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Abstract—In the era of big data, social network services1

continuously modify social connections, leading to dynamic and2

evolving graph data structures. These evolving graphs, vital3

for representing social relationships, pose significant memory4

challenges as they grow over time. To address this, storage-class-5

memory (SCM) emerges as a cost-effective solution alongside6

DRAM. However, contemporary graph evolution processes often7

scatter neighboring vertices across multiple pages, causing weak8

graph spatial locality and high-TLB misses during traversals.9

This article introduces SCM-Based graph-evolving aware data10

arranger (GEAR), a joint management middleware optimizing11

data arrangement on SCMs to enhance graph traversal effi-12

ciency. SCM-based GEAR comprises multilevel page allocation,13

locality-aware data placement, and dual-granularity wear lev-14

eling techniques. Multilevel page allocation prevents scattering15

of neighbor vertices relying on managing each page in a finer-16

granularity, while locality-aware data placement reserves space17

for future updates, maintaining strong graph spatial locality. The18

dual-granularity wear leveler evenly distributes updates across19

SCM pages with considering graph traversing characteristics.20

Evaluation results demonstrate SCM-based GEAR’s superiority,21

achieving 23% to 70% reduction in traversal time compared to22

state-of-the-art frameworks.23

Index Terms—Checkpointing, evolving graph, graph, HW/SW24

Co-design, memory management, middleware, non-volatile25

memory, system software.26
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I. INTRODUCTION 27

SOCIAL network services utilize graph data structures to 28

manage the connections between users. The relationship is 29

highly dynamic, with connections added, updated, or removed 30

at all times [1], [2]. As a result, the underlying graph data 31

structures are dynamic and change with time. These dynamic 32

graphs are known as evolving graphs: the connection between 33

any two users may not be static all the time [3]. As evolving 34

graphs grow over time, so does the system’s memory demand. 35

Storage-class memory (SCM) [4], [5], [6], [7] can augment 36

DRAM to provide larger memory space at a lower price, 37

alleviating the need to constantly add more DRAM to meet 38

memory demand. Recent works in graph processing propose to 39

buffer graph updates in RAM before flushing them to SCMs in 40

batch [8], [9]. Our investigation reveals that such batch updates 41

can be inefficient, with vertice updates spread across multiple 42

batches and neighboring vertices spread across multiple pages. 43

As a result, this characteristic leads to weak graph spatial 44

locality, which may result in high-translation lookaside buffer 45

(TLB) misses during subsequent graph traversals. To improve 46

graph traversing performance, this work proposes a joint 47

management middleware that take graph spatial locality into 48

account in the data placement policy on SCMs. 49

Major social network providers, such as Google [10], 50

Meta [11], and JingDong (JD.com) [2], have adopted graph 51

processing algorithms, such as page rank and graph neural 52

networks, to extract information from Web pages and social 53

networks. A distributed system is one option for storing 54

all graph data in memory. However, building an efficient 55

distributed system remains a challenge, especially for small 56

companies, due to high deployment and maintenance costs, 57

load balancing, and fault tolerance. Out-of-core systems are 58

alternative architectures that run graph processing on a sin- 59

gle consumer-level machine, supplementing limited memory 60

capacity with storage devices. Graph processing system based 61

on out-of-core architecture have gained significant attention in 62

the community [12], [13]. GraphChi [14] proposed breaking 63

down large graphs into small parts and storing them in storage 64

devices. Several works (e.g., FlashGraph [15], Graphene [16], 65

and GraphSSD [17]) have proposed to carefully manage 66

Solid-State Drives by adopting some I/O request merging 67

or sophisticated buffering approaches with considering graph 68

access behaviors. In contrast to processing static graphs, 69
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these systems need a new data structure to track the most70

recent version of each vertex and edge in evolving graphs.71

Section II will provide a comprehensive overview of cutting-72

edge solutions and challenges.73

However, we observed that state-of-the-art evolving graph74

frameworks have poor graph spatial locality, which makes75

them inefficient in executing graph traversal algorithms. We76

proposed a joint management middleware between graph-77

evolving processing and memory devices (including both78

DRAM and SCMs), called the SCM-Based Graph-Evolving79

Aware Data ArrangeR (GEAR). Our goal is to arrange and80

write the evolving graph data into SCMs while achieving81

strong graph spatial locality. The SCM-Based GEAR has three82

major components: 1) multilevel page allocation; 2) locality-83

aware data placement; and 3) a dual-granularity wear leveler.84

1) The main idea behind multilevel page allocation is85

to prevent graph-evolving processes from scattering86

neighbor vertices across different pages. Technically, the87

system maintains multilevel size subpages and assigns88

a suitable-size subpage to accommodate all neighbors89

associated with each vertex, taking into account their90

number.91

2) The locality-aware data placement reserves an unused92

area in each subpage for future graph updates to the cor-93

responding vertex, ensuring strong graph spatial locality94

even as the graph evolves over time.95

3) The dual-granularity wear leveler, in conjunction with96

our page allocation, distributes graph updates evenly97

across all memory pages on SCM during graph evo-98

lution. The evaluation results show that, compared to99

the state-of-the-art frameworks, our SCM-based GEAR100

can save the total execution time by 23%–70% when101

traversing an evolving graph.102

The remainder of this article is organized as follows.103

Section II elaborates the graph evolving processes and shows104

the impact of the weak graph spatial locality on the graph105

traversal time. Section III provides the design concept and106

implementation of the SCM-based GEAR. Section IV evalu-107

ates the proposed strategy. Finally, Section V concludes this108

article.109

II. BACKGROUND, OBSERVATION, AND MOTIVATION110

A. Background111

1) Evolving Graphs: Graphs are commonly used to repre-112

sent the relationship between data points. In general, each node113

in a graph represents a data point, and the edge that connects114

two data points (or nodes) records their relationship. A graph115

is considered a evolving graph if its layout or edge weights116

change over time. Social networks, for example, are constantly117

evolving [18], [19] as new users join and connections are118

established frequently. To analyze an evolving graph over119

time, evolving graph processing systems take snapshots on120

a regular basis [20]. However, systems storing multiple full121

snapshots1 may waste huge memory space to accommodate122

redundant data. Modern graph processing frameworks, like123

1A full snapshot is a snapshot, which contains the entire graph layout in
the moment of taking snapshot.

Fig. 1. Data structure for evolving graphs.

LLAMA [21], use delta snapshot [22] to save memory 124

space by storing only the updated nodes or edges in each 125

snapshot. In other words, each delta snapshot only contains 126

graph updates (e.g., insertion, modification, and deletion) that 127

occurred after the previous delta snapshot, so all snapshots 128

must be read to traverse the entire graph. With support for 129

delta snapshots, evolving graph processing systems can not 130

only provide version control but also efficiently analyze graphs 131

in the time domain. In the rest of this article, “delta snapshot” 132

and “snapshot” are used interchangeably. 133

An evolving graph is typically stored in the format of an 134

adjacency list [23], which is also applied to static graphs. An 135

adjacency list maintains a linked list for each vertex to chain all 136

correlated neighbors, and all updates from the same snapshot 137

are grouped in an array [20]. Its structures enables efficient 138

traversal all neighbors of any vertex in the adjacency list. 139

Fig. 1 shows an evolving graph and its adjacency list format. 140

The graph evolves to its third snapshot. The first snapshot 141

includes four insertions (i.e., (1, 3), (0, 3), (0, 1), and (0, 2), 142

with (1, 3) representing the newly inserted edge connecting 143

vertex 1 and 3. The second snapshot contains three insertions, 144

while the third snapshot has two insertions and two deletions. 145

It is worth noting that, in the evolving graph framework, 146

deleting an edge is typically translated into out-place updates. 147

Rather than removing the deleted edge directly, we create a 148

new edge with a negative sign. Out-place update not only 149

lowers the cost of fine-grained memory modification, but it 150

also makes it simple to go back to a previous version of the 151

evolving graph. 152

2) Storage Class Memory: As the graph continues to 153

evolve over time, the sheer volume of data within the graph 154

structure increases proportionally, leading to more frequent 155

and intensive data movements within systems. This growth in 156

data size poses significant challenges for memory management 157

and access efficiency [24]. Fortunately, recent advancements 158

in manufacturing technologies, such as 3-D X-point [25], 159

[26], [27], [28] and ultralow-latency NAND Flash [29], [30], 160

[31], [32]), have paved the way for the emergence of 161

SCM [33], [34]. These innovative memory solutions offer a 162

hybrid approach, combining the speed and byte-addressable 163

access of DRAM with the nonvolatility and higher density 164

of traditional storage devices. Several products and proto- 165

types have emerged to capitalize on these advancements, 166

including Intel R© Optane
TM

Persistent Memory [35] and HPE 167

NVDIMM [6], [36]. 168

SCM represents a new category of memory devices that 169

combine the desirable characteristics of both DRAM and 170

traditional storage devices. These memory devices offer 171
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byte-addressable access granularity with 64-B cacheline172

accesses, ensuring efficient data retrieval and manipulation.173

Additionally, SCMs feature nonvolatility, allowing data to be174

retained even when power is removed, akin to storage devices.175

Moreover, SCMs boast lower-unit costs (price/GB) compared176

to DRAM and higher-storage density, providing up to 512-GB177

per DIMM, making them an attractive solution for memory-178

intensive applications [37].179

Moreover, the integration of SCM into computing systems180

has been further facilitated by its diverse connectivity options.181

In addition to occupying traditional DIMM channels, SCM can182

also be connected via PCIe channels, leveraging the compute183

express link (CXL) interconnection2 [38], [39], [40], [41].184

This flexibility in connectivity enables SCM to be seamlessly185

integrated into existing architectures, offering greater scalabil-186

ity and adaptability to evolving memory requirements. With187

SCM’s ability to bridge the gap between DRAM and storage,188

computing systems can achieve enhanced performance and189

efficiency in handling the growing demands of evolving graph190

structures and other data-intensive workloads.191

However, due to their slower performance and shorter192

lifespan relative to DRAM, SCMs are typically utilized193

as extensions of DRAM rather than as direct replace-194

ments [42], [43]. In this hierarchical memory architecture,195

frequently accessed data (such as inner nodes in tree-data196

structure) resides in DRAM to leverage its faster access times197

and lower latency [42]. Conversely, less frequently accessed198

or large-scale data (such as leaf nodes in tree-data structure)199

that exceeds DRAM capacity is stored in SCMs, allowing200

for efficient use of available memory resources. One notable201

advantage of SCMs is their direct accessibility by CPUs,202

enabling seamless data transfer from SCMs directly into the203

CPU cache in cacheline-sized chunks. This direct access204

capability, discussed extensively in prior research [4], [44],205

allows for efficient utilization of SCMs alongside DRAM,206

mitigating the performance impact of slower SCM access207

times by leveraging CPU cache mechanisms. As a result, SCM208

adoption offers promising opportunities for improving memory209

performance and scalability in modern computing systems.210

B. Observation211

1) Delta Snapshots Break Graph Spatial Locality: Delta212

snapshots can generate multiple data versions for the same213

graph, significantly increasing memory usage and necessi-214

tating larger memory devices. Another major problem with215

delta snapshots is a loss of spatial locality. As more snap-216

shots are generated, neighboring vertices are scattered across217

multiple memory pages, significantly degrading graph traversal218

performance. In many graph processing algorithms, when a219

vertex is accessed, all of its 1-hop neighbor vertices are also220

accessed. Because these neighbors are updated at different221

times, they are stored on separate memory pages. Many222

graph processing frameworks write snapshots to pages in223

chronological order (i.e., by creation time). As a result, vertices224

2CXL is a high-speed interconnect technology that facilitates efficient
communication between CPUs and accelerators, including memory devices,
to enable heterogeneous computing architectures.

Fig. 2. Storing evolving graph on memory.

physically stored together may be logically distant from one 225

another. Consequently, compared to ideal placement, more 226

pages have to be read in a graph traversal to access each 227

vertex’s neighbors, resulting in extra page table walks and TLB 228

accesses. 229

Fig. 2 shows an example to illustrate the impact of graph 230

spatial locality. Each rectangle represents a 4-kB page, where 231

different gray levels indicate different snapshots. For example, 232

the darkest part implies all graph updates belonging to the 233

third snapshot. Besides, adj stands for an adjacency list, where 234

V0’s adj means the adjacency list of V0. Assuming that 235

neighbor vertices belonging to V3 evolves during different 236

time period (e.g., t1, t2, and t3), those updated neighbor 237

vertices are scattered across three snapshots. In this case, it 238

requires 5 page accesses (marked by red lines) to explore 239

V3’s neighbors, where each page access might cause 1 TLB 240

access and at most 4 memory accesses for walking page 241

tables. Even worse, the performance degradation becomes 242

more serious where systems shall explore most of the vertices 243

for traversing a graph, instead of exploring only one vertex. 244

Although some frameworks, such as LLAMA, can alleviate 245

the performance impact by periodically merging multiple snap- 246

shots, the performance of graph traversing becomes unstable 247

and fluctuates seriously. The reason is that, the graph traversing 248

reaches best performance right after running snapshots merg- 249

ing, but it becomes worse until triggering the next merging. 250

Fig. 2 demonstrates the impact of graph spatial locality. 251

Each rectangle represents a 4-kB page, and the different 252

gray levels indicate different snapshots. For example, the 253

darkest part denotes all graph updates from the third snapshot. 254

Furthermore, “adj” stands for an adjacency list, and “V0’s adj” 255

denotes V0’s adjacency list. Assuming that neighbor vertices 256

in V3 evolve over different time periods (e.g., t1, t2, and 257

t3), the updated neighbor vertices are distributed across three 258

snapshots. In this case, it takes 5 page accesses (marked by 259

red lines) to traverse V3’s neighbors, with each page access 260

potentially resulting in 1 TLB access and up to 4 memory 261

accesses for walking page tables. Even worse, performance 262

degradation worsens when systems must traverse all of the 263

vertices in order to traverse a graph, rather than just one. 264

Although some frameworks, such as LLAMA, can mitigate the 265

performance impact by periodically merging multiple snap- 266

shots, graph traversal performance still fluctuates significantly: 267

traversal performs best immediately after a snapshot merge, 268

but gradually degrades thereafter. 269
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Fig. 3. Weak graph spatial locality hurts performance (Dataset: Friendster). (a) Execution time. (b) TLB miss rate. (c) Page utilization.

2) Performance Impact Under Weak Graph Spatial270

Locality: We conducted a series of experiments to validate271

our findings. Fig. 3 shows the performance results. We use272

LLAMA [21] as an example, which is a representative273

evolving graph framework. Without loss of generality, the274

LLAMA merge frequency is set to every 500 snapshots. To275

simulate graph evolution, we divide a large graph, Friendster,3276

into 10 000 snapshots, and the graph will eventually evolve277

(or update) 10 000 times. We evaluated graph traversal278

performance by running the Dijkstra algorithm every 100 snap-279

shots using two approaches. The first approach is LLAMA,280

which stores snapshots in SCMs. The second approach is281

called “optimal.” It merges all snapshots in DRAM and282

immediately rewrite a new graph to SCMs. This approach has283

the strongest spatial locality but can suffer from high-update284

overhead.285

Fig. 3(a) and (b) show evaluation results for overall exe-286

cution time and TLB miss rate, respectively. The x-axis in287

both figures represents the number of archived snapshots.288

Fig. 3(a) shows that the placement issue may significantly289

affect the execution time, with the system adopting LLAMA290

spending 5 times more execution time than the system running291

the optimal approach. Running LLAMA breaks graph spatial292

locality, causing the CPU to read extra pages, resulting in293

high-TLB misses and frequent page table walks, as shown in294

Fig. 3(b). Furthermore, it is obvious that the performance of295

running graph traversal is unstable when using LLAMA. This296

unstable performance will degrade the user experience. Even297

worse, frequently merging snapshots may result in frequent298

access to SCMs, which consumes additional energy.299

The above experiment shows that weak graph spatial local-300

ity can reduce page utilization. The page utilization of each301

vertex is defined as the ideal memory size occupied by the302

vertex’s neighbors divided by the memory size occupied by303

the vertex’s neighbors. For example, the total size of V1’s304

adjacency list (i.e., all of V1’s neighbors) is less than the305

size of one page, requiring only one memory page to store it.306

In reality, V1’s page utilization is less than 10% because its307

neighbors are scattered across 10 memory pages.308

Fig. 3(c) shows page utilization for a system with varying309

snapshots. The x-axis shows the number of snapshots owned310

by the system, while the y-axis shows page utilization across311

all vertices. To better demonstrate the trend, we divide page312

utilization into three categories: 1) 0%–40%; 2) 41%–90%;313

3The dataset is from Stanford network analysis project (SNAP) [45].

and 3) 91%–100%. As the system generates more snapshots, 314

the number of vertices with page utilization between 91% and 315

100% decreases significantly. 316

C. Motivation 317

This work is strongly motivated by the need to improve 318

the traversing performance for the SCM-based evolving graph 319

systems by keeping strong graph spatial locality for all 320

vertices. We propose a joint management middleware that 321

performs both memory allocations and data placements for 322

evolving data while taking into account graph spatial locality. 323

The major technical challenges are 1) how to maintain strong 324

graph spatial locality while the graph evolves, and 2) how to 325

intelligently place and rewrite data on SCMs without causing 326

excessive energy consumption. 327

III. SCM-BASED GRAPH-EVOLVING AWARE 328

DATA ARRANGER 329

A. Overview 330

This section introduces our SCM-Based GEAR, designed 331

to maintain strong graph spatial locality by consolidating 332

all neighbors of each vertex on the SCM while minimiz- 333

ing energy consumption. Technically, SCM-based GEAR 334

serves as middleware between the graph application and 335

the SCM device, bridging the information gap between 336

them. Implementing GEAR as middleware not only facilitates 337

information exchange but also ensures high compatibility, 338

avoiding the need to modify either the application or the 339

devices. Fig. 4 provides an overview of our design, which 340

comprises four key components: 1) multilevel page allocation; 341

2) locality-aware data placement; 3) dual-granularity wear 342

leveler; and 4) graph updates accumulation. 343

Our multilevel page allocation component partitions and 344

allocates SCM memory areas to store all neighbors associated 345

with each vertex. Each vertex’s degree (the number of the 346

vertex’s edges) determines the size of its allocated SCM 347

memory area. Furthermore, our locality-aware data placement 348

mechanism ensures that all evolved graph data (i.e., newly 349

updated edges) related to the same source vertex are stored 350

in the corresponding SCM memory area, thereby preserving 351

strong graph spatial locality. Additionally, our dual-granularity 352

wear leveler collaborates with our page allocation strategy to 353

evenly distribute graph updates across all memory pages in 354

SCM during graph evolution. 355
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Fig. 4. System architecture.

Fig. 5. Example of multilevel page allocation.

Finally, the graph updates accumulation policy buffers356

incoming graph updates in DRAM. It employs a data structure357

called an edge log array to facilitate quick querying of these358

new edges without traversing the entire graph. Because SCM359

has a higher-write latency than DRAM, our design prioritizes360

staging new graph updates in DRAM for quick ingestion.361

The buffered data are subsequently transferred to SCMs in362

batches, referred to as snapshots. The edge log array maintains363

incoming graph updates in a first-in-first-out (FIFO) manner,364

with each update containing three fields: 1) the source vertex;365

2) the destination vertex; and 3) the edge weight between them.366

It is worth noting that such stage-and-flush design is widely367

used in many graph systems, so we will not go into specific368

design details.369

B. Multilevel Page Allocation370

SCM-based GEAR aims to maintain strong graph spatial371

locality by consolidating all neighbors belonging to each372

vertex within contiguous memory areas on the SCM. In real-373

world graphs, hub vertices, which are those with extremely374

high degrees, have significantly more neighbors than nonhub375

vertices. Celebrities in social networks are an excellent exam-376

ple of a hub vertice: their graph neighbors can be hundreds,377

if not thousands, of times more than regular users (nonhub378

vertices).379

Traditionally, most systems allocate memory areas (or380

pages) of 4 kB. To reduce maintenance costs of graphs381

evolution, it is common to allocate a 4-kB page for each hub382

or nonhub vertex. However, this allocation results in low-page383

utilization. For example, assume that storing one neighbor384

edge requires approximately 8 bytes (including the index of 385

the neighbor vertex and the edge weight). Then, storing a 386

nonhub vertex with 100 neighbor edges would only require 387

800 bytes, well below the 4-kB capacity. Even if the combined 388

neighbors of some hub vertices can fill a 4-kB page, the 389

memory requirement might expand over time and no longer fit 390

within the 4-kB memory area as the graph evolves. A simple 391

solution would be to divide a 4-kB page into smaller sizes, 392

but this would require significant maintenance overhead and 393

result in severe space fragmentation. 394

The multilevel page allocation strategy in SCM-based 395

GEAR relies on two fundamental principles. First, it aims 396

to minimize maintenance overhead by organizing memory 397

areas into sizes aligned with seven predefined levels (each a 398

power of two in size): 64, 128, 256, 512, 1024, 2048, and 399

4096 B. To provide a clearer understanding of this concept, 400

Fig. 5 visually illustrates the relationship between a 4-kB page 401

and its potential partitioned levels. For instance, a 4-kB page 402

can be partitioned into 64 64-B subpages, with each subpage 403

dedicated to storing neighbors from the same vertex. Second, 404

the allocation process chooses an appropriate memory area 405

size from among the available options based on the vertex’s 406

degree. This adaptive approach ensures that memory allocation 407

is tailored to the each vertex’s specific characteristics, resulting 408

in improved performance and resource utilization. 409

GEAR uses the mmap system call to obtain multiple 4-kB 410

pages from the operating system (OS). The multilevel page 411

allocation partitions each 4-kB page into identically sized 412

subpages that fall into one of seven predefined levels. The 413

required size for storing all neighbors associated with a vertex 414

is estimated using the vertex’s degree, and a subpage that 415

meets or exceeds this requirement is allocated. This design has 416

a low overhead for multilevel page allocation, requiring only a 417

few extra bits per subpage to find a subpage’s location within 418

a 4-kB page. Furthermore, it mitigates the fragmentation issue 419

of fixed-size memory areas. Additionally, the alignment of 420

subpage sizes with the CPU cacheline4 (64 B) ensures that 421

unused data is not transferred from SCMs to the CPU cache, 422

thereby optimizing data transfer efficiency. 423

Fig. 6(a) and (b) show the data structures used by GEAR 424

to manage the mapping between each 4-kB page and its 425

subpages. The page metadata table [Fig. 6(a)] stores all rele- 426

vant information about each 4-kB page. The granularity flag 427

indicates the size of the corresponding subpage, represented by 428

a 3-bit binary number (for example, a subpage size of 2048 B 429

is denoted as 110). The empty flag indicates whether or not 430

the subpage has been allocated. 431

The available page lists [Fig. 6(b)] consist of seven arrays, 432

which include a free page list and six size-specific available 433

page lists. The free page list contains all 4-kB pages that 434

have not yet been divided into subpages. Each size-specific 435

available page list corresponds to one of the six subpage levels 436

(64 to 2048 B), maintaining all associated 4-kB pages with 437

unallocated subpages. This design requires only a 4-byte page 438

index to track each page. For example, given a 1-GB SCM, 439

4A cacheline is the smallest unit of data that can be transferred between
main memory and the CPU cache.
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(a) (b) (c)

Fig. 6. Data structures for maintaining evolving graph data on SCMs. (a) Page metadata table. (b) Available page list. (c) Vertex-to-page table.

there are 262, 144 4-kB pages, and the overall seven arrays440

consume 1 MB (i.e., 262 and 144 pages × 4 B).441

Lastly, GEAR features a vertex-to-page table [Fig. 6(c)] to442

track the relationship between each vertex and its associated443

page information. This includes the 1-byte vertex’s subpage444

index, 4-byte page index, and 2-byte vertex degree. Based on445

our calculations, the combined space overhead of all three data446

structures (i.e., vertex-to-page table, available page list, and447

page metadata table) accounts for less than 5% of the total448

graph size.449

Let us use an example to demonstrate the page allocation450

process. To assign a 2048-B subpage to a vertex [e.g., V0 in451

Fig. 6], the process starts by checking the 2048-B available452

page list. If it is empty, the system chooses a page from the453

free page list. The metadata table is then updated, with the454

granularity flag set to 110 for the selected page, indicating its455

size as 2048 B. The vertex-to-page table is then updated to456

associate V0 with the allocated page index, with the subpage457

index set to 0 and the degree recorded as 220. This allows458

for efficient management and retrieval of graph data during459

evolution and traversal.460

C. Locality-Aware Data Placement461

The locality-aware data placement strategy aims to maintain462

strong graph spatial locality while transferring accumulated463

graph updates from DRAM to SCMs to generate a snap-464

shot. As part of this strategy, the multilevel page allocation465

ensures that each vertex’s subpage is sufficiently sized5 to466

accommodate all its neighbors. Consequently, each subpage467

typically contains unused space, known as the reserved area.468

This reserved area serves as a designated space for future469

graph updates associated with the vertex, ensuring that new470

updates to different vertices remain segregated, thus preserving471

strong graph spatial locality across all vertices.472

When incorporating a new graph update into a subpage’s473

reserved area, two scenarios may occur: 1) the reserved area474

of the targeted subpage is either sufficient (i.e., not full) or475

2) insufficient (i.e., full). If the reserved area is sufficient, the476

graph update is written directly to the appropriate reserved477

area. In contrast, if the reserved area is insufficient, our478

approach requires rewriting all previous data within the sub-479

page, including the entire adjacency list, to a larger subpage.480

This ensures that the most recent updates are accommodated481

while preserving strong graph spatial locality for each vertex.482

Even for node deletion, the graph system generates a new483

graph update, as explained in Section II-A1. That is, whenever484

5The size of the subpage must be greater than or equal to the space currently
occupied by all neighbors belonging to the vertex.

(a)

(b)

Fig. 7. Two scenarios for the reserved area. (a) Reserved area is not full.
(b) Reserved area is full, rewrite data to a larger subpage.

a neighbor is removed from a vertex, a new edge with a 485

negative value is appended to the adjacency list. 486

For instance, Fig. 7 shows how locality-aware data place- 487

ment works when writing all graph updates associated with 488

source vertex V0 to the SCM. The notation “(0, 1, W0,1)” 489

means the edge value between source vertex V0 and its neigh- 490

bor vertex V1 is updated to W0,1. There are two cases: when 491

the corresponding reserved area in the SCM is insufficient or 492

sufficient. In both cases, all graph updates are buffered in the 493

edge log array in DRAM. In the case where the reserved area 494

is sufficient, as depicted in Fig. 7(a), our policy directs the 495

writing of all graph updates associated with vertex V0 to the 496

corresponding subpage, which belongs to the 128-B level, in 497

the SCM. 498

On the other hand, in Fig. 7(b), the reserved area of the 499

subpage associated with vertex V0 lacks enough free space to 500

accommodate graph updates associated with vertex V0. Given 501

that the adjacency list of vertex V0 was originally stored in 502

a 128-B subpage, the data placement mechanism collaborates 503

with the multilevel page allocation to obtain an empty 256-B 504

subpage capable of storing both the old adjacency list and all 505

new updates for vertex V0. Subsequently, the old adjacency 506

list of vertex V0, along with its latest updates from DRAM, is 507

transferred and rewritten to the newly allocated 256-B subpage 508

in the SCM. 509

It is important to point out that our strategy only rewrites 510

subpages with insufficient reserved area, rather than rewriting 511

4096-B subpages equivalent to a normal page. Consequently, 512

compared to the merging strategy employed by state-of-the-art 513

frameworks, our strategy achieves strong graph spatial locality 514

for each vertex with fewer writes. 515

D. Dual-Granularity Wear Leveler 516

Data updates on real-world graphs exhibit a high degree of 517

skew, a phenomenon well-documented in [46], [47], and [48]. 518



WANG et al.: GEAR: GRAPH-EVOLVING AWARE DATA ARRANGER TO ENHANCE THE PERFORMANCE 7

Fig. 8. Interpage wear-leveling mechanism.

This skew is primarily attributed to hub vertices that519

are densely connected to numerous neighboring vertices.520

Consequently, these hub vertices undergo more frequent521

updates compared to other vertices. Such skewed updates pose522

a significant challenge in the context of SCM, which has523

a limited lifetime. Moreover, our design’s manipulation of524

subpage allocation introduces a further layer of complexity,525

potentially resulting in disparate write counts among subpages526

within the same 4-kB memory page. This disparity exacer-527

bates the wear leveling issue, necessitating a comprehensive528

approach to address wear leveling not only across all 4-kB529

pages but also within each 4-kB page. To tackle this challenge530

comprehensively, we propose a dual-granularity wear leveler531

comprising both an interpage wear-leveling mechanism and an532

intrapage wear-leveling mechanism.533

We design the interpage wear-leveling mechanism to ensure534

a uniform distribution of write counts across all memory535

pages. The main idea is to consistently select the healthier536

page during memory allocation. To facilitate this process, we537

maintain a per-page write count for each memory page in538

the page metadata table, as depicted in Fig. 6(a). Technically,539

we use a multilevel page list, where each page list bounds540

the minimum remaining write counts for each page within541

it. The minimum remaining write count associated with the542

highest level is determined based on the ideal lifetime of the543

SCM device. To reduce maintenance overhead, we categorize544

the minimum remaining write count for each level in an545

exponential manner. For example, if an SCM device can546

endure at most 108 write accesses per cell, our mechanism547

configures the page list into six levels: 1) 107; 2) 106; 3) 105;548

4) 104; 5) 103; and 6) 102, as illustrated in Fig. 8. The number549

of each level denotes the minimum remaining write count.550

The remaining write count for each page is calculated as 108
551

minuses the page write count. For example, 107 indicates552

that the page belonging to this level can withstand at least553

107 more write operations. This meticulous categorization554

ensures an even distribution of write operations across memory555

pages, thereby effectively mitigating wear-leveling issues at556

the interpage level.557

As detailed in Section III-C, insufficient space in a subpage558

designated for storing graph updates the rewriting of all data559

from the original subpage to a larger subpage. Such movement560

of vertices between subpages within the same 4-kB page561

can lead to wear-unleveling issues. To address this concern,562

we introduce an intrapage wear-leveling mechanism, which563

(a)

(b)

(c)

Fig. 9. Intrapage wear-leveling mechanism. (a) Available page: Write flag
== 0 and empty flag == 0. (b) No available page. (c) Reset write flag and
per page write count + 1.

is implemented by maintaining a 1-bit write flag and a 1-bit 564

empty flag in the page metadata table for each subpage. The 565

write flag records whether the subpage has been written in the 566

current round, with 1 indicating that it has been written and 567

0 indicating otherwise. Additionally, the empty flag denotes 568

whether the subpage is currently used by a vertex’s adjacency 569

list, with 1 indicating used and 0 indicating availability. 570

As shown in Fig. 9(a), we only allocate a subpage when 571

both the write flag and empty flag are 0, to ensure balanced 572

write counts across all subpages within the same 4-kB page. 573

When none of the pages in the available page list have 574

available subpages, it indicates most of the subpages in these 575

pages were written during this round. Thus, we reset all 576

the write flags of the available page list to 0 and increment 577

the per-page write count by 1. Subsequently, all subpages 578

become available again, as depicted in Fig. 9(b) and (c). 579

This approach not only maximizes the utilization of available 580

subpages but also ensures the amortization of write counts 581

across all subpages within the same 4-kB page, effectively 582

mitigating wear leveling issues at the intrapage level. 583

IV. PERFORMANCE EVALUATION 584

A. Evaluation Setup and Performance Metrics 585

This section evaluates the efficacy of GEAR in enhancing 586

the performance of both graph traversal and graph evolution. 587

We thoroughly compared SCM-based GEAR to three baseline 588

approaches, checking their performance in a number of areas, 589

such as execution time, TLB miss rate, CPU cache miss 590

rate, energy use, and the number of writes to the SCM. 591

The three baseline approaches consist of two state-of-the-art 592

evolving graph processing frameworks: 1) LLAMA [21], con- 593

figured with merge frequencies set to 100 and 500 snapshots 594

and 2) GraphOne [23], which incorporates cache-line-sized 595

memory allocation and hub vertex handling. GraphOne’s 596

memory allocation strategy provides a cache-line-sized (i.e., 597

64 bytes) area for storing nonhub vertices, while its hub vertex 598
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Fig. 10. Normalized execution time of running graph algorithms on evolving graphs. (a) Dataset: Orkut. (b) Dataset: Twitter-2010. (c) Dataset: Friendster.

handling allocates a 4-kB page to accommodate all edges599

belonging to a hub vertex. It is noteworthy that, according to600

the literature, GraphOne includes delta checkpointing similar601

to LLAMA, but GraphOne does not enable checkpointing by602

default. Without loss of generality, all of the three baseline603

approaches place frequently accessed data in DRAM and less604

frequently accessed data in SCM.605

To ensure a comprehensive evaluation, we selected three606

representative datasets from the SNAP [45]: 1) Orkut;607

2) Twitter-2010; and 3) Friendster. The Orkut dataset encom-608

passes 3 million vertices and 0.23 billion edges. The Twitter609

2010 dataset comprises 40 million vertices and 1.5 billion610

edges. Lastly, the Friendster dataset includes 56 million611

vertices and 2.6 billion edges. We selected these datasets to612

offer a wide variety of graph sizes and complexities, enabling613

a thorough assessment of the performance of SCM-based614

GEAR.615

We segment each graph dataset into 10 000 snapshots to616

simulate the graph evolution process. We execute three widely617

used graph traversal algorithms—breadth-first search (BFS),618

Dijkstra (single source shortest path algorithm), and Random619

Walk algorithms—on the evolving graph at intervals of620

100 snapshots. We capture memory traces during the traversal621

and subsequently replay them on our trace-based simulator.622

Our simulator simulates an Intel Skylake architecture with623

a fully associative TLB comprising 1536 entries and an 8 624

MB, 16-way associative L3 cache [49], [50]. The read/write 625

latency for DRAM and SCMs is set to 50/50 and 120/150 626

ns, respectively, based on previous studies [6]. Additionally, it 627

accounts for the energy consumption associated with writing 628

a bit to the SCM, estimated at 16.82 pJ per bit [51]. The 629

simulation environment is hosted on a server featuring an Intel 630

Xeon Gold 6252n CPU, 768 GB of DRAM, and running Linux 631

kernel version 5.4. This setup ensures a realistic emulation 632

of the graph traversal algorithms’ performance under various 633

evolving graph scenarios, enabling a thorough evaluation of 634

SCM-based GEAR and baseline strategies. 635

B. Evaluation Results 636

1) Performance Evaluation of Graph Traversal: In this 637

section, we focus on demonstrating the performance of 638

traversing an evolved graph. Unlike graph evolution, graph 639

traversal does not require additional data writes and therefore 640

does not impact the system’s lifetime. Fig. 10(c) presents the 641

results of the total execution time when running SCM-based 642

GEAR against the three baseline approaches. Specifically, 643

Fig. 10(a) and (b) depict the results obtained from executing 644

traversal algorithms on the Twitter-2010 and Friendster datasets, 645

respectively. The x-axis of each figure represents the number 646
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Fig. 11. TLB and CPU cache miss rate of running graph traversal algorithms (DataSet: Friendster). (a) TLB miss rate. (b) CPU cache miss rate.

of archived snapshots, while the y-axis displays the execution647

time normalized to that of GraphOne. Due to the similarity in648

performance trends across all 10 000 archived snapshots, we649

only present results for the interval between 2000 and 2500650

archived snapshots.651

The results reveal that SCM-based GEAR achieves exe-652

cution time savings ranging from 23% to 70% compared to653

GraphOne, 0% to 74% compared to LLAMA (merge 500), and654

0% to 27% compared to LLAMA (merge 100). These savings655

are attributed to SCM-based GEAR’s ability to maintain strong656

graph spatial locality, leading to fewer TLB misses when657

accessing pages during graph traversal. Notably, SCM-based658

GEAR achieves an execution time reduction comparable to659

LLAMA, especially when the graph algorithm executes imme-660

diately after LLAMA triggers snapshot merging. However,661

LLAMA’s performance may exhibit instability, and frequent662

snapshot merging, such as every 100 snapshots, can lead to663

excessive energy consumption (further details are provided in664

Section IV-B2).665

To provide a detailed breakdown evaluation, Fig. 11 show-666

cases the TLB miss rate and CPU cache miss rate results667

obtained when running SCM-based GEAR against the three668

baseline approaches on the Friendster dataset. In each figure,669

the x-axis represents the number of archived snapshots, while670

the y-axis depicts the TLB miss rate in Fig. 11(a) and the CPU671

cache miss rate in Fig. 11(b). It is evident from the figures that672

SCM-based GEAR consistently maintains a relatively low-673

TLB miss rate and CPU cache miss rate across all numbers674

of snapshots. Conversely, the TLB miss rate and CPU cache675

miss rate observed in systems running GraphOne and LLAMA676

exhibit fluctuations, occasionally exceeding 90% (except the677

CPU cache miss rate caused by running a random walk),678

depending on the number of snapshots created. GraphOne679

experiences exceptionally high-TLB miss rates and CPU cache680

miss rates due to the absence of a snapshot merging strategy681

to preserve graph spatial locality during graph evolution. In 682

contrast, LLAMA (merge 500) achieves relatively low-TLB 683

miss rates and CPU cache miss rates every 500 snapshots 684

when the snapshot merging strategy is executed, but the rate 685

steadily increases to around 90%. Employing LLAMA with 686

frequent snapshot merging, such as LLAMA (merge 100), can 687

mitigate the occurrence of excessively high-TLB miss rates. 688

However, the frequent merging strategy significantly prolongs 689

the graph evolution process and, even worse, adversely affects 690

the SCM’s lifespan. More detailed evaluations of evolving time 691

and memory endurance will be presented in the subsequent 692

subsections. 693

2) Performance and Lifetime Evaluation of Graph Evolution: 694

Fig. 12 presents a comprehensive evaluation of both the 695

performance and lifetime aspects of graph evolution. In 696

Fig. 12(a), the time taken to evolve the graph to a specific 697

number of snapshots using different approaches is depicted. 698

The x-axis ranges from 1000 to 6000, representing the number 699

of snapshots, while the y-axis indicates the time for graph 700

evolution normalized to GraphOne. The evaluation shows 701

that systems running SCM-based GEAR exhibit superior 702

evolving performance compared to LLAMA due to GEAR’s 703

lower-time complexity. Conversely, LLAMA incurs greater 704

time consumption due to the periodic merging of snapshots, 705

necessitating the rewriting of all snapshots. For example, 706

LLAMA (merge 100) causes a longer graph evolution time 707

than LLAMA (merge 500) because snapshot merging is 708

triggered more frequently. Furthermore, SCM’s high-write 709

latency contributes to the extended time required for graph 710

evolution. 711

For a more detailed analysis of the graph evolution 712

performance, Fig. 12(b) illustrates the total edge write counts 713

to SCM for each system at intervals of 50 snapshots between 714

2000 and 2500 snapshots. The x-axis represents the number 715

of archived snapshots, while the y-axis indicates the total edge 716
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Fig. 12. Performance and lifetime evaluation on evolving a graph. (a) Time spent evolving the graph (DataSet: twitter). (b) Total number of edge writes.
(c) Maximum write counts among all pages.

writes normalized to GraphOne. GraphOne, which does not717

incorporate snapshot merging in our experiments, does not718

generate extra writes. In contrast, SCM-based GEAR may719

produce more edge writes than GraphOne if the reserved720

space of a vertex is insufficient, leading to the rewriting721

of the original adjacency list to a newly allocated larger722

subpage along with the latest updates. However, because the723

SCM-based GEAR only rewrites vertices with inadequate724

reserved space and limits the maximum rewriting size to 2048725

bytes, its total edge writes are only about 2.1 times higher726

than GraphOne’s. Importantly, GEAR’s total edge writes are727

significantly lower than those of LLAMA, which merges728

snapshots on a regular basis.729

While LLAMA may achieve faster graph traversal by730

merging snapshots more frequently, this has a significant731

impact on SCM’s lifespan. Fig. 12(c) illustrates the normalized732

maximum page write count as the system generates snapshots733

ranging from 1000 to 10 000. The x-axis denotes the number734

of snapshots, while the y-axis represents the maximum page735

write count normalized to GraphOne. The results demonstrate736

that our dual-granularity wear leveler is effective in mitigating737

the increase in maximum page write count. This effectiveness738

stems from the distribution of writes to a finer granularity,739

specifically at the subpage level. Conversely, when LLAMA740

frequently merges snapshots, the maximum page write count741

experiences a sharp escalation, as observed in the case of742

LLAMA (merge 100).743

3) Evaluation on Energy Consumption: We further evalu-744

ate the energy consumption associated with different graph745

evolution approaches, as depicted in Fig. 13. The x-axis rep-746

resents the number of snapshots ranging from 1000 to 10 000,747

while the y-axis indicates the energy consumption. Each plot748

in the figure illustrates the cumulative energy consumption749

required to execute the total number of snapshots indicated on750

the x-axis. Fig. 13 highlights that SCM-based GEAR exhibits751

relatively low-energy consumption compared to LLAMA.752

This is primarily because the rewrite operations triggered by753

SCM-based GEAR result in fewer write accesses on SCMs754

compared to the merging operations triggered by LLAMA.755

Notably, GraphOne, which does not perform any snapshot756

merging operations, consumes the least energy among all757

solutions. Although SCM-based GEAR consumes more energy758

than GraphOne, its scalability remains intact. This is evidenced759

by the consistent energy consumption gap between GraphOne760

and SCM-based GEAR, even as the graph evolves over time.761

Fig. 13. Energy consumption (Dataset: Friendster).

In contrast, LLAMA’s energy consumption exhibits a linear 762

increase as the graph evolves, making it nonscalable. For 763

instance, LLAMA (merge 100) consumes 3 and 21 times more 764

energy than SCM-based GEAR when there are 1000 snapshots 765

and 10 000 snapshots, respectively. 766

V. CONCLUSION 767

Our research addresses the challenge of weak graph spatial 768

locality in evolving graph frameworks, which hinders efficient 769

execution of graph traversal algorithms. To mitigate this 770

issue, we introduce SCM-Based GEAR, a joint management 771

middleware that optimizes the arrangement and storage of 772

evolving graph data in both DRAM and SCMs. GEAR 773

comprises multilevel page allocation, locality-aware data 774

placement, and dual-granularity wear leveling components. 775

GEAR improves graph traversal performance while maintaining 776

strong graph spatial locality as the graph changes. It does this by 777

allocating subpages based on vertex-neighboring relationships, 778

keeping unused areas for future updates, and evenly spreading 779

write operations. Our evaluation demonstrates the effectiveness 780

of SCM-based GEAR, showing significant improvements in 781

execution time savings ranging from 23% to 70% compared to 782

state-of-the-art frameworks. Through meticulous management 783

of evolving graph data across memory devices, GEAR achieves 784

superior performance in traversing evolving graphs, addressing 785

critical challenges posed by weak graph spatial locality. 786
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