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Abstract—SRAM-based physically unclonable functions
(PUFs) utilize unpredictable start-up values (SUVs) for key
generation, making them widely adopted in cryptographic
systems. This unpredictability in SUVs is accompanied by device
noise that escalates with process-voltage-temperature (PVT)
variations, resulting in significant deviations from the golden
response collected at ambient conditions, thereby increasing
the bit-error-rate (BER) of the PUF responses. To reduce
this high (≥ 15%) BER, either an involved error correcting
code (ECC) circuitry with significant overhead is required,
or more helper information needs to be generated at varying
operating conditions, resulting in increased information leakage.
We address this issue by proposing the first reported application
of machine learning to re-calibrate the responses by predicting
the golden responses of the SRAM-PUF at different operating
conditions with high accuracy. Our re-calibration technique
is based on a novel collective decision that involves observing
the neighborhood cells of the SRAM-PUF, as opposed to the
traditional single-cell approach. By leveraging a memory map
exhibiting a high correlation in ambient reliability amongst
neighboring cells, we indirectly use the physical co-location of
SRAM cells to assist neighborhood error prediction. It leads
to efficient post-processing for SRAM-PUFs by using helper
data generated at ambient conditions only while employing a
fixed ECC designed for the same. Subsequently, to justify our
claims and validate the efficacy of our proposed methodology,
we demonstrate extensive experimentation results over multiple
SRAM-PUF instances implemented on the Arduino UNO (an
8-bit microcontroller unit) and its scaled-up version, the Arduino
Zero (a 32-bit microcontroller unit) boards, by varying supply
voltages from 3.8 to 6.2 V and 7 to 12 V respectively, and
temperature from −25◦ to 70◦ C in both cases. Our observations
show a vast drop in BER from 17.02% to ≈ 1%. Although
worst-case conditions with both voltage and temperature
variations at play resulted in a BER of 20%, using our proposed
approach reduces it to ≈ 1-2%, in turn demonstrating the high
efficacy of our scheme.

Index Terms—Physically unclonable functions (PUFs), static
random access memory (SRAM), helper data, min-entropy,
machine learning (ML), transfer learning, PVT variations.

I. INTRODUCTION

IN the ever-expanding realm of interconnected devices,
Static Random Access Memory based Physically Unclon-

able Functions (SRAM-PUFs) are a pertinent solution for
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Fig. 1: Our proposed approach of using ML-assisted ECC
for correcting PVT variation-induced errors. It achieves low
leakage and less hardware footprint in SRAM-PUFs than
conventional approaches.

low-cost key generation in FPGAs, microcontrollers, and
ASICs [1]. Although there exist other PUF architectures
like the oxide-rupture PUFs [2], DRAM PUFs [3], at the
same time, SRAM-PUFs have withstood the test of time
and are a mature and viable security component that has
achieved widespread adoption in commercial products. As per
terminologies accepted in the PUF community, SRAM-PUFs
popularly operate as what are called as weak PUFs, and are
used to generate secret keys for crypto operations.
However, the reliability of SRAM-PUFs is a significant con-
cern that affects the authenticity of the established keys when
the devices are subjected to process, voltage, and tempera-
ture [4], [5] (PVT) variations. The presence of this unreliability
introduces a bit-error rate (BER) in the responses of the
SRAM-PUF. This increase in BER directly contributes to an
increased key-error rate (KER), which can jeopardize any
subsequent cryptographic operation. Classical techniques for
handling the unreliability of SRAM-PUFs typically involve
using helper data algorithms (HDAs) such as Secure Sketch [6]
together with error correcting codes (ECC). However, it has
been reported in the literature that the helper information,
while enhancing reliability, reduces the entropy of the keying
material [7]. This has motivated the search for alternative
strategies to trade off the leakage and reliability obtained
effectively. In conventional applications of SRAM-PUFs with
scenarios where the temperature varies, it is imperative to
use multiple helper information during enrollment [8]. Al-
ternatively, the helper data collected at ambient conditions
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can be used in conjunction with an ECC circuit capable of
correcting the many errors introduced due to more aggressive
PVT variations. Both these approaches suffer from their re-
spective demerits. The former method of using multiple helper
information increases entropy loss. At the same time, the latter
requires the design of an involved ECC circuitry [9], which
not only has an adverse effect on the resource requirements but
also suffers from higher leakage via helper information [10]
(see Fig. 1).
In this paper, we investigate a machine learning (ML) based
post-processing methodology that works on enrolled helper
information collected only at ambient conditions. To the best
of our knowledge, we propose the first post-processing scheme
using ML-based models to predict the varying reference re-
sponse of the SRAM-PUF at extreme operating conditions. In
our setup, the PUF is enrolled in the ambient condition with
the golden response, and thereafter, the reference response
in various operating conditions is re-calibrated using our
proposed ML model. Our technique can predict the number
of errors in the golden response at adverse conditions with
high accuracy and subsequently uses the enrolled helper
information at ambient conditions to assist the fixed ECC
circuitry to correct the acquired noisy response. The proposed
methodology is built in two distinct steps.

1) First, we train a model that predicts the expected number of
erroneous bit positions in the SRAM memory array due to
changes in the operating conditions. To put it simply, for a
given PUF, we train our ML model continually with voltage
or temperature variations and use the trained parameter to
re-calibrate the PUF response with a fixed ECC. This phase
of the learning is referred to as continual learning in our
following exposition. Next, we explore the transferability
of our models across devices by training on multiple
reference devices but extending the same to a new device-
under-test (DUT) using only the reliability information at
the ambient condition. This phase of learning, which we
shall be referring to as transfer learning, is an important
technique to demonstrate that the ML-based error correction
is feasible on new boards without needing to re-train the
models from scratch.

2) Thereafter, on obtaining the expected number of erroneous
bit positions, we propose a novel combinatorial approach
that takes into account the number of errors predicted in the
neighborhood of a target cell and helps us make a better
collective decision while deriving the exact error locations
in the memory grid.

Finally, the predicted error locations are used to re-calibrate the
reference response at varying operating conditions. Under no
circumstances does the adversary have access to raw responses
from SRAM-PUF, a category of weak-PUF constructions
that do not reveal challenge-response pairs (CRPs) [11]. Our
proposed technique following the assumptions of the helper
data-based secure sketch algorithm [10] does not leak any
information about the derived PUF response, and hence the
secret key.
We perform extensive experimentation to validate the efficacy
of our scheme by creating test-beds to perform wide voltage

fluctuations from 3.8 to 6.2 volts across eight, and temperature
variations from −25◦ to 70◦C across ten Arduino UNO
boards respectively. Additionally, to evaluate the scalability
of our proposed methodology to larger SRAM memories,
we extended our experiments to another 18 instances of the
Arduino Zero board with 32 kB SRAM as opposed to 2
kB SRAM in the UNO board. Each of these boards houses
an SRAM-PUF instance. The response is corrected with a
concatenated code with Repetition[3,1] and Reed-Muller code
(RM[2,5] for UNO and RM[2,4] for Zero) capable of only
correcting errors in the neighborhood of the ambient condition
and executed on a connected Arduino Nano 33 BLE Sense
board. The Nano 33 BLE Sense board executes the ML-
based re-calibration code, the combinatorial unit, and the ECC
with fixed parameters. This entire implementation utilizes only
6.5K instructions on a 32-bit ARM Cortex-M4 CPU running
at 64 MHz, incurring a latency of 672 clock cycles and an
energy consumption of 2.3 µJ/decode for key generation.
We demonstrate that the proposed ML-based re-calibration
effectively reduces the BER from a whopping 17.02% to
≈ 1%. Both of these BERs translate to a desirable key-
error rate (KER) of < 10−6 for generating a stable 128-bit
cryptographic key [5]. Furthermore, the high-entropy claim of
our proposed work is demonstrated by an empirical estimation
of min-entropy loss using a simple BCH[15,11,1]. We also
observe a consistent drop in the min-entropy loss across all
temperatures using our ML-assisted ECC when compared to
standard ECC with multiple enrollments achieving a minimum
(maximum) of 1.7 (2.5) bits compared to 2.4 (2.7) bits across
−20◦C (70◦C).
Advantages over prior works: Although the previously pro-
posed circuit methods in the literature are aimed at achieving
a low BER under extreme operating conditions, they often
relied on increasing the PUF reliability at ambient conditions
by constructing a robust PUF cell [12], [13] or by increasing
PUF reliability at ambient conditions using majority voting
and accelerated aging [14]. However, these on-chip specialized
circuit modifications exhibit limitations in their applicability,
as they may not generalize well to all implementations of
SRAM-PUFs [15]–[18]. Although ML has been used to iden-
tify and classify noisy SRAM-PUF [19] and DRAM-PUF [20]
responses by processing the features in the 2D binary image
obtained by transforming the bitstream, its application for
error correction in SRAM-PUFs has not been explored. Our
proposed ML-based post-processing scheme re-calibrates the
PUF responses over a wide range of operating conditions
while the ECC scheme and its parameters (implemented in
hardware/software) remain unchanged. We comprehensively
compare state-of-the-art helper data algorithms using standard
ECC and soft-decoding techniques in Section IV-D.
To summarize, the main contributions of this paper are:
• ML model for PUF re-calibration: We present for the first

time an ML model for re-calibration of SRAM-PUF’s golden
response at varying operating conditions. We believe this
model may be of independent interest.
– Our ML training method involves continually learning

errors in the presence of temperature/voltage variations,
which is improved upon using transfer learning to make
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the trained model time-independent and agnostic across
SRAM-PUF instances from the same device family.

• Novel post-processing methodology: We propose a post-
processing methodology for SRAM-PUFs which works in
conjunction with helper data generated at the ambient con-
dition and a fixed ECC capable of only correcting a few bits
as in the nominal condition.

• Extensive experimental evaluation: Finally, we validate
the adequacy of our methodology by performing extensive
experiments on 20 SRAM-PUF instances from two device
families: the Arduino UNO (an 8-bit microcontroller unit
with 2 KB SRAM) and the Arduino Zero (a 32-bit micro-
controller unit with 32 KB SRAM). We obtained promising
results on the SRAM-PUF instances operating over a wide
range of temperature and voltage fluctuations, both in terms
of resources when compared to a variable ECC circuit
and with respect to entropy leakage when multiple helper
information is utilized.

The artifacts to replicate the results of this work are
available at GitHub: https://github.com/SEAL-IIT-KGP/
The-SRAM-PUF-Calibration-Chronicles. The rest of the
paper is organized as follows. Sections II and III detail
our proposed two-step methodology for improving the
effective reliability of SRAM-PUFs by re-calibrating the PUF
responses. The experimental setup, results of our proposed
methodology, and comparison with state-of-the-art approaches
are presented in Section IV. Thereafter, Section V throws light
on some interesting perspectives with Section VI concluding
the paper.

II. PROPOSED APPROACH (STEP-1): PREDICTING
NUMBER OF WINDOW ERRORS USING ML

The challenge of predicting bit-flips at a given location in
SRAM-PUFs arises from the limited information available for
a single SRAM cell to understand its error dependence on
operating conditions. The reliability loss can be attributed to
fundamental effects like Negative Bias Temperature Instability
(NBTI) [21], which is difficult to model without the knowledge
of device-level parameters of the SRAM cell. Fortunately,
there exists spatial correlation (neighborhood analysis) in
SRAM-PUF bits, and it is a well-studied area in the litera-
ture [22]. This neighborhood analysis revealed that the most
stable bits depend on the stability of their neighbors, i.e.,
those surrounded by other stable bits flip less over time. This
reported information motivated us to take a closer look into
the spatial correlation in the SRAM-PUF cells with respect to
errors arising from environmental variations, i.e., temperature
and voltage fluctuations.

Spatial correlations within SRAM arrays reveal that cells in
close physical proximity exhibit similar reliabilities. However,
the logical addressing in microcontrollers’ embedded SRAMs
doesn’t directly mirror this physical arrangement. By applying
insights from past reverse engineering efforts, specifically,
those outlined in [23], we deduce the physical locations
corresponding to logical addresses. For the ATMega328P,
leveraging architectural specifics—like its four SRAM banks
of 64 × 64 cells and 8 : 1 column multiplexers—helps us
develop an accurate memory map with high neighborhood
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Fig. 2: (a) Overlapping 2 × 2 windows in SRAM-PUFs, and
prediction of the number of window errors using (b) ML
models (both linear and spline) for finding the best-fit curve.

correlation in reliabilities. This mapping shows that a physical
row in a bank correlates to eight consecutive logical addresses,
each yielding an 8-bit response, equating to 512 logical
addresses per bank. Through this memory map, we observe
an increase in the average number of unstable cells within
a 5 × 5 window surrounding an unstable cell from 2.361 to
2.83, demonstrating a significant spatial correlation. Similarly,
for the SAMD21 microcontroller in ARM Cortex M0+, we
adjust the ATMega328P’s memory map to accommodate 16
SRAM banks, each with four 64 × 64 sub-banks. Here, each
physical row maps to eight logical addresses but spaced out by
four, each producing a 32-bit response. This adapted mapping
increases the average count of unstable cells in a 5×5 window
around an unstable cell from 13.581 to 14.62, further affirming
the presence of location-dependent reliability correlations.

Leveraging the existence of spatial correlations in SRAM-
PUFs and the reliability-based memory map, we propose
predicting the number of errors in an (s × t)-sized window
rather than focusing on a single cell. Next, we employ small
windows, i.e., choose relatively low values of s and t, to
accurately capture the neighborhood dependence, as well as
to have a manageable-sized search space to locate precise
error locations. From our empirical analysis (described later in
Section II-D), we found larger window sizes are less effective
in finding precise error locations, as the search space expands
exponentially and the dependence of SRAM cells within the
same window but far from the reference cell diminishes.

In our methodology, we first partition the entire N × N
SRAM-PUF array into s × t sub-arrays for chosen values of
s, t, and predict the number of errors in each sub-array at a
given temperature/ voltage (as the case may be), using the
PUF response at different temperatures/voltages and devices.
Figure 2a shows overlapping windows of size 2×2, where
and correct positions denote errors are denoted by . Next,
we present an ML approach to predict the number of errors
in a window. This encompasses the first step of our post-
processing scheme. The variables required for ML training and
inference are detailed in Table I. The second step, as entailed
in Section III, would be to develop a novel combinatorial
approach to use this information of the number of erroneous

1 average number of unstable cells within a 5× 5 window surrounding
an unstable cell is computed using a random memory map

https://github.com/SEAL-IIT-KGP/The-SRAM-PUF-Calibration-Chronicles
https://github.com/SEAL-IIT-KGP/The-SRAM-PUF-Calibration-Chronicles
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Notation Description Typical Values
u temperature or voltage

[−25◦, 70◦] C,
[3.8, 6.2] VOperating u∗ target u for prediction

Condition U set of all u’s
uref u value at ambient condition 24◦ C, 5 V
ustep resolution of temperature/voltage change 2.5◦ C, 0.2 V

SRAM-PUF

p device index -
pt target device during inference -
P set of all p’s -
c challenge (address) -
Cw set of c’s in a window w -

PUFp,u(c) response for pth device at u and challenge c {0, 1}
nMeas number of PUF measurements 15

M(PUFp,u(c)) majority voted PUFp,u(c) {0, 1}
Relp(c) response reliability corresponding to c for device p [50%, 100%]

w window index -
Windowing s× t window dimension with s rows & t columns 2× 2
Condition D total number of windows 8K

Errw(u) total number of measured errors in w at u {0, . . . , 4}

B-Spline
Inputs

ds degree of piecewise polynomials 3
M number of knots 10
L number of control points ds +M + 1 14

B-Spline
Model

Parameter

oi ith control point o -
Ni,ds(u) ith basis function N(u) of degree ds -
fw,l(u) lower model for w ∀u < uref -
fw,u(u) upper model for w ∀u > uref -
fw(u) complete model for w ∀u -

Spline Output PErrw(u) total number of predicted errors in w at u {0, . . . , 4}
τ time instance of measuring PUF response -
τk training time instance -

Learning τl test time instance -
Continual uk operating condition at τk [−25◦, 70◦] C,

[3.8, 6.2] Vul operating condition at τl
τref time instance at ambient condition -
τstep time resolution for temporal measurements 30 minutes

Table I: Notations and typical values for ML training and
inference.

cells in the window and reliability information to predict the
exact error locations. This information of the neighboring cells
in a window helps us make better collective decisions for
the fixed ECC to correct errors much beyond its capability
at extreme operating conditions.
A. Model for Predicting the Number of Errors in a Window

The number of errors in an s×t window ranges from zero to
a maximum of s · t. The increasing trends of these errors with
changing operating conditions follow a non-linear relationship,
which cannot be captured accurately with linear/logistic re-
gression techniques, as shown in Fig. 2b. On the other hand,
standard polynomial regression techniques using the least
squares method suffer from oscillatory behavior at the end-
points [24]. This oscillatory effect worsens for higher-degree
polynomials, making them ill-suited to predict window errors
at new operating conditions. To overcome these drawbacks, we
resort to using B-splines or basis splines, a well-established
approach [25] for curve fitting on experimental data to capture
the non-linearity in the number of window errors with respect
to the fine-grained change in the operating conditions. B-
splines use piecewise polynomials of degree ds as basis
functions, providing modeling flexibility and high accuracy for
lower degrees (3-to-4) compared to higher-degree polynomial
regression. Furthermore, they parsimoniously adapt to the
number of knots - joining point for piecewise polynomials,
preventing the oscillatory behavior at boundaries.
Model Construction: The shape of the curve is determined
by L control points, where L = ds + M + 1 with M being
the number of knots and ds being the polynomial degree.
Our model fw(u) is formulated as a linear combination of
control points oi and basis function Ni,ds

(u) and is denoted
as fw(u) =

∑L−1
i=0 oiNi,ds

(u);L > ds − 1. The basis
functions Ni,ds

(u) are piece-wise polynomials of degree ds,

Algorithm 1: PUF specific continual learning
Training until τk where, τk > τref:
Initialize τk = τref, fw(u) = 0 ∀ u ∈ U
while (!stop) do

w = 0
while w < D do

if (uk = uref):fw(u) = 0;
else: /* Update continually */
Errw(uk) =

∑
c∈Cw

|PUFn,uk
(c) − M(PUFn,uref (c))|

fw,l(u) = model.fit([u, Errw(u)] ∀ uk < u < uref)
fw,u(u) = model.fit([u, Errw(u)] ∀ uk > u > uref)
/* aggregate model for either side of uref */
fw(u) = (fw,l(u), fw,u(u)) ∀ u ∈ U
w = w + 1;

τk = τk + τstep

Inference at time τl > τk with temperature/ voltage u∗
l :

fw(u∗
l ) = model.predict(u∗

l )
Evaluate PErrw(u∗

l )

each of which is defined over the domain of a knot vector
Uk = {uk,1, uk,2, . . . , uk,M}. All basis functions have the
same degree and continuity properties but individually model
the number of errors in each knot span uk,i < u < uk,i+1.
The control points computed based on the knots determine the
overall shape of the curve along with the basis functions.
Next, we train the B-spline model fw(u) for wth window as a
function of temperature/ voltage u using training data with the
commonly used least square loss function. During the testing
phase, the model predicts the number of errors at a target
temperature/ voltage condition u∗ for the wth, s × t window
and is given by PErrw(u∗) as:

PErrw(u∗) =


0, fw(u

∗) < 0.5

r, fw(u
∗) ≥ r − 0.5, < r + 0.5

∀ r ∈ {1, . . . , st− 1}
st, fw(u

∗) ≥ st− 0.5

. (1)

Using L, ds,M as independent inputs to the B-spline, the
model parameters oi, Ni,ds

(u), fw(u) are learnt during train-
ing, to obtain PErrw(u∗) as output as shown in Table I.

B. Continual Learning (CL): Specific to the device under test

The optimal B-spline parameters predicting the number of
window errors are found using continuous ML training on a
target device under test pt. The training dataset comprises the
PUF challenge c, temperature/ voltage u ∈ U as its feature
set, and the measured number of window errors Errw(uk) with
respect to the ambient condition uref as its label. We reset
our model at the ambient condition (time τref) and continually
update it at different training time instances τk where τk > τref.
The PUF golden response at ambient condition (uref) is used
as the reference to measure the number of window errors,
Errw(uk) for each window w, where uk is the operating
condition at τk. This is given by:

M(PUFp,uref(c)) = Mode
(
[PUFp,uref(c)]

nMeas
)

Errw(uk) =
∑

c∈Cw

|M(PUFp,uk
(c))− M(PUFp,uref(c))| (2)

where, Cw is the challenge (address) set in window w, nMeas
is the number of measurements, and M(PUFp,uk

(c)) is the
majority-voted response at time τk with operating condition
uk for challenge c on device p.

Specifically, the training dataset for temperature/ voltage at
τk comprises of all readings from uk < u < uref or uref <
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Algorithm 2: Transfer learning ML model from refer-
ence devices to device-under-test of the same family
/* training once during enrollment; */
Training for all u ∈ [umin, umax];
Initialize w = 0
while w < D do

/* find p∗
w with largest correlation in reliability

with pt */
p∗
w = argmaxp∈P\{pt}

∏
c∈Cw

Relp(c)Relpt (c)
u = umin
while u < umax do

Errw(u) =
∑

c∈Cw
|PUFp∗w,u(c) − M(PUFp∗w,uref

(c))|
u = u + ustep;

/* Transfer model: p∗
w → pt */

fw,l(u) = model.fit([u, Errw(u)] ∀ u < uref)
fw,u(u) = model.fit([u, Errw(u)] ∀ u ≥ uref)
/* aggregate model for either side of uref */
fw(u) = (fw,l(u), fw,u(u)) ∀ u ∈ U
w = w + 1;

Inference at target temperature/ voltage u∗:
fw(u∗) = model.predict(u∗)
Evaluate PErrw(u∗)

u < uk to learn the decreasing as well as increasing temper-
ature/ voltage trends separately, where uref = Tref (ambient
temperature) or uref = VDD (ambient voltage). The B-spline
model fitting function, model.fit() shown in Algorithm 1
learns the model parameters, which are then used to predict
the number of window errors at test time instance τl (τl > τk)
using model prediction function model.predict(), eval-
uating fw(u

∗
l ). This process is repeated for all the D numbers

of s ·t windows. The trained model is deployed on a controller
board equipped with additional memory, which continuously
monitors the changing operating conditions of the PUF under
consideration. Thereafter, the trained parameters are stored
on the controller and used for re-calibration corresponding
to device p at a new time instance, as shown in Fig. 3a.
However, the aforementioned continual learning has to be
conducted chip-by-chip because the temperature/ voltage vari-
ation behavior for each PUF instance can be different due
to the inevitable intrinsic device properties. To alleviate this
issue, in the subsequent sub-section, we answer the previously
raised question: Can we incorporate transfer learning for
estimating the errors in SRAM-PUF responses at adverse
operating conditions?

C. Transfer Learning (TL): Learning from reference devices
of the same family

To overcome the scalability challenge and the time depen-
dence of PUF-specific training, which requires us to train for
each PUF instance in sequential time steps, we propose using
transfer learning for the first time in the context of SRAM-
PUFs. This methodology comprises the Training phase and
the Testing phase. In the training phase, we collect the raw
PUF responses from a set of reference devices belonging to
the same manufacturer as our device-under-test. This is done
by sweeping the temperature/ voltage to find the number of
window errors Errw(u) concerning the golden response at
ambient condition (uref) for each of these reference devices.
At this point, a natural question arises: Which reference device
should we use to predict the number of errors for a given
window in the “device-under-test”?
We address this by choosing the reference device p∗w, which
has the highest correlation of its ambient reliability infor-
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Fig. 3: Block diagram for (a) continual learning and (b)
transfer learning.

mation with that of the device-under-test pt for a given
window w. The reliability information at uref for PUF p at
c is given by Relp(c) = Pr (PUFp,uref(c) = M(PUFp,uref(c)))
where PUFp,uref(c) is the measured response at temperature/
voltage uref. The reference device p∗w for window w is given
by argmaxp∈P\{pt}

∏
c∈Cw

Relp(c)Relpt(c) where, Relpt(c)
is the ambient reliability information of the target device for
challenge c, Cw denotes the set of challenges in window w,
and P\{pt} refers to the set of devices used for training
(excluding pt). We compute the maximum correlation over
the product of reliabilities as it is more sensitive to change in
per-bit reliability than averaging with the sum. The reference
device p∗w for each window w is chosen during the enrollment
phase of the device-under-test using its ambient reliability
information. We split the training data for window w, obtained
from p∗w, into two subsets, i.e., u < uref and u ≥ uref to
learn the decreasing/increasing trends separately as shown in
Algorithm 2. Thereafter, we transfer the B-spline parameters
of a window w from p∗w to pt, to predict its errors at target
operating conditions u∗. Finally, the trained parameters are
programmed onto a controller device in the test phase to re-
calibrate the PUF response of the “target” device as shown in
Fig. 3b. Nevertheless, a crucial factor in our approach involves
determining the correct window size to reap maximum benefit
from the proposed methodology. To do so, we perform a
thorough empirical analysis and determine the suitable window
size, as detailed in the next subsection.

D. Determining Optimal Window Size

The accuracy of the B-spline model determines the window
size used to predict the number of errors. The errors in the
SRAM cells induced due to PVT variations are spread out
across the memory array, with clusters of local errors in the
vicinity of selected cells [22]. This discourages the use of
large asymmetric windows, such as 32× 1, as they lack local
neighborhood error information and make it more difficult
to accurately predict the number of errors in a single large
chunk. Furthermore, the possible number of error patterns
grows exponentially with the window size, which makes it
challenging to uncover the exact error location. Figure 4 shows
that the predicted number of errors for continual learning (CL)
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4× 4, 3× 3 2× 2 (f) 1× 1.

and transfer learning (TL) for a sample window at −20◦ C
have maximum misprediction value of 13 and 7 respectively.

On the other hand, symmetric windows help uniformly
capture the neighborhood information of errors. However, the
total number of possible errors increases exponentially with
window size, leading to the problem of increased search space
for finding the exact errors. This problem can be empirically
seen in Figs. 4, where the mispredictions in the number of
errors reduces as the window size decreases from 5 × 5
to 2 × 2 as it facilitates more inclusion of localized error
neighborhoods while keeping the search space small. The
2 × 2 window offers the best possible symmetric window
configuration for finding the error locations tractably, with
the maximum (average) misprediction value of 3 (0.7). The
further reduction of the window size to 1×1 (Fig. 4) represents
the extreme case of predicting the error locations where the
combinatorics step is not required. Both 2 × 2 and 1 × 1
windows are promising in terms of predicting the number
of window errors as they have the shortest search space of
all the windows (empirical comparison provided in Section
5.2). However, any mispredictions in the case of a 1 × 1
window contribute negatively to the final BER. Therefore, it
has stringent requirements on the prediction accuracy (> 99%)
accuracy to achieve < 1% BER required to satisfy the desired
KER level of <1e-6. This motivates us to formulate the second
step of our proposed approach by using a novel combinatorics
approach for identifying the precise error locations in the case
of 2× 2 window, which is described next.

III. PROPOSED APPROACH (STEP-2): COMBINATORICS
APPROACH IN PREDICTING BIT-FLIPS

Once the number of window errors via ML prediction is
known, an immediate question arises: How do we unmask the
error locations? We do this by utilizing the number of errors
in overlapping windows that allow us to predict the state of the
bit-flip of the target SRAM cell. For a deeper understanding,
let us consider a 3 × 3 window that can be split into four
overlapping 2 × 2 windows, each with e1, e2, e3, e4 errors.

es1 es2
es4 es5

es2 es3
es5 es6

es4 es5
es7 es8

es5 es6
es8 es9

es5 es6
es8 es9

es2 es3es1
es4
es7

e1 e2

e3 e4

Fig. 5: Error locations in 3× 3 window.

We use the term Number of Errors (NOE) to denote the set
{e1, e2, e3, e4} corresponding to a 3 × 3 window. This has
been illustrated in Fig. 5. Now, each 2× 2 window can have
between 0 to 4 errors. All the 2× 2 sub-windows in a 3× 3
window include the middle cell (denoted by es5 in Fig. 5),
which leads to the middle cell bit-flip dependence on the NOE.
In the case of some NOE’s such as (0, 0, 0, 0) (see Fig. 6a) or
(4, 4, 4, 4) (see Fig. 6b), the middle cell bit-flip is predicted
with absolute certainty. If the number of errors in a window is
0 (4), then none (all) of the SRAM cells in that window have
errors. However, in certain cases (as shown in Fig. 6d NOE =
(3, 3, 3, 3) or in Fig. 6c NOE = (1, 1, 1, 1)), the middle cell
can only be predicted with partial (87.5%) certainty as there
exist multiple error patterns which satisfy the NOE but have
different values for the middle cell. This is significantly better
than randomly predicting the value of a single cell without
any window information with a bit-flip probability of 50%.

Fig. 6c and Fig. 6d show one of the seven cases where the
middle cell is predicted correctly for NOE (1, 1, 1, 1) and NOE
(3, 3, 3, 3) respectively. One may note that all possible NOEs
or combinations of e1, e2, e3, e4 are not physically feasible as
the 2× 2 windows overlap. For example, NOE = (4,0,0,0) is
not possible since if one 2× 2 window has four errors, other
neighboring 2×2 windows should at least have one. However,
the ML model may occasionally predict invalid NOE values,
especially in transfer learning, where a window model from a
reference device is utilized for the device-under-test. In such
cases, we take corrective action by mapping the invalid NOE to
the nearest valid NOE based on Euclidean distance. Consider
an example where the wrongly predicted NOE is (4, 0, 0, 0).
After correction, it gets mapped to (3, 1, 1, 0). Also, one is
chosen arbitrarily if there are multiple equidistant valid NOEs
from the wrongly predicted NOE.
Mathematically, this observation can be justified by formu-
lating the problem through a set of linear equations. Let us
consider the error in nine SRAM cells of a 3× 3 window as
es,i where i ∈ {1, 2, . . . , 9} and es,i ∈ {0, 1} (see Fig. 5).
Then, using the information obtained from the ML prediction,
we formulate the following equations:

es,1 + es,2 + es,4 + es,5 = e1; es,2 + es,3 + es,6 + es,5 = e2

es,4 + es,7 + es,8 + es,5 = e3; es,6 + es,8 + es,9 + es,5 = e4
(3)

Our aim is to find es,5, which is a variable in all the sub-
equations of Eqn. (3). The set of equations solved over the
constrained solution space of possible error combinations has
no unique solution as there are fewer equations than unknowns
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Fig. 6: Error patterns for different NOE’s with absolute ((a)
& (b)) and partial ((c) & (d)) predictability.
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Approximate 
Error 
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Fig. 7: Examples of error patterns (a) with 100% predictability
(b) with < 100% predictability, and (c) empirical predictability
for all unique error patterns.

(an “underdetermined” system of linear equations). Based on
the choice of our window size, we empirically analyze the
solution space rather than resorting to closed-form expressions
for the optimal solution.

In order to analyze NOEs further, consider an example of a
3× 3 window with zero errors. Each of the nine SRAM cells
can have an error leading to 29−1 = 511 unique error patterns.
Figure 7a shows the case of error patterns corresponding
to an NOE with 100% predictability, and Fig. 7b depicts
the partial predictability case. The latter case occurs when
multiple solutions exist for Eqn. (3), which necessarily do

Noisy 

PUF at 

Temp T

Trained ML Model

Find error locations

Helper

Data at Tref

ECC 

Decoder

Key Genxn

p

xc

wc wd

xd

kd

Proposed Approach

el

Temp T

# of window errors

Fig. 8: Reconstruction using helper data & ML-assisted ECC.

not have the same value of es,5. In our empirical analysis
for Eqn. (3), we find an NOE associated with each error
pattern leading to 205 unique NOE, which covers the space
of 511 error patterns. Furthermore, we empirically conclude
there are 142 NOEs, which always map to a deterministic
middle cell error leading to 100% predictability as shown
in Fig. 7c. For the remaining 63 NOEs, the mapping to
the middle cell depends on the specific error pattern. In
such a case, the question arises, Which error pattern is the
most probable, and how do we determine that? To answer
the question, consider the row vector e = [es,1es,2 . . . es,9]
denoting the error patterns for a given NOE. We find the
probability of occurrence Po(e) for each error pattern e using
the reliability information at uref, Rel(c). We evaluate Po(e)
as:

∏9
i=1 ((1− es,i)Rel(ci) + es,i(1− Rel(ci))).

The error pattern with the highest Po(e) is chosen for
a given NOE, thereby providing the most probable error
pattern e and, in turn, revealing es,5. Lastly, the error location
vector el = [el,1, el,2, . . . , el,n] is XORed with the noisy
PUF response xn to obtain the re-calibrated PUF response xc

(see Fig. 8). Thereafter, the standard PUF reconstruction steps
using a fixed ECC are followed to obtain the decoded PUF
response xd. One may note that our ML approach re-calibrates
the systematic errors due to voltage/ temperature, along with
a fixed low-overhead ECC corrects the unpredictable noise-
related errors. In essence, both together achieve a close to
the desired 100% reliability. However, the probabilistic nature
of the ML approach may lead to false positives in the error
location vector el. This arises for the ith location when,
el,i

† is predicted as 1 even though its correct value is 0.
Interestingly, our empirical observation showed that the 142
NOEs with deterministic middle cell error do not contribute to
false positives. The remaining 63 NOEs with non-deterministic
middle cell error contribute to the false positives, occurring in
less than 2% of the total windows in the worst case. The
presence of isolated error patterns in training data having
low spatial correlation (windows with single error) contributes
to the false positive rate. We observe that the false positive
rate is the minimum for 2 × 2 window compared to 1 × 1
windows with no neighborhood information and 3×3 windows
with a higher range of errors. The false positive rate can be
reduced by correctly predicting the isolated errors with no
spatial correlation, which is challenging to achieve without
knowledge of SRAM cell parameters. Nevertheless, the fixed

†In the error location vector el, the ith index value el,i is obtained from
middle cell error es,5 of the ith enclosing 3× 3 window.
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Fig. 9: Our test-bed architecture at the time of data collection
using (a) temperature chamber, (b) DC power supply across
multiple SRAM-PUFs, and our (c) ML Inference setup with
Arduino Nano Sense.

ECC, implemented after the combinatorics unit, effectively
eliminates false positives arising in these 63 NOEs, thereby
preserving the overall BER. We present our proposed scheme’s
experimental details, results, and analysis hereafter.

IV. EXPERIMENTAL DETAILS, RESULTS, AND ANALYSIS

This work involves implementing the SRAM-PUF in the
immensely popular lightweight development board Arduino
UNO, equipped with an 8-bit AVR ATmega328P microcon-
troller with 2kB SRAM memory. Additionally, to evaluate
the impact of our proposed methodology on scaled-up mem-
ories, we extended our experiments to Arduino-Zero (a 32-
bit microcontroller), consisting of an ARM Cortex M0+ and
SAMD21 microcontroller with 32 kB SRAM. Both the Ar-
duino UNO and Zero boards housing SRAM-PUF are driven
by a controller and a relay module that acts as a switch
for facilitating the automated collection of the start-up-values
of the SRAM cell. The average uniformity, uniqueness, and
reliability for UNO were obtained as 62.60%, 46.99%, and
98.02%. Additionally for Zero these values were 54.72%,
49.64%, and 96.08% respectively. Furthermore, the start-up
data was collected 15 times at ambient conditions to generate
the golden response using majority voting technique [14]. We
use only the stable cells for our analysis having reliability
between 90-100% as ≈ 90% of the SRAM cell satisfies this
criterion in both Arduino UNO and Zero boards.

A. Experimental Setup

Our test-bed architecture involves studying the impact of
environmental variations across the temperature spectrum of
−20◦ to 70◦C. For this purpose, we use the CME Benchtop
Temperature Chamber to perform a temperature sweep over
the entire range and collect the training data in steps of 2.5◦

C (see Fig. 9a). On the other hand, for the voltage sweep, a
programmable DC power supply was employed to control the
input voltage to the “Vin” pin on the Arduino UNO (Zero)
board within the range of 3.8 to 6.2 V (7 to 12 V) with step
size of 0.2 V as shown in Fig. 9b. The voltage sweep range
is tied to the operating range of the onboard voltage regulator
for UNO and Zero boards, beyond which the entire power
shuts off (lower limit) or the board ceases to be functional
(upper limit). However, from our experiments (presented in
Sec. IV-C1), we infer that the internal voltage of the SRAM
memory array gets impacted by the external supply as bit-flips
are observed in the presence of voltage fluctuations.
Next, to capture the variable number of window errors under
changing operating conditions, the B-Spline model with ten
knots and third-order basis polynomials was selected as this
configuration of the cubic spline with uniformly spaced knots
gives the highest prediction accuracy even for worst-case BER.

B. Comparison between 2× 2 and 1× 1 Windows

The reduction of window size to 1 × 1 represents the
extreme case of predicting the precise error locations where
the combinatorics unit for uncovering the location of bit-flips
is not required. Although using a 1 × 1 window improves
the prediction accuracy of transfer learning when compared to
2×2 window , the < 90% prediction accuracy for temperatures
T < 0◦ C leads to a post-ECC BER of > 10%, which is not
desirable. This is because predicting the error locations directly
using the 1 × 1 window with no neighborhood information
introduces false positives or additional errors. Henceforth, we
shall use the 2× 2 windows for detailed analysis.

C. Error Reduction after Re-calibration of PUF Response

Our proposed ML-assisted ECC approach provides us with a
re-calibrated PUF response over a wide range of temperature
and voltage fluctuations, which is closer to the PUF golden
response at ambient conditions. This, in turn reduces the BER
while achieving an equivalent min-entropy loss as a standard
ECC scheme.

1) Re-calibration for PVT Variations: Our experimentation
with multiple SRAM-PUF instances shows an increasing trend
in BER as we move away from ambient operating conditions.
This increased BER lies in the range of 10%- 17% at −20◦C
for SRAM-PUFs implemented on Arduino UNO and 5%- 7%
on Arduino Zero as shown in Fig. 10a and 10b respectively.
However, from Fig. 10c and 10d, it can be seen that the
BER is relatively smaller with respect to voltage variations in
both UNO and Zero boards respectively. This observation can
be attributed to the presence of on-board voltage regulators.
Nevertheless, the internal supply of the SRAM memory gets
impacted due to the voltage fluctuations leading to bit-flips,
necessitating the need for error correction techniques.
The increased BER induced due to temperature variations
and voltage fluctuations are reduced via re-calibrating the
reference response using our two-step approach. In the first
step of window error prediction, our ML model demon-
strates a prediction accuracy of approximately > 95% for
continual learning (CL) across all temperatures (Fig. 11a)
and voltage conditions (Fig. 11b). The CL accuracy trend
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Fig. 10: The increasing BER across temperature variations for SRAM-PUF instances implemented on (a) Arduino UNO and
(b) Arduino Zero boards. The BER was obtained across voltage fluctuations for SRAM-PUF instances and implemented on
(c) Arduino UNO and (d) Arduino Zero boards.
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Arduino UNO

Arduino Zero

(b)
Fig. 11: Prediction accuracy of window errors using continual (CL) and transfer learning (TL) across the entire (a) temperature
and (b) voltage sweep for Arduino Uno and Arduino Zero.

for UNO (approximately > 82% over boards) is similar for
the scaled-up memory in Arduino Zero, signifying our ML
approach’s independent applicability. However, due to the
associated training cost for each device, transfer learning (TL)
emerges as a more attractive approach for generating a PUF-
agnostic model. The increase in TL accuracy from ≈ 58%
to 93% as we approach the ambient condition arises due to
the high correlation in ambient PUF responses across multiple
boards. Note that, our ML model does not overfit the training
samples, as the accuracy remains consistent even with the
application of regularization techniques such as L1 and L2
regularization. The accuracy obtained through 5-fold cross-
validation, with similar accuracies across each fold, further
indicates the absence of overfitting.

The lower accuracy in transfer learning at extreme condi-
tions primarily stems from the failure to predict a 1-bit error in
windows that always had zero errors in the training set of its
reference devices. However, an ECC with an error correcting
capacity t consistently corrects these singular window errors,
ultimately resulting in a low BER ⪅ 1% and KER of ⪅ 1e-6.
In the case of the worst board with transfer learning accuracy
ranging from 55%-90% (Fig. 11a for UNO), the raw BER
reduces from 13% to 6%, which is thereafter reduced to ⪅1%
using a fixed ECC. Our ECC parameters are BCH[127,71,9]
and BCH[63,30,6] for UNO and Zero, respectively, which

meet the BER requirement for all boards.

2) Entropy Loss Estimation: The min-entropy loss is com-
puted as H∞(X) − H̃∞(X|P ), following the relationship
between helper-data, coset, and standard array as defined
in [26]. Figure 12a shows that for Arduino, UNO min-
entropy increases with temperature as the PUF uniformity
reduces, becoming maximum when uniformity becomes closer
to 50%. However, the uniformity-temperature trend for the
Zero board (54% average uniformity) is reversed (Fig. 12a).
Nonetheless, in both cases, the change in min-entropy is lower
for our approach than standard ECC schemes as our method
strives to narrow the gap between uniformity w.r.t. the ambient
conditions. Note that we use transfer learning results (TL) for
min-entropy analysis due to its generality.

Next, we evaluate the min-entropy loss for a BCH[15,11,1]
code with maximum loss of n − k = 4. Following the min-
entropy loss calculation in [26] we observe lower loss values,
which increase gradually with temperature for our ML-assisted
ECC as opposed to standard ECC with fixed helper data in
case of UNO (see Fig. 12b). Additionally, our method achieves
lower min-entropy loss at all temperatures than the multiple
enrollment scheme [8]. On the other hand, the min-entropy
loss with multiple helper data shows an erratic behavior for
Arduino Zero with close-to-ideal PUF uniformity, compared
to the relatively constant min-entropy loss of 3.69 in our case
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Fig. 12: Temperature dependence of (a) uniformity and min-entropy for SRAM-PUF implementation and (b) min-entropy loss
estimation for Arduino UNO, and Arduino Zero.

Code: BCH[n,k,t], Raw Final KER Volt Temp Max Helper Raw Post-processing Latency Energy$ Test PUF
Rep[n,1], or both BER(%) BER(%) Range(V) Range(◦C) Leakage* Bits Bits Instruction Count (Cycles) (µJ/decode) Platform

Concatenated Code [9] Rep[9,1] + BCH[121,86,5] 15 - 6.54e-5 - - 1003 1089 2178 8.9K 257 1.28 -
Standard ECC [27] BCH[511,19,119] 15 - 2.97e-7 - - 492 511 4599 205K 1141 132 -
Standard ECC [27] BCH[1023,46,219] 15 - 1.85e-8 - - 977 1023 4092 378K 2265 486 -

Our Work

CL Concatenated:

13.02

0.32 1.33e-9

[3.8,6.2] [-16,70]
13K# 268 2.35

Arduino
UNO

TL Rep[5,1] + BCH[127,99,4] 0.85 2.52e-6 536 635 1270

CL BCH[127,71,9] 0.75 6.07e-7 21.7K# 273 3.75TL 0.98 5.2e-6 56 127 381

CL Concatenated:

7.93

0.11 8.97e-11

[7,12] [-25,66.5]
11.3K# 139 1.08

Arduino
Zero

TL Rep[5,1] + BCH[63,45,3] 0.15 4.73e-10 270 315 1260

CL BCH[63,30,6] 0.021 6e-15 16.5K# 142 1.52TL 0.055 2e-12 33 63 378

Soft Decoding [28] Rep[3,1] + RM[2,6] 15 - <1e-6 - - 170 192 1536 3.7K 1680 3.52 -
Soft Decoding with

Rep[3,1] + RM[2,5]

7.12 1.29 2.25e-9

[3.8,6.2]

[-1,70]

80 96 1056
1.67K 650 1.1

Arduino
UNO

all reliabilities 17.2 10.55 1.67e-2 [-25,70]

Our Work CL 1.29 2.25e-9 6.5K# 672 2.3TL 17.2 1.29 2.25e-9 [-25,70]

Soft Decoding with

Rep[3,1] + RM[2,4]

4.48 0.52 8.5e-7

[7,12]

[1.5,59]

37 48 768
1K 364 0.9

Arduino
Zero

all reliabilities 9.00 3.09 9.25e-4 [-25,70]

Our Work CL 0.67 2.16e-6 6K# 384 1.4TL 9.00 0.7 2.7e-6 [-25,70]

# instruction count of our proposed architecture including ML model inference (5.5K) using a B-spline with 10 knots and cubic spline, and ECC (see Fig. 8); & Key size of 24 as opposed to 128 for all
other works; $ energy cost of post-processing implementation on Arduino Nano Sense board for all works; M() - Majority Voting.; ∗ (n− k) is the upper bound for the helper data leakage

Table II: Comparison with state-of-the-art works during key-regeneration phase.

(Fig. 12b). Interestingly, in both cases, our method fares better
in terms of change in min-entropy loss. We attain a min-
entropy loss between 2-2.5 bits for Arduino UNO, performing
at par with the standard ECC techniques with an average loss
of 2 bits and multiple helper data methods with an average
of 2.5 bits for a 15-bit codeword for UNO board. One may
note that similar min-entropy loss trends are also observed for
large ECC codes such as BCH[127,29,21], as shown in [26].

D. Comparison with Other ECC techniques

Key Generation: A key generation function is a part
of HDA (e.g., hash function), which takes PUF response
as input to generate the cryptographic key. The relation-
ship between the key error rate (KER) and the bit error
rate (BER) for a [n, k, t] linear code is given by KER = 1−(∑t

i=0

(
n
i

)
(1−BER)(n−i)BERi

)
where, n is the codeword

length, k is the message length, and t is the maximum error-
correcting capability of the linear code. A conservative KER
of ⪅ 10−6 [5] dictates the requirement of high error correcting
capability (t > 100) for a raw BER of 15% [9]. From Table II,
we see that our ML-assisted ECC reduces the error correcting
capacity t of the fixed ECC required for achieving an effective
KER of ⪅ 10−6 over a wide range of temperature/ voltages.

Helper Data Leakage: The helper data leakage (upper
bounded by (n − k)) drops as the redundancy of ECC [10]

or the error correction capacity t reduces. Our ML-based PUF
re-calibration obtains ≈ 1% worst-case final BER in all condi-
tions simultaneously with a low helper data leakage compared
to conventional ECC techniques. The lower bound of the
SRAM memory size is determined by the number of PUF raw
bits required for key generation, which is proportional to t. We
only need 381 and 378 raw PUF bits to generate a 128-bit key
using a BCH code for UNO (t = 9) and Zero (t = 6) boards.
This is significantly lower compared to previous works [27]
with t ≥ 18 requiring > 1000 raw PUF bits.

Energy and Latency: To ensure fair comparison in terms of
energy cost and latency incurred for post-processing, we have
implemented all the previous ECC techniques ( [9], [27], [28])
on the Arduino Nano 33 BLE Sense board. Note that the Nano
board implementing the ML-based re-calibration facilitates
testing different SRAM-PUFs, multiple UNO, and Zero boards
with identical post-processing, allowing us to evaluate our
approach against others. It is apparent from Table II that the
proposed ML-assisted BCH[127,71,9] achieves a 35.2× lesser
energy, 4.17× lower latency, and 9.44× lower instruction
count compared to BCH[511,19,119] [27] at iso-KER.

Comparison with Soft Decoding based ECC: Soft-
decoding-based decoders use reliability information to reduce
the ECC resource requirements while achieving the same
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Raw Bit-Error Rate (BER)           Fixed ECC+ Continual Learning
BER with Fixed ECC                 Fixed ECC+ Transfer Learning

Arduino UNO
Rep[3,1]+RM[2,5]

Arduino Zero
Rep[3,1]+RM[2,4]

(a)

Raw Key-Error Rate (KER)           Fixed ECC+ Continual Learning
KER with Fixed ECC                   Fixed ECC+ Transfer Learning

Arduino UNO
Rep[3,1]+RM[2,5]

Arduino Zero
Rep[3,1]+RM[2,4]

KER limitKER limit

(b)
Fig. 13: Temperature dependence of (a) BER after post-processing and (b) the corresponding KER obtained for Arduino UNO
using Rep[3, 1]+RM[2, 5] and Arduino Zero using Rep[3, 1]+RM[2, 4] PUF implementations.

post-ECC BER levels. We highlight that the key difference
between our proposal and soft decoding is that we also factor
in the voltage-temperature dependence of bit errors with the
reliability information. When using soft-decision information
for different environmental conditions i.e., augmenting the soft
decision information at the ambient conditions with reliabili-
ties at varying temperatures/voltages, we observe that the soft-
decoding scheme in conjunction with the Rep[3,1] + RM[2,5]
achieves the desired key-error rate (KER) of < 1e-6 only
in the temperature range of [−1◦, 70◦] C. In contrast, our
proposed post-processing scheme with Rep[3,1] + RM[2,5]
achieves the desired KER of <1e-6 as shown in Fig. 13b
across all operating conditions, even correcting a worst-case
BER of 17.2% (see Fig. 13a). The success of our methodology
is attributed to the fact that it learns the voltage/temperature
dependence of the number of errors per window both for
reliable and unreliable cells, thereby achieving the desired
KER with reduced ECC parameters. Furthermore, we obtain
a massive 52% reduction in the maximum leakage value
and a 30% drop in the number of raw PUF bits required
when compared to [28] with comparable latency and energy
values. Similar trends are observed for Arduino Zero (ARM
Cortex M0+) with lower worst-case BERs, requiring a smaller
concatenated code, i.e., Rep[3,1] + RM[2,4].
E. Impact of both temperature and voltage variations:

The BER worsens at extreme temperature and voltage
variations (maximum of 20% at −20◦ C and 3.8 V) compared
to only temperature variations (15% at −20◦ C) requiring
an ECC of Rep[5,1] + BCH[127,64,10]. However, the spatial
relationship between the errors still persist, which is utilized
in our ML-assisted error correction scheme to reduce the ECC
complexity. Using all the training data from an SRAM-PUF
of the same family, our transfer learning approach reduces
the ECC requirement to Rep[5,1] + BCH[127,86,6], even
correcting a worst-case BER of 20% (see Fig. 14). At the
same temperature, our method also reduces the 3-σ (standard
deviation) of BER caused by voltage variation from 2.23% in
the case of standard ECC to 0.97%.

V. DISCUSSION

ML Model Leakage: Our ML model is trained using
the number of window errors under variable operating con-
ditions, ensuring raw PUF responses remain undisclosed. This

methodology inherently limits the information to differential
error counts rather than exact responses, rendering any attempt
to predict the raw PUF responses merely a random guess.
Notably, adversaries cannot access raw PUF data in SRAM-
PUFs, a category of weak-PUFs designed to protect challenge-
response pairs [11]. Additionally, the model does not retain
ambient reliability data beyond the PUF enrollment phase,
eliminating the risk of reliability-dependent data exposure.
Lastly, given the ML model output, i.e., the error locations at
given operating condition e, the probability of PUF response
x being one, is close to the PUF’s ambient uniformity U , i.e.,
P (x = 1|e = 1) = P (x = 1) ≈ U . One can only predict
response x ∈ {0, 1}n with a probability of 1/

(
n

U ·n
)
, which is

negligible (<1e-25) for a typical raw PUF response size of
n > 100 and 0.45 ≤ U ≤ 0.55. As a result, we do not see
the formulation of an imminent attack vector by exploiting the
proposed ML model.

Memory Overhead: The proposed ML technique imple-
mented on the Arduino BLE 33 Nano Sense board requires
only 512 KB of memory including the storage overhead of the
dark bits mask needed to isolate cells with less than 90% reli-
ability during the reconstruction phase (Note: We use 50% of
the Arduino BLE 33 Nano Sense board’s on-chip flash memory
of 1MB). Since the model parameters depend on the memory
size, it remains consistent across all ECCs, despite varying
computation overheads, as indicated by the post-processing
instruction count in Table II. It should be noted that our ML
approach is functionality-driven, demonstrating efficacy across
a wide range of temperatures and voltages. To optimize the
memory footprint, one potential approach is to design a fixed-
point digital implementation with sparsity awareness, storing
only the non-zero B-spline parameters and sharing the same
parameter value across windows. This optimization would
make our approach competitive with FPGA/ASIC implemen-
tations of SRAM-PUFs equipped with circuit-level reliability
enhancement schemes.

VI. CONCLUSION

This work proposes an ML-based PUF re-calibration
scheme to enhance the reliability of SRAM-PUFs, reducing
their worst-case BER from 17.02% to 1.29% thereby, meeting
the practical KER requirement of < 10−6 for stable key
generation over a wide operating range. The proposed post-
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Arduino UNO @ [3.8,6.2] V
Rep[5,1] + BCH[127,85,6]

Raw Bit-Error Rate (BER)
BER with Fixed ECC                 
Fixed ECC+ Transfer Learning

Fig. 14: Error correction at −20◦ C with 3-σ deviation due to
voltage variation.

processing scheme achieves high reliability without exposing
helper data (single enrollment at ambient conditions) across all
operating conditions and re-configuring the ECC. Our method
is based on inferring the reference point at adverse operating
conditions via learning from the PUF responses 1) at past
operating conditions and 2) transferring the learned model
across devices, aided with combinatorics unit and reliability
information. Our extensive experiments on multiple instances
of SRAM-PUFs in popularly used Arduino UNO and Zero
boards are obtained with a temperature sweep in the range of
[−25, 70]◦ C and a voltage sweep in the range [3.8, 6.2] V and
[7, 12] V respectively, demonstrating the efficacy of our ML-
based approach on real-world SRAM-PUFs. Furthermore, in
the presence of both voltage (3.8V) and temperature (−20◦C)
variation leading to a worst-case BER 20% our proposed
approach corrected it to < 2%. This novel approach provides
low leakage and efficient SRAM-PUF reliability enhancement
over a broad operating regime.
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