparity [2], [26]): The time disparity281

of a job merge MJ , denoted as TD(MJ), is defined as the282

difference between the earliest and latest finish times of all283

source jobs in MJ
284

TD
(
MJ) = max

J∈JSrc
j,l

fJ − min
J∈JSrc

j,l

fJ (7)285

where fJ represents the finish time of a job J.286

Given a schedule s, we use TDM(s) to denote the vector287

of time disparities for all job merges of M within a hyper-288

period. When optimizing the worst-case time disparity metric,289

the objective function in (1) is formulated as follows:290

F(s) =
∑

M∈M
max TDM(s). (8)291

Other forms of the objective functions are discussed in292

Section VIII-A.293

Example 2: In Example 1, there is only one merge M in294

the DAG with τ2 as the sink task. The corresponding job merge295

has J2,0 as the sink job and {J0,0, J1,0} as the source jobs. The296

maximum time disparity is max TDM(s) = 3 − 1 = 2.297

Theorem 1: The objective functions (4), (5), and (8) are all298

nonconvex.299

Proof: We prove it by providing counter-examples.300

Remember that a function f : Rn → R is convex if for all s(1)
301

and s(2) in its domain and ∀t ∈ [0, 1], we have f (ts(1) + (1 −302

t)s(2)) ≤ tf (s(1))+(1−t)f (s(2)). We now give a counterexample303

for reaction time, and the counterexamples for data age and304

time disparity are similar. In Example 1, consider s(1) =305

[0, 10, 1, 3] with a reaction time 16, s(2) = [0, 10, 1, 11] whose306

reaction time is 14. If we define t = 0.5, then s(t) = ts(1) +307

(1 − t)s(2) = [0, 10, 1, 7], but the reaction time of s(t) is 20,308

which violates the property required by convex functions.309

E. Resource Bound Constraint—Interval Overlapping Test310

In a nonpreemptive system, the interval overlapping Test311

(IO Test) analyzes whether processors are overloaded (one312

processor executes multiple jobs in parallel) for a given313

schedule s. In this case, each job Ji,k can be modeled as an314

interval [si,k, fi,k] that starts execution at si,k and finishes at315

fi,k = si,k + Ci. Inspired by the demand bound function [32],316

we propose an efficient nonpreemptive schedulability analysis317

for optimization. Intuitively speaking, there are no overloaded318

processors if any two job intervals mapped to the same319

processor do not overlap.320

Theorem 2 (IO Test): In nonpreemptive systems, there are321

no overloaded processors if the following inequality holds for322

any two jobs Ji,k and Jj,l assigned to the same processor:323

if fj,l ≥ si,k, then fj,l − si,k ≥ Ci + Cj. (9)324

Proof: Prove by contradiction. If there are overloaded 325

processors, by definition, there must be two job execution 326

intervals overlapping with each other. Let us denote the job 327

with a larger finish time as Jj,l, the other job as Ji,k, then we 328

have 329

fj,l − si,k < Ci + Cj. (10) 330

This contradicts the IO test assumption above. 331

Theorem 3: Given a set of job intervals I = {[si,k, fj,l]} 332

sorted based on its start time si,k in increasing order, no 333

intervals overlap with each other if any two adjacent job 334

intervals do not overlap with each other. 335

Proof: Skipped. It can be proved easily by contradiction. 336

Since a schedule will repeat in every hyper-period, the IO 337

test only needs to consider all jobs within a hyper-period. 338

Within partitioned scheduling, each processor has to be tested 339

separately. The time complexity of the IO test is O(Nlog(N)). 340

Example 3: Let us continue with the task set in Example 1. 341

Suppose we only have one processor and have a schedule s = 342

[0, 10, 1, 3]. If without sorting, the IO test requires verifying 343

whether the following six pairs of intervals overlap: 344

{[
s0,0, f0,0

]
,
[
s0,1, f0,1

]} {[
s0,0, f0,0

]
,
[
s1,0, f1,0

]}
345{[

s0,0, f0,0
]
,
[
s2,0, f2,0

]} {[
s0,1, f0,1

]
,
[
s1,0, f1,0

]}
346{[

s0,1, f0,1
]
,
[
s2,0, f2,0

]} {[
s1,0, f1,0

]
,
[
s2,0, f2,0

]}
. 347

With sorting, only the following three pairs require verifica- 348

tion: 349

{[
s0,0, f0,0

]
,
[
s1,0, f1,0

]} {[
s1,0, f1,0

]
,
[
s2,0, f2,0

]}
350{[

s2,0, f2,0
]
,
[
s0,1, f0,1

]}
. 351

If there is no overlap, then the IO test states that the processor 352

is not overloaded. 353

Now, we can give the complete form of the resource 354

bound (1b) in nonpreemptive systems 355

ResourceBound(s) =
{

0, if s passes IO test
1, otherwise.

(11) 356

F. Model Assumptions 357

Assumption 1: The start time of each job could take con- 358

tinuous value. 359

Although the computer time is integer multiples of CPU 360

cycles, the very high-CPU run-time frequency (MHz or GHz) 361

means that rounding a float-point number into its adjacent 362

integers only incurs a small precision loss in timing metrics, if 363

the jobs’ relative reading/writing time order remains the same. 364

Assumption 2: A feasible schedule [a solution that satis- 365

fies (1a) and (1b)] is available to start the iterative algorithms 366

introduced next. 367

Normally, Assumption 2 can be easily satisfied with simple 368

list schedulers [7]. This article focuses on optimizing the 369

timing metrics rather than finding a schedulable schedule, 370

although such an extension is possible (see Section VIII-C). 371

G. Challenges 372

Solving the optimization problem (1) for DARTD is difficult 373

because the objective function follows a nonlinear, nonmono- 374

tonic, nonconvex, and noncontinuous relationship with the 375
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variables (see Theorem 1 and its proof). Therefore, most popu-376

lar optimization frameworks cannot be directly utilized except377

ILP. However, ILP requires introducing many extra binary378

variables and could suffer from bad algorithm scalability.379

IV. JOB ORDER AND SCHEDULING380

The proposed optimization framework that solves the381

problem (1) is built upon the concept of the job order, which382

specifies the jobs’ reading/writing relationships and simplifies383

the problem into a set of LP problems.384

A. Job Order385

Definition 7 (Job Scheduling Time): The job scheduling386

time of a job Ji,k is denoted as Ti,k, which could be either387

the start time (denoted as T s
i,k, called scheduling start time) or388

the finish time (denoted as T f
i,k, called scheduling finish time)389

of Ji,k.390

Since we adopt the implicit communication protocol and391

nonpreemptive scheduling, a job Ji,k’s reading time is its start392

time, and its writing time is its finish time.393

Example 4: In Example 1, consider a schedule s =394

[0, 10, 1, 3]. The job J0,0 has two scheduling times: 1) schedul-395

ing start time T s
0,0 = 0 and 2) scheduling finish time T f

0,0 = 1.396

Definition 8 (Job Order): Given a set of jobs J, a job order397

O of J is an ordered list containing all job scheduling times398

(both start and finish) of all the jobs in J. The job scheduling399

times are ordered in nondecreasing order.400

For notation convenience, we use O(i) to denote the ith job401

scheduling time in the job order O. For any two job scheduling402

times Ti,k, Tj,l ∈ O, if Ti,k has a smaller index than Tj,l in O,403

denoted as Ti,k ≺ Tj,l, then that means Ti,k happens earlier404

than or at the same time as Tj,l.405

Example 5: Consider the task set in Example 1. There406

are four jobs within a hyper-period. For a schedule s =407

[s0,0, s0,1, s1,0, s2,0] = [0, 10, 1, 3], its job order is O =408

{T s
0,0, T

f
0,0, T s

1,0, T
f

1,0, T s
2,0, T

f
2,0, T s

0,1, T
f

0,1}. We also give two409

examples for indexing: 1) O(0) = T s
0,0 and 2) O(3) = T f

1,0.410

A job order O implies a set of linear constraints on the411

schedule s of the optimization problem (1)412

∀ i < j, Time(O(i)) ≤ Time(O(j)) (12)413

where Time(Ti,k) denotes the time that Ti,k happens. If Ti,k414

is a scheduling start time, Time(Ti,k) = si,k, otherwise,415

Time(Ti,k) = si,k + Ci.416

B. Scheduling With Job Order417

Finding a schedule that satisfies a given job order O418

is equivalent to solving the problem (1) with extra linear419

constraints given by (12). Here, we provide the job order420

scheduling problem for O421

Minimize
s

F(s) (13)422

Subject to:423

∀i ∈ {0, . . . , n − 1} ∀k ∈ {0, . . . , H/Ti − 1}424

k · Ti ≤ si,k ≤ k · Ti + Di − Ci (13a)425

ResourceBound(s) = 0 (13b) 426

∀i ∈ {0, . . . , 2N − 2}, Time(O(i)) ≤ Time(O(i + 1)) 427

(13c) 428

where the objective function F(s) could be, for example, data 429

age (4), reaction time (5), or time disparity (8). 430

Theorem 4: The constraints from a job order O simplify 431

the problem (13) into a convex problem, specifically, an LP 432

problem, when the optimization objective is DARTD. 433

Proof: Given a job order O, the relative start/finish relation- 434

ship of any two jobs is known, therefore all the job chains 435

and job merges are decided. Then DA(s) and RT(s) become 436

linear functions (lengths of all job chains in Definition 3). The 437

TD(s) can also be similarly transformed into linear functions 438

following [26]. Constraints (13a) and (13c) are evidently linear 439

functions. As for the computational resource bounds (13b) 440

from the IO test (9), since the given job order O already 441

specifies the relative order of all the job scheduling times, (9) 442

becomes linear inequalities. Therefore, problem (13) is an LP 443

problem. 444

Next, we use π∗(O) to denote the optimal schedule for the 445

problem (13). Note that the π∗(O) depends on the specific 446

forms of objective functions and constraints. 447

Definition 9 (Optimal Job Order Schedule): The optimal 448

job order schedule, s∗ = π∗(O) = argmins F(s), is the 449

optimal solution of the optimization problem (13). 450

Example 6: In Example (1), consider a job order: O = 451

{T s
0,0, T

f
0,0, T s

1,0, T
f

1,0, T s
2,0, T

f
2,0, T s

0,1, T
f

0,1}, where we assume 452

J0,0 and J1,0 are assigned to one processor P0, while J2,0 453

and J0,1 are assigned to another processor P1. Next, consider 454

optimizing the reaction time of a cause–effect chain C = 455

{τ0 → τ2}. The problem (13) can be transformed into an LP 456

problem as follows: 457

Minimize
s

max {f2,0 − s0,0, f2,1 − s0,1} (14) 458

Subject to: 459

f0,0 = s0,0 + C0, f0,1 = s0,1 + C0 (14a) 460

f1,0 = s1,0 + C1, f2,0 = s2,0 + C2 (14b) 461

f2,1 = s2,0 + H + C2 (14c) 462

0 ≤ s0,0 ≤ D0 − C0, T0 ≤ s0,1 ≤ T0 + D0 − C0 463

(14d) 464

0 ≤ s1,0 ≤ D1 − C1, 0 ≤ s2,0 ≤ D2 − C2 (14e) 465

f1,0 − s0,0 ≥ C0 + C1, f0,1 − s2,0 ≥ C0 + C2 466

(14f) 467

s0,0 ≤ s0,0 + C0 ≤ s1,0 ≤ s1,0 + C1 ≤ s2,0 (14g) 468

s2,0 ≤ s2,0 + C2 ≤ s0,1 ≤ s0,1 + C0. (14h) 469

The objective function (14) considers the length of two 470

job chains initiated by J0,0 and J0,1 within a hyper-period. 471

Constraints (14a)–(14c) are due to the nonpreemptive schedul- 472

ing. Constraints (14d) and (14e) are schedulability constraints. 473

Inequalities (14f) are the resource bound (13b). There are 474

only two IO-test constraints because jobs assigned to different 475

processors can overlap. Constraints (14g) and (14h) posed by 476

the given job order. 477
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Fig. 3. TOM intuition. The solution space is divided into multiple
“subspaces,” and the optimal solution within each subspace can be found
efficiently by solving an LP problem. This process is visualized above: each
job order defines a convex subspace (because all the constraints are linear
after specifying a job order) and is informally visualized as a grid in the
figure above. The optimal solution within each grid is denoted as a solid
circle. The original optimization problem, which needs to explore the whole
solution space, is simplified into evaluating only the optimal solutions within
each subspace.

Definition 10 (Schedulable Job Order): A job order O is478

schedulable if there exists a schedulable schedule s that also479

satisfies the job order (13c).480

V. TWO-STAGE OPTIMIZATION SCHEDULING481

Although finding the optimal schedule given a job order482

is simple and efficient, enumerating all the possible job483

orders naively requires high-computation costs. Therefore, we484

propose an iterative algorithm, two-stage optimization method485

(TOM), to search for better job orders. TOM is proven to find486

1-opt solutions.487

A. Optimization Concepts Review488

Definition 11 (Global Optimality): A solution s∗ for the489

problem (1) is global optimal if there is no other feasible490

solutions s such that F(s) < F(s∗).491

Definition 12 (Local Optimality): A solution s∗ for the492

problem (1) is local optimal if there exists a small number493

δ > 0, such that there is no other feasible solutions s ∈ B(s∗)494

where F(s) < F(s∗), B(s∗) = {s | ‖s − s∗‖ ≤ δ}.495

Definition 13 (1-opt, [11], [12]): A solution s1∗ for the496

problem (1) is 1-opt if “the objective value at s1∗ does not497

improve by changing a single coordinate,” i.e., F(s1∗) ≤498

F(s1∗ + eic) for arbitrary unit vector ei = {0, . . . , 1, . . . , 0}499

and c �= 0.500

Although a global optimal solution is also local optimal501

and 1-opt, local optimal and 1-opt solutions are not inclusive502

of each other. In many real-time system problems, achieving503

global optimal or even local optimal solutions within reason-504

able time limits is difficult. In these cases, 1-opt provides a505

better tradeoff between optimality and run-time complexity.506

B. Two-Stage Optimization Method507

Due to the nonconvex and noncontinuous nature of508

problem (1), straightforward optimization algorithms neces-509

sitate an infinite number of objective function evaluations510

Fig. 4. Main optimization framework. We begin with an initial feasible
solution s and its job order O. Then in each iteration, we search for a better
job order in O’s adjacent job order permutation B(O) and update the best job
order found yet. Eventually, the iteration will terminate at a 1-opt solution.

to verify whether a solution is 1-opt. However, the concept 511

of job order significantly simplifies the problem (1) and 512

allows us to verify whether a solution is 1-opt with only 513

polynomial time complexity. Therefore, we propose a two- 514

stage optimization method (TOM). Fig. 4 shows an overview 515

of TOM. Starting from an initial feasible schedule, the first 516

stage searches for better job orders based on an iterative 517

algorithm, while the second stage finds the optimal schedule 518

by solving problem (13) for each job order to evaluate. 519

C. Theorems on 1-opt Conditions 520

Definition 14 (Adjacent Schedule Permutation): The adja- 521

cent schedule permutation B(s) of a schedule s is a set of 522

schedules, where each schedule B(s)l differs from s by only 523

one job’s start time. 524

Definition 15 (Adjacent Job Order Permutation): Adjacent 525

job order permutation B(O) of a job order O is a finite set of 526

distinct job orders. For each job order B(O)l, there is one and 527

only one job Ji,k that the position of its scheduling start time 528

T s
i,k, or its scheduling finish time T f

i,k, or both, are different 529

from those in O. The relative order of all the other jobs’ 530

scheduling time in O and B(O)l remain the same. 531

Example 7: Following Example 1, let us consider a 532

job order O = {T s
0,0,T f

0,0,T s
1,0,T f

1,0,T s
2,0,T f

2,0,T s
0,1,T f

0,1}. As 533

an example, B(O) could include an job order such as 534

{T s
0,0,T f

0,0,T s
2,0,T f

2,0,T s
1,0,T f

1,0,T s
0,1,T f

0,1} by moving J1,0 to the 535

end of J2,0. An alternative adjacent job order could be 536

{T s
0,0,T s

1,0,T f
0,0,T f

1,0,T s
2,0,T f

2,0,T s
0,1,T f

0,1} where T f
0,0 is moved to 537

the back of T s
1,0, which means J1,0 will start execution before 538

J0,0 finishes. It is schedulable if there is more than 1 processor. 539

Theorem 5: Consider a schedule s1∗ and its job order O1∗. 540

s1∗ is a 1-opt solution for the optimization problem (1) if it 541

satisfies the following conditions: 542

O1∗ = argmin
O∈B(O1∗)∩�

F
(
π∗(O)

)
(15) 543

s1∗ = π∗(O1∗) (16) 544
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where π∗(O) denotes the optimal schedule obtained by545

solving the problem (13) for O and � denotes the set of546

schedulable job orders following Definition 10.547

Proof: Consider an arbitrary solution ŝ which differs from548

s1∗ by only one job’s start time, and denote the job order of549

ŝ as Ô. In the case, we can introduce a function π(·) which550

obtains the schedule ŝ = π(Ô). π(·) is possibly different from551

π∗(·) in Definition 9. Following Definition 15, we know Ô ∈552

B(O1∗), and therefore553

F
(
ŝ
) = F

(
π

(
Ô

))
≥ F

(
π∗(O1∗))

= F
(

s1∗). (17)554

Therefore, s1∗ is 1-opt.555

Example 8: Let us continue with Example 1 and con-556

sider the reaction time optimization problem of a chain557

C = {τ0 → τ2}. A 1-opt schedule could be s1∗ =558

[s0,0, s0,1, s1,0, s2,0] = [9, 10, 18, 11]. This solution is 1-opt559

because there is no better feasible solution if only changing560

one job’s start time while leaving the other three jobs’ start561

times unchanged.562

Lemma 1: If there are six variables which satisfy a1 +c1 ≤563

b1, b2 + c2 ≤ a2, then max(|a1 −a2|, |b1 −b2|) ≥ min(c1, c2).564

Proof: Prove by contradiction. Assume max(|a1 −a2|, |b1 −565

b2|) < min(c1, c2), then we have566

a2 − a1 < c1, b1 − b2 < c2. (18)567

Combine with the theorem assumptions, we can derive568

a2 < a1 + c1 ≤ b1, b1 < b2 + c2 ≤ a2. (19)569

The two inequalities above conflict with each other, therefore570

the lemma is proven.571

Theorem 6: Assume each job has a nonzero execution time572

and is executed in single-core systems nonpreemptively. Any573

schedule s obtained by solving the LP problem (13) is local574

optimal.575

Proof: Prove by contradiction. Assume s is not a local576

optimal solution. This implies the existence of another feasible577

solution s∗ such that F(s∗) < F(s), where ‖s − s∗‖ < δ,578

and δ > 0 is a very small number. Denote the job order of s579

and s∗ as O and O∗, respectively. Then we must have O∗ �=580

O because s is optimal for the problem (13) given the job581

order O.582

Since we are considering a nonpreemptive single-core plat-583

form, no jobs can run in parallel. Furthermore, since the job584

orders are different, there must exist at least two jobs Ji,k and585

Jj,l, whose relative execution order is different. Without loss586

of generality, assume Ji,k runs earlier than Jj,l in O, and Jj,l587

runs earlier in O∗. Mathematically speaking, that means588

si,k + Ci ≤ sj,l, s∗
j,l + Cj ≤ s∗

i,k. (20)589

Based on Lemma 1, we have max(|si,k − s∗
i,k|, |sj,l − s∗

j,l|) ≥590

min(C1, C2). Therefore, ‖s − s∗‖ ≥ max(|si,k − s∗
i,k|, |sj,l −591

s∗
j,l|) ≥ min(C1, C2) > δ, which causes a contradiction.592

Therefore, the theorem is proved.593

Thus, the 1-opt schedule s1∗ from Theorem 5 for a nonpre-594

emptive single-core system is also local optimal.595

D. Optimization Algorithm Toward 1-opt Schedules 596

Following Theorem 5, we can design a simple algorithm 597

to search for better job orders iteratively. The algorithm will 598

update the job order following (21) and terminate when the 599

iterations converges, i.e., O(k+1) = O(k): 600

O(k+1) = argmin
O∈B(O(k))∩�

F
(
π∗(O)

)
(21) 601

where π∗(O) is the optimal job order schedule of O 602

and � denotes the set of schedulable job orders following 603

Definition 10. 604

Theorem 7: An iterative algorithm that updates the job 605

order variables following (21) will terminate after a finite 606

number of iterations, and the solution found is 1-opt. 607

Proof: The iterative algorithm will terminate after a finite 608

number of iterations because a new iteration is initiated only 609

after finding a feasible, better solution in previous iterations. 610

Considering that the optimal objective function value is pos- 611

itive, the algorithm is guaranteed to terminate after a finite 612

number of iterations. When the algorithm terminates, the two 613

conditions in Theorem 5 are both satisfied and therefore the 614

solution is 1-opt. 615

VI. ENHANCING TOM—STRATEGIES FOR IMPROVED 616

PERFORMANCE AND EFFICIENCY 617

A. Skipping Unschedulable Job Orders 618

Although the feasibility of a job order can be analyzed by 619

solving the LP problem in problem (13), the average run- 620

time complexity is O(N2.5) [33]. Therefore, we propose the 621

following lightweight lemma to quickly examine whether a 622

job order is schedulable with O(N) complexity. These lemmas 623

are necessary, but not sufficient, conditions of schedulability: 624

Lemma 2: Given a job order O, if there exists one job Ji,k 625

whose scheduling finish time T f
i,k precedes its scheduling start 626

time T s
i,k, then O is not schedulable. 627

Lemma 3: Given a job order O, if the maximum number of 628

concurrent jobs exceeds the total number of processors, then 629

O is not schedulable. 630

Proofs of these lemmas are straightforward as they breach 631

either (13a) or (13b). 632

B. More Relaxed Constraints in LP 633

The solution quality of an optimization problem could 634

become better if its constraints are relaxed. In problem (13), 635

although we cannot relax (13a) and (13b) (hard schedulability 636

constraints), we can relax the job order (13c) because it is only 637

necessary to maintain the relative order of jobs that influence 638

the objective functions (because not all the tasks contribute 639

to the cause–effect chains or merges) to guarantee that the 640

objective functions can be equivalently transformed into linear 641

functions. 642

Example 9: Continue with Example 1, given a job order 643

O = {T s
0,0, T

f
0,0, T s

1,0, T
f

1,0, T s
0,1, T

f
0,1, T s

2,0, T
f

2,0}, suppose we 644

only have one processor and want to optimize the reaction 645

time of the cause–effect chain C = {τ0 → τ2}. In this 646

case, the optimal schedule π∗(O) = [s0,0, s0,1, s1,0, s2,0] = 647

[7, 10, 8, 11], the worst-case reaction time is 7 from the job 648



8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Algorithm 1: Simple Job Order Scheduler
Input: Job order O
Output: Schedule s

1 t = 0 // Record current time
2 for each Ti in O do
3 Ji = GetJob(Ti)

4 if Ti is job scheduling start time then
5 t = max(t, Ji.release_time,

NextProcessorAvailableTime() )

6 si = t
7 else
8 if si + Ci ≤ t then
9 t = si + Ci, fi = si + Ci

10 else
11 return 0 // O is unschedulable
12 end
13 end
14 end
15 return s

chain {J0,0 → J2,0}. Since J1,0 does not influence the length649

of the cause–effect chain C = {τ0 → τ2}, only enforcing650

the relative job order among {J0,0, J0,1, J2,0} is enough to651

transform the objective function (5) into linear functions.652

Then the optimal schedule with relaxed constraints become653

srelaxed = [s0,0, s0,1, s1,0, s2,0] = [9, 10, 0, 11]. The worst-case654

reaction time is reduced to 5.655

C. Simple Job Order Scheduler656

In cases when the run-time complexity becomes a major657

performance bottle-neck, we can use a heuristic schedul-658

ing algorithm with O(N) complexity to replace solving659

the LP problem (13) that usually requires O(N2.5) time660

complexity [33]. The simple job order scheduler adopts a661

First-In-First-Out scheduling policy. A job becomes ready662

for execution after satisfying two conditions: 1) its release663

time has passed and 2) its previous job scheduling time has664

happened. Algorithm 1 shows the pseudocode of the simple665

job order scheduler in a simulation environment.666

Example 10: Continue with Example 9, consider the same667

job order O = {T s
0,0, T

f
0,0, T s

1,0, T
f

1,0, T s
0,1, T

f
0,1, T s

2,0, T
f

2,0}. If668

there is only one computation core, the schedule obtained669

from the simple order scheduler is [s0,0, s0,1, s1,0, s2,0] =670

[0, 10, 1, 11]. In case of two cores, the schedule is671

[s0,0, s0,1, s1,0, s2,0] = [0, 10, 0, 10].672

Despite its fast speed, the simple job order scheduler suffers673

from two major disadvantages: 1) nonexact schedulability674

analysis and 2) nonoptimal schedule without any theoreti-675

cal guarantee. It is only encouraged to use if solving the676

problem (13) iteratively suffers from a big time-out issue.677

VII. IMPLEMENTATION DETAILS678

A. Initial Solution Estimation679

In the experiments, we use a simple list-scheduling680

method [13] to obtain an initial schedule. If multiple jobs681

Algorithm 2: Single Iteration of TOM

Input: Job order O(k), job set J containing all jobs in a
hyper-period

Output: O(k+1)

1 Otmp = O(k)

2 for each job Ji in J do
3 for each job order O in BJi(Otmp) do
4 if F(π∗(O)) < F(π∗(Otmp)) then
5 Otmp = O
6 end
7 end
8 end
9 O(k+1) = Otmp

10 return O(k+1)

become ready, jobs with the least finish time will be dispatched 682

first. The processor assignments are decided based on a simple 683

First-Come-First-Serve strategy. In practice, other methods can 684

also be used to obtain a feasible initial schedule. 685

B. Faster Implementation Within Time Limits 686

TOM is implemented slightly differently from (21) for faster 687

run-time efficiency. When searching for an optimal job order 688

O(k)∗ within B(O(k)), we immediately accept a new job order 689

O if it improves O(k). Algorithm 2 shows the pseudocode of 690

one single iteration. In line 3, BJi(Otmp) denotes the adjacent 691

job order permutation of Otmp by only changing the index of 692

Ji’s job scheduling time. Otmp will be updated if a better job 693

order is found. Following Theorem 7, Algorithm 2 also finds 694

1-opt solutions after algorithm termination. 695

C. When to Assign Processor 696

A simple first-come-first-serve (FCFS) policy is used for 697

processor assignment for each job. In experiments, we utilize 698

the simple job order scheduler (Section VI-C) to generate the 699

processor assignment before evaluating a job order (i.e., solv- 700

ing problem (13)). After obtaining the processor assignments, 701

we formulate the resource-bound constraints for problem (13). 702

D. Worst-Case Complexity Analysis 703

The overall algorithm’s complexity depends on the com- 704

plexity of each iteration and the total number of iterations. 705

In the experiments, TOM usually terminates in less than 10 706

iterations. Following (21), the cost of each iteration depends 707

on the number of job orders to search and the cost to evaluate 708

a single job order [problem (13)]. In the worst case, the total 709

number of adjacent job order permutations could be O(N3). 710

However, techniques from Section VI-A can greatly reduce 711

the possible permutations. Evaluating a single job order has 712

two steps: 1) obtaining a schedule and 2) then evaluating the 713

objective function. The former could be as fast as O(N) if a 714

simple job order scheduler is used. In terms of solving the 715

linear program, the complexity could increase to O(N2.5) in 716

average case [33] (in reality, since problem (13) is very sparse, 717

the real run-time speed should be much faster than O(N2.5)). 718
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Finally, evaluating the objective function given a schedule719

requires O(N2) complexity in worst cases.720

Overall, the worst-case complexity in one iteration is O(N3 ·721

(N2.5 + N2)) if an optimal job order scheduler [solving722

problem (13)] is used. However, most experiments finish723

optimizing task sets of thousands of jobs within 1000 s, which724

suggests the average time complexity to be O(N4).725

VIII. EXTENSIONS AND LIMITATIONS726

This section briefly discusses several possible extensions727

and leaves the experiment verification to future works.728

A. Alternative Objective Functions729

Apart from the objective functions shown in Sections III-C730

and III-D, TOM also supports other forms of objective731

functions, such as linear combination of DARTD. Besides,732

TOM can also optimize nonlinear functions of different timing733

metrics (such as jitters of end-to-end latency) and solve them734

with nonLP methods [10], [34], though without the 1-opt or735

local-optimal guarantee anymore.736

B. Extension For Preemptive Scheduling737

While the TOM framework is designed for nonpreemptive738

TTS systems, it can be extended to work with preemptive739

systems. First, similar to the start time variables, an extra740

set of finish time variables has to be incorporated into the741

optimization problem formulation. The schedulability analysis742

constraints (Section III-E) have to be replaced with the demand743

bound function used in [32]. The concept of job order remains744

the same because it already incorporates the finish time.745

C. Finding Feasible Initial Schedules746

The TOM optimization framework can also be utilized747

to find feasible schedules. This section briefly discusses the748

theoretical foundations. Since feasibility is a binary metric749

that is not friendly for optimization, we utilize “tardiness’750

as the optimization objective function (similar to [10]). The751

feasibility optimization problem is formulated as follows:752

Minimize
s

n−1∑

i=0

H/Ti−1∑

k=0

Barrier
(
kTi + Di − Ci − si,k

)
(22)753

Barrier(x) =
{

0, x ≥ 0
−x, x < 0

(22a)754

Subject to:755

∀i ∈ {0, . . . , n − 1} ∀k ∈ {0, . . . , H/Ti − 1}, kTi ≤ si,k756

(22b)757

ResourceBound(s) = 0. (22c)758

Theorem 8: If a solution s can reduce the objective func-759

tion in problem (22) into 0 while also being feasible for760

problem (22), then s is a schedulable schedule.761

Proof: If the objective function is reduced to 0, no jobs762

violate the deadline constraints. Combined with the job release763

(22b) and processor overloading (22c), the schedule s is764

schedulable by definition.765

Theorem 9: List scheduling can always provide a feasible 766

initial solution to problem (22). 767

Proof: The schedule found by list scheduling is always 768

feasible for problem (22) because a job is dispatched for 769

execution whenever there is an idle processor [satisfying (22c)] 770

after the job is released in (22b). 771

Theorem 10: The problem (22) can be equivalently trans- 772

formed into an LP problem after adding an extra set of job 773

order constraints [the inequality (13c)]. 774

Proof: Following Theorem 4, we only need to prove that 775

the objective function (22) can be transformed into linear 776

functions. This can be easily done by introducing an artificial 777

variable zi,k for each term following [26]. After that, the 778

objective function becomes 779

Minimize
s

n−1∑

i=0

H/Ti−1∑

k=0

zi,k (23) 780

with extra linear constraints 781

∀i ∈ {0, . . . , n − 1} ∀k ∈ {0, . . . , H/Ti − 1} 782

zi,k ≥ 0 & zi,k ≥ −1 · (kTi + Di − Ci − si,k
)
. (24) 783

Since both the objective functions and the constraints are linear 784

functions after transformation, the theorem is proved. 785

The theorems above show that TOM can also solve the 786

feasibility problem (22). It is also guaranteed to perform better 787

than simple scheduling heuristics, such as list scheduling, 788

because TOM utilizes them as initial solutions. 789

D. Limitations 790

Compared with global optimality, 1-opt provides a weaker 791

form of theoretical guarantee. However, in general cases, 792

obtaining global optimal solutions requires significantly higher 793

computation costs. Therefore, given the same computation 794

costs, 1-opt could potentially achieve better performance, as 795

shown in our experiments. 796

TOM’s computation cost depends on the number of jobs 797

within a hyper-period. Therefore, there could be a higher com- 798

putation cost in nonharmonic task sets. However, in realistic 799

TTS systems [35], there cannot be too many jobs within a 800

hyper-period because that would incur a high overhead in task 801

management and scheduling. Therefore, it is expected that the 802

computation cost associated with TOM should be reasonably 803

low in real-world systems. 804

IX. EXPERIMENT 805

The proposed framework was implemented in C++ and 806

tested on a computing cluster (AMD EPYC 7702 CPU). We 807

consider the following methods in experiments. 808

1) List Scheduling [13]: Whenever there are available 809

processors, it dispatches the ready job with the least 810

finish time for execution. 811

2) Simulated Annealing [36]: A general heuristic method 812

for optimization problems. The initial temperature is 813

1e8, and the cooling rate is 0.99, which encourages 814

the algorithm to explore the solution space. The initial 815
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schedule is obtained from the list scheduling, the same816

as TOM.817

3) Verucchi20 [7]: It was proposed to minimize the worst-818

case data age and reaction time in multirate DAG.819

The code implementation is adopted from their official820

release repository. If it does not run time out, its solution821

quality is close to the optimal solutions. To the best of822

our knowledge, it is also the most recent state-of-the-art823

work that considers a similar problem setting.824

4) TOM: The optimization framework proposed in this825

article. When solving problem (13), CPLEX [37] is used826

to find optimal solutions.827

5) TOM_SimpleScheduler: Similar to TOM, except that the828

simple job order scheduler (Section VI-C) instead of LP829

is used when obtaining a schedule from a job order.830

6) TOM_Extended: Similar to TOM, except that we also831

enabled the relaxations on the LP problem’s constraints,832

which is introduced in Section VI-B.833

If one method runs time-out without a feasible solution, we834

use the results of list scheduling during the result analysis.835

A. Task Set Generation and Results836

The simulated DAG task sets are generated following a real-837

world automotive benchmark [9], all the tasks’ periods are838

randomly generated from a limited set {1, 2, 5, 10, 20, 50, 100,839

200, 1000}, with relative probability distribution: {3, 2, 2, 25,840

25, 3, 20, 1, 4}. The overall task set’s utilization is set to 0.9 m,841

where m is the number of cores available, 4 in our experiments.842

Each task’s WCET is generated by UUnifast [38] while843

following the multicore adaptation implementation in [10].844

Each task’s relative deadline is the same as its period. Task845

sets generated in this way usually have hundreds or thousands846

of jobs to schedule.847

Task dependencies are generated randomly following848

He et al. [39]. After generating individual tasks, we go through849

each pair of tasks and randomly add an edge from one task850

to another with a given probability, 0.9 in our experiments851

(smaller probabilities are usually insufficient to generate many852

cause–effect chains in the DAG). The number of tasks in a853

task set ranges from 5 to 20. Cause-effect chains are generated854

as the paths between random pairs of tasks using the shortest855

path algorithm in Boost Graph Library [40]. Task merges are856

generated by randomly selecting a sink task and then collecting857

all source tasks on which the sink task directly depends.858

For a task set with n tasks, there are n to 2n random859

cause–effect chains and 
0.25n� to n random task merges. The860

maximum number of source tasks in a merge varies from 2861

to 9 following ROS [16]. The lengths and activation patterns862

of the cause–effect chains adhere to distributions outlined in863

Tables VI and VII of the automotive benchmark [9]. To meet864

distribution criteria, we initially generate plenty of task sets,865

evaluate the likelihood for each task set, and then sample 1000866

random task sets weighted by the likelihood for each given867

number of tasks. All task sets are schedulable under the list868

scheduling method. The run-time limit for scheduling one task869

set is 1000 s per method.870

We tested the performance of each method in optimizing 871

DARTD separately. The experiment results are reported in 872

Fig. 5. All performance gaps are compared against the list 873

scheduling method 874

Fmethod − FList_Scheduling

FList_Scheduling
× 100%. (25) 875

B. Result Analysis and Discussion 876

Overall, TOM and its extensions significantly outperform 877

other methods in various experiments. Next, we provide a 878

more detailed analysis of different aspects. 879

1) Comparison With Baseline Methods: Compared with 880

other baseline methods, the performance improvements of 881

TOM and TOM_Extended are not obvious when the number 882

of tasks is small (n = 5). This is because the solution space 883

is very small and most methods can find good solutions. 884

However, as the number of tasks increases, Verucchi20 quickly 885

reaches time limits and can barely find schedulable schedules 886

or schedules with low-end-to-end latency. Simulated annealing 887

always starts its iteration with a feasible schedule. However, 888

due to its inefficient solution space exploration techniques, it 889

usually requires a long time to find a good solution, which 890

often exceeds the given time limit and therefore cannot show 891

much performance improvement. In contrast, guided by 1-opt, 892

TOM and TOM_Extended are able to explore the solution 893

space efficiently while still maintaining good solution quality. 894

These experiment results show the benefits of both 1-opt 895

optimality and the proposed TOM optimization algorithms. 896

2) TOM Versus TOM_SimpleScheduler: The performance 897

improvements of TOM against TOM_SimpleScheduler show 898

the benefits of the LP formulation. Compared with simple 899

heuristics, such as list scheduling, LP explores a larger 900

solution space, can find nonwork-conserving schedules, and 901

thus achieves better solution quality. The disadvantage of the 902

LP approach is the higher computation cost. To compensate 903

for the extra computation costs, many heuristics are proposed 904

in this article without sacrificing the theoretical guarantee, 905

such as using fast necessary conditions to filter unschedulable 906

job orders (Section VI-A), exploring the sparse structure in 907

implementation (the resource bound constraints are sparse 908

linear constraints). However, TOM_SimpleScheduler could 909

still be an option in situations with many tasks/jobs. 910

3) TOM Versus TOM_Extended: The performance 911

improvements of TOM_Extended against TOM show the 912

effectiveness of the heuristics (Section VI-B) to further 913

improve upon 1-opt while maintaining a similar run-time 914

speed. Since the results obtained from both TOM_Extended 915

and TOM are 1-opt (if not running time-out), it implies that 916

there are potentially many 1-opt solution candidates with 917

varying solution qualities in the whole solution space. If 918

applicable, utilizing heuristics to further improve upon 1-opt 919

solutions is beneficial. 920

4) Time-Out Issue: It is possible that TOM does not 921

finish iterations before running time out. In these cases, 922

TOM degrades into heuristic algorithms without a theoretical 923

guarantee. However, the trend in Fig. 5 shows that running 924

time-out does not seriously degrade the solution quality even 925
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Fig. 5. Performance gap and running time for optimizing end-to-end latency and time disparity on synthetic task sets. (a) Data age performance. (b) Reaction
time performance. (c) Time disparity performance. (d) Data age running time. (e) Reaction time running time. (f) Time disparity running time.

though more than 30% cases running time out when n = 20926

(around 4000 jobs per task set). We expect TOM to work927

reasonably well for task sets with less than 104 jobs if928

the time limit is 1000 s. Optimizing larger task sets, such929

as those with 105 jobs, would require a much longer time930

limit.931

5) Data Age Versus Reaction Time: Experiments show that932

data age and reaction time optimization have similar results.933

Furthermore, reducing one metric usually reduces the other,934

which is broadly consistent with the findings in [14]. This935

observation may improve the algorithm efficiency in cases936

where both data age and reaction time need to be optimized:937

we may just consider only one metric in the objective function938

and leave the other out.939

C. Time Disparity Optimization Result940

Although the overall results on time-disparity optimization941

are good, Fig. 5(c) shows that the performance seems to942

become worse when the number of tasks increases from 5943

to 8. This is mainly due to the nature of the problem itself,944

rather than the limitations of the optimizers. For example,945

consider two merges where one merge has 2 source tasks and946

1 sink task, and another merge has the same sink task, the947

same 2 source tasks, and 2 more extra source tasks. In this948

case, the maximum source time disparity of the second merge949

could never become smaller than the first merge. In practice,950

adding more source tasks does not necessarily make the list951

scheduling perform worse after reaching certain limits, but952

it does make the optimization more difficult, and limits the 953

performance improvements even for global optimal solutions. 954

X. CONCLUSION 955

In this article, we investigate a multirate DAG scheduling 956

problem to reduce the worst-case end-to-end latency and/or 957

time disparity metrics. Given the potentially vast number 958

of variables within the solution space, we advocate for 959

guiding the scheduling design with 1-opt. Our optimization 960

algorithm introduces a novel technique called job order to 961

partition the solution space into multiple convex subspaces. 962

This partitioning strategy allows utilizing LP to minimize 963

DARTD within each subspace. Building upon this parti- 964

tion, our algorithm iteratively traverses among the subspaces, 965

ensuring that the output is 1-opt. In contrast to alternative 966

optimization algorithms, such as meta-heuristics algorithms 967

lacking any theoretical performance guarantees, or optimal 968

algorithms that may require exponential run-time complexity, 969

the 1-opt algorithm balances the tradeoff between theoret- 970

ical performance guarantee and run-time complexity. We 971

rigorously prove that our optimization algorithm achieves 972

1-opt solutions while maintaining polynomial run-time com- 973

plexity. Further optimization heuristics are also proposed to 974

improve the algorithm’s performance and efficiency without 975

compromising the 1-opt solution guarantee. Experimental 976

results indicate significant improvements over state-of- 977

the-art methods in both performance and computational 978

efficiency. 979
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