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Abstract—NIST’s recent review of the widely employed Special
Publication (SP) 800-22 randomness testing suite has underscored
several shortcomings, particularly the absence of entropy source
modeling and the necessity for large sequence lengths. Motivated
by this revelation, we explore low-dimensional modeling of the
entropy source in random number generators (RNGs) using a
Variational Autoencoder (VAE). This low-dimensional modeling
enables the separation between strong and weak entropy sources
by magnifying the deterministic effects in the latter, which
are otherwise difficult to detect with conventional testing. Bits
from weak-entropy RNGs with bias, correlation, or deterministic
patterns are more likely to lie on a low-dimensional manifold
within a high-dimensional space, in contrast to strong-entropy
RNGs such as true random number generators (TRNGs) and
pseudo-random number generators (PRNGs) with uniformly
distributed bits. We exploit this insight to employ a generative AI-
based Non-Interference Test (GeNI) for the first time, achieving
implementation-agnostic low-dimensional modeling of all types
of entropy sources. GeNI’s generative aspect uses VAEs to
produce synthetic bitstreams from the latent representation of
RNGs, which are subjected to a Deep Learning (DL) based
non-interference (NI) test evaluating the masking ability of the
synthetic bitstreams. The core principle of the NI test is that
if the bitstream exhibits high-quality randomness, the masked
data from the two sources should be indistinguishable. GeNI
facilitates a comparative analysis of low-dimensional entropy
source representations across various RNGs, adeptly identifying
the artificial randomness in specious RNGs with deterministic
patterns that otherwise passes all NIST SP800-22 tests. Notably,
GeNI achieves this with 10× lower sequence lengths and 16.5×
faster execution time compared to the NIST test suite.

Index Terms—Randomness, NIST, GenAI, Autoencoder, VAE,
Non-interference, Deep Learning.

I. INTRODUCTION

RANDOM number generators (RNGs) are integral com-
ponents critical to cryptographic systems. They are

essential in generating keys and masks and influence the
security strength of protocols like Media Access Control
Security (MACsec) and Transport Layer Security (TLS) [1].
Cryptographically secure RNGs are typically classified into
two categories: true random number generators (TRNGs)
and pseudo-random number generators (PRNGs). The former
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extracts randomness from physical processes, ensuring non-
deterministic noise, while the latter extends the seed into a
longer sequence with good statistical properties. The quality
of RNGs is of paramount importance for security, as weak or
predictable sequences may compromise the security of crypto-
graphic systems. One notable instance occurred in 2012, when
an analysis of millions of RSA public keys revealed that 0.2%
of them could be factored using Euclid’s algorithm due to
shared prime [2]. This vulnerability arose from poorly seeded
PRNGs, resulting in the creation of weak keys. Additionally, in
December 2010, the group fail0verflow recovered the Elliptic
Curve Digital Signature Algorithm (ECDSA) private key used
by Sony to sign software for the PlayStation 3 [3]. This breach
was possible because Sony failed to generate a new random
nonce for each signature, allowing attackers to compromise the
system’s security. These cases underscore the critical impor-
tance of robust RNGs in safeguarding cryptographic systems.
To uphold their integrity, RNGs undergo rigorous testing
during design, production, and in-field operation, utilizing
standard statistical test suites (STS).

In this context, NIST Special Publication (SP) 800-22 is a
popularly employed randomness testing suite [4], which pro-
vides a standardized testing framework with 15 recommended
tests for assessing the randomness of sequences. However,
recent public comments [5] on the NIST proposal to revise
the SP 800-22 randomness testing suite have raised some
concerning comments listed as follows:

• “Either add stronger wording at the start of the document,
rejecting it’s use for assessing secure RNGs or withdraw
the document entirely” from David Johnston [5].

• “The SP 800-22 document mainly finds use by amateur
cryptographers and vendors of insecure systems, as it
trivializes random bit generator validation to black-box
statistical testing. Its use as evidence of security usually
signals that competent specialists have not been involved
in the design and analysis of a random bit generator.”
from Saarinen et al. [6].

These specific comments are just the tip of the iceberg as
detailed in the public comments. The two most pressing
concerns highlighted frequently in [5] are described the below:

1) Stochastic modeling of entropy sources is not sufficiently
addressed in the NIST SP 800-22, which focuses on the
statistical properties of sequences, ignoring the physical
properties of the entropy source [6]. The lack of stochastic
modeling leads to a) the statistical testing approach not
relating to computational indistinguishably [6], [7], i.e.,
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how hard it is to “break” the random and pseudorandom
generators is not considered, and b) promoting false con-
fidence in insecure systems as the weakest pseudorandom
number generators will easily pass these tests, for example,
compressible strings with specious randomness [8] as shown
in Fig. 1.

2) Long sequence length requirement for most NIST tests
demands prolonged data collection periods and increases
the complexity of statistical analysis, leading to higher
computational overheads and potentially slower detection
of anomalies. They further lead to increased complexity
for practical on-the-fly testing [9], exacerbating the vulner-
abilities to certain types of attacks, such as those targeting
specific segments of the sequence or exploiting temporal
variations in the data generation process.

In response to the above shortcomings, a review was ini-
tiated by NIST’s Crypto Publication Review Board, which
decided to revise SP 800-22 Rev.1a [10]. The key revision
objectives included clarifying the STS’s purpose and discour-
aging its use for assessing cryptographic RNGs. Motivated
by this revelation, in this work, we introduce a Generative
Artificial Intelligence-based Non-Interference (GeNI) test de-
signed to address a crucial limitation of the NIST SP 800-22
test suite: the lack of entropy source modeling. To the best
of our knowledge, we, for the first time, leverage GenAI to
model entropy sources in RNGs. GeNI leverages Variational
Autoencoders (VAEs), which are popularly used for synthetic
image and text generation [11]–[13], and more recently in
diffusion transformers for text-to-image generation [14]. We
repurposed the VAE to assess the quality of the entropy source
directly from the bitstream by making suitable modifications
to the fundamental architecture. Our approach differs from its
conventional application in image generation in several key
aspects including the following:

1) Encoder-Decoder Network Architecture: Instead of
using convolutional neural networks (CNNs) typically
employed for feature extraction in images, we utilize
multilayer perceptrons (MLPs) to learn the latent entropy
parameters in the bitstreams, processing binary values
through the encoder-decoder network, unlike the multi-bit
pixel representation in traditional VAEs for images.

2) Low-Dimensional Latent Space: VAE with a low latent
dimension can effectively learn features such as texture,
shape, and other characteristics, following the mani-
fold hypothesis, which posits that high-dimensional data
points, especially those from real-world sources, typically
reside on or near a low-dimensional manifold within the
high-dimensional space [15]. We employ this insight for
RNGs, by choosing a low latent space dimension for
VAEs to distinguish between strong and weak entropy
sources.

3) Evaluating quality of VAE output: To extend the
methodology to test TRNGs we needed to come out with
a novel non-interference based test, which utilizes the
masking capability of the synthetic bit streams to detect
the non-interference property. We employ MLPs to clas-
sify between two masked bitstreams, thereby assessing
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Fig. 1. Landscape of RNGs and NIST SP800-22 tests.

the quality of randomness in the mask and, consequently,
the input bitstream of the VAE.

In summary, this is the first reported approach to adapt
the VAEs to model the entropy source in RNGs. Hence, the
above changes, namely choosing the underlying architecture,
interpreting the goodness, and designing the goodness test,
were introduced to cater VAEs to RNG tests. Moreover, the
adaptability of VAEs, enables GeNI to accommodate various
entropy source characteristics, rendering it suitable for a
diverse range of RNG implementations.

Subsequently, we demonstrate that the proposed non-
interference (NI) test employed on the synthetic bitstream
output of the VAEs is a necessary and sufficient test to
evaluate the quality of randomness of RNGs. We first establish
that, formally, the masked data from the sources will be
indistinguishable if and only if the mask is random. Thereafter,
we employ a deep neural network (DNN) to evaluate the
synthetic bitstreams’ ability to mask the two distinct dis-
tributions. Drawing from principles of the non-interference
theory [16], we aim to utilize deep learning (DL) models’
classification capabilities to discern the nature of randomness
in the synthetic bitstreams and thereby infer the masking of
entropy source of the original RNG. DL’s ability to identify de-
pendencies in highly multivariate scenarios automatically leads
to better non-interference detection accuracy than moment-
based approaches using higher-order t-tests. This motivates
our decision to incorporate a combination of GenAI-based
entropy source modeling and DL-based non-interference test
as a new RNG test to mitigate the shortcomings of NIST
SP800-22 tests.

A. Our Contributions and Paper Outline

The key contributions of this paper are as follows:
1) Low dimensional entropy source modeling: Synthetic

bitstreams generated via VAEs magnify the determinism
in weak-entropy sources which are more likely to lie on
lower-dimensional manifold as opposed to strong-entropy
sources. This enables a clearer distinction between strong
and weak entropy sources, which are otherwise hard to
capture using NIST tests.

2) Non-interference test to distinguish between entropy
sources: A DL based non-interference test is introduced
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to assess the ability of synthetic bitstreams to mask
sequences generated from two separable distributions.
This test provides insights into the randomness properties
of the synthetic bitstream, thereby enabling the evaluation
of the entropy source properties of the RNG.

3) Shorter Sequence Lengths: GeNI achieves distinction
between weak and strong entropy sources with signif-
icantly shorter sequences say, ≈ 100k bits, compared
to the 1M sequence length required for NIST SP800-22
STS.

4) Identification of weak entropy sources: GeNI identifies
sequences with artificial randomness, such as specious
RNGs, which passes all NIST tests, by virtue of the in-
adequate masking capabilities of their synthetic bitstream.
Moreover, other biased and correlated RNG sources are
also recognized to possess weak entropy properties.

The rest of the paper is organized as follows. Sec. II entails
the background knowledge of RNGs testing techniques and
VAEs. Next, we delve into GeNI’s entropy source modeling
via latent space representation of VAEs in Sec. III. In Sec. IV,
we present GeNI’s non-interference testing. Sec. V describes
the results of our proposed methodology on several case
studies. Lastly, Sec. VI concludes the paper.

II. BACKGROUND

A. Traditional RNG Evaluation Metrics
1) Entropy Estimates: To gauge the uniformity of the

RNG sequences, we use two types of entropy estimates: a)
a conservative estimate, i.e., min-entropy, and b) an accurate
estimate, i.e., the Shannon entropy. They are calculated as:

Min-entropy = − log2 max{p0, p1} (1)
Shannon-entropy = −(p0 log2{p0}+ p1 log2{p1}) (2)

where p0 and p1 represent the probabilities of generating 0 &
1 by the RNG source. An equal probability of zeros and ones
in the RNG leads to an entropy estimate of one in both cases.

2) Independence of the RNGs bits: In order to ensure that
the current output has no influence on future outputs, we
employ the auto-correlation test, which computes the corre-
lation coefficient between the original sequence and lagging
sequences [17]. Auto-correlation with lag k for a sequence of
length N is defined as:

ACF(k) = Rxx(k) =

∑N−k−1
i=0 (xi − µ)(xi+k − µ)

Nσ2
(3)

where ACF(k) is the autocorrelation function for lag k, x =
{x1, x2, . . . , xn} is the RNG sequence and µ, σ2 are the mean
and the variance of the sequence.

3) Wide Sense Stationarity (WSS) property: WSS processes
necessitate constancy in mean and auto-correlation across all
samples, an important property for RNGs [17]. It is analyzed
via the power spectral density (PSD) Sxx(f) and its variance
over all frequency windows.

Sxx(f) = F(Rxx) =

N−1∑
i=−N+1

Rxx(k)e
−2πfki, (4)

where F(Rxx) is the Fourier transform of the auto correlation
function Rxx. We ascertain the WSS property by checking the
variance of PSD to be less than a user-defined threshold σ0.

B. Variational Auto-Encoder (VAE)

Variational Autoencoders (VAEs) stand as one of the fore-
most choices among generative AI model, distinct for their
approach to modeling complex data distributions through a low
dimensional latent space [11]–[13]. The probabilistic nature
and the inclusion of the Kullback-Leibler (KL) divergence
for regularization make VAEs particularly adept at producing
varied and high-quality samples. Their application ranges
widely, from enhancing image generation to facilitating the
compression and learning of complex data representations. In
this research, we leverage the capabilities of VAEs for a novel
application: modeling the entropy sources underlying various
RNGs, showcasing their versatility and efficacy in generative
modeling.

III. GENI’S LOW DIMENSIONAL ENTROPY SOURCE
MODELING

In the realm of RNG design and evaluation, entropy source
modeling is crucial in directly influencing the integrity of cryp-
tographic algorithms and protocols. TRNGs rely on entropy
source modeling to capture the inherent physical properties
that underpin randomness generation. Conversely, for PRNGs,
entropy source modeling encompasses the characterization of
seed entropy while considering any entropy loss introduced
during the algorithmic process [18]. The absence of robust
entropy source modeling stands out as a notable deficiency
in the NIST SP 800-22 [10]. Understanding and accurately
modeling entropy sources are paramount not only for eval-
uating the sufficiency of entropy provided by TRNGs but
also for optimizing their throughput. For instance, the entropy
and throughput of elementary oscillator-based TRNGs (EO-
TRNGs) [19] hinge upon the low sensitivity of jitter sampling.

The intrinsic dimension of an RNG source, denoting the
minimum number of independent states required for bitstream
generation, holds significant sway in this context [20]. RNG
sources with weak entropy exhibit a lower intrinsic dimension,
which escalates as the entropy quality improves [21], [22].
In this context, the manifold hypothesis [15] is particularly
useful for distinguishing between strong and weak entropy
sources. RNGs with high intrinsic entropy produce uniformly
distributed data points, which are challenging to represent on
a low-dimensional manifold. Conversely, RNGs with lower
intrinsic entropy exhibit more deterministic patterns, making
their data points more likely to lie on a lower-dimensional
manifold.

The low-dimensional modeling in our GeNI framework
enables us to test different types of RNG sources as follows:

1) “Bad” RNGs: Weak entropy sources featuring low intrin-
sic dimensionality unveil hidden patterns in the bitstream,
via low-dimensional modeling. This proves instrumental
in magnifying deterministic or repeated patterns in RNGs
with artificial randomness, such as specious RNGs [8],
which may otherwise go unnoticed by NIST tests. More-
over, the low-dimensional latent distribution captures
deterministic effects adeptly in RNGs with bias or corre-
lation stemming from physical phenomena like process-
voltage-temperature (PVT) variations or adversarial bias
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injection, rendering hidden patterns more visible in the
synthetic bitstream.

2) “Good” RNGs: The latent space representation by VAEs
facilitates strong RNG entropy source modeling with-
out necessitating specific knowledge of its underlying
physical phenomenon. Stochastic models are relatively
straightforward to construct for TRNGs characterized
by high intrinsic dimensionality, though verifying all
underlying physical assumptions poses challenges [23].
Similarly, PRNGs aim to rapidly accumulate entropy
from diverse physical sources in the environment (e.g.,
keyboard presses, timing of interrupts) into the PRNG
state, subsequently converting this high-entropy state into
(pseudo) random bits [24] which are then used for syn-
thetic bitstreams generation. In both cases VAEs generate
bits from a low-dimensional representation of strong
entropy source, contrasting with bit generation in weak
entropy sources driven by hidden deterministic effects.

Thus, synthetic bitstreams generated via VAEs tend to mag-
nify the determinism in weak-entropy sources more than in
strong-entropy sources, highlighting the differences in entropy
levels. However, to do so GeNI necessitates the following
modifications to the conventional VAEs used for image gen-
eration: a) MLP encoder-decoder network architecture where
the relationship of each bit to every other bit is better captured
compared to a convolutional neural network (CNN) capturing
the localized patterns in images, b) low-dimensional latent
space representation to contrast between entropy sources, and
c) non-interference testing to evaluate the quality of VAE
output (described in Section IV). In this section, we first
analytically demonstrate the representation prowess of a VAE
using binary bit-streams which makes the latent parameters
a strong function of the RNG entropy source. Thereafter, we
elaborate our proposed synthetic data generation methodology
using MLP architecture and the low-dimensional representa-
tion of the entropy source.

A. Latent Variables for a linear VAE

VAEs have been extensively prevalent in synthetic image
and text generation [25] due to their ability to find latent, low-
dimensional data representations. Each dimension of the latent
space can represent a different aspect of the input data, such as
pose, lighting, or identity in the case of images. We extend this
representational ability of VAEs to RNG bitstreams, where the
latent space maps to the properties of the entropy source, such
as device noise statistics in the case of TRNG and seed entropy
in the case of PRNGs. We analytically demonstrate that the
latent space parameters for linear VAE are proportional to the
statistical properties of the input bitstream. It is to be noted
that practical VAEs use DNNs for encoders and decoders; we
chose a linear model to demonstrate a mathematically tractable
analysis.

Fig. 2 shows a VAE with a linear encoder and decoder,
which takes in the RNG bitstream x as input and regenerates
a synthetic bitstream xs. The RNG x is described by a
parameterized probability distribution pθ(x) where θ captures
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Fig. 2. VAE with linear encoders and decoders.

the entropy properties. For example, in the case of a Bernoulli
random bitstream, pθ(x) is given by:

pθ(x) = θx × (1− θ)1−x;x ∈ {0, 1} (5)

The objective of the VAE is to find the maximum likelihood
estimate of the RNG distribution parameter θ. The maximum
likelihood estimation involves maximizing the exact posterior
probability pθ(z|x), where z is the latent variable of the RNG.
However, the maximum likelihood estimate is intractable to
compute; therefore, VAEs approximate it using the posterior
qϕ(z|x) closest to pθ(z|x), where ϕ denotes the encoder
parameters. The decoder parameterized by θ learns the con-
ditional likelihood distribution pθ(x|z) as fθ regenerating an
approximation of x, given by xs. In this analysis, we consider
unit-dimensional x, z, and xs for mathematical tractability.
However, practical VAEs have dim(x) = dim(xs) > dim(z),
where z is the low dimensional latent representation.

The latent distribution is a Gaussian, i.e., z ∼ N (µ, σ2)
with mean µ and variance σ2. The encoder denoted by hϕ(x)
consists of two parts described as:

hϕ(x) = h
(1)
ϕ (x) + ϵ× h

(2)
ϕ (x), (6)

where h
(1)
ϕ (x) = µ = w1x + b1 models the mean, h(2)

ϕ (x) =

log(σ2) = w2x+ b2 models the variance (logarithm is chosen
for numerical stability during training), ϵ is a sample from
standard normal distribution N (0, 1), and wi’s and bi’s are the
weights and biases respectively. The well-known parametriza-
tion trick [11] is employed here to transform N (0, 1) to latent
variable z using the mean and standard deviation, such that
z = µ + ϵ × elog(σ

2). Lastly, a linear decoder denoted by
fθ(z) = w3z+ b3 is used to obtain the synthetic bitstream xs.

The loss function for VAEs reduces the KL divergence
between the approximate posterior qϕ(z|x) and the exact
posterior pθ(z|x). Reducing the KL divergence is the same as
maximizing the Evidence Lower Bound (ELBO) [11] given
by:

ELBO(θ, ϕ;x) = Eqϕ(z|x)[log pθ(x|z)]− KL(qϕ(z|x)||p(z))
(7)

where Eqϕ(z|x)[·] denotes the expectation with respect to the
approximate posterior qϕ(z|x), and KL(qϕ(z|x)||p(z)) is the
KL divergence between the approximate posterior and the
prior p(z) which is standard normal distribution.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, AUGUST 2024 5

TABLE I
ANALYTICAL EXPRESSION FOR THE VAE LOSS WITH LINEAR ENCODERS AND DECODERS.

L = pbit((1− w3 · w2)
2 + (w3 · w1 · σ)2 − w2

1 + b1 · (−w2 − w3 − 2w1) + w3 · w2
2 · b1 + w2

3 · b2 · w2

+ 2 · w2
3 · w1 · b1 + w2 − 2b3 + 2b2 · w3 · w2) + w2

3 · b1 · b2 + (w3 · b1)2

+ b2 − b21 − exp(b2) · (1− pbit + pbit · exp(w2)) + b3 · w3 · b2 + b3 · w2 · b1 + b23 (11)
∂L

∂b1
=

(
2w2

3 − 2
)
b1 + (2pbitw1 + b2)w

2
3 +

(
pbitw

2
2 − pbit

)
w3 + (b3 − pbit)w2 − 2pbitw1 = 0 (12)

∂L

∂b2
= (−pbite

w2 + pbit − 1) eb2 + (pbitw2 + b1)w
2
3 + (2pbitw2 + b3)w3 + 1 = 0 (13)

∂L

∂b3
= 2b3 + b2w3 + b1w2 − 2pbit = 0 (14)

∂L

∂w1
= 2pbit ·

(
w2

3 − 1
)
(w1 + b1) = 0 (15)

∂L

∂w2
= −pbite

w2+b2 + pbit ·
(
−2w3 · (1− w3w2) + 2b1w3w2 + b2w

2
3 + 2b2w3 − b1 + 1

)
+ b1b3 = 0 (16)

∂L

∂w3
= pbit ·

(
−2w2 · (1− w2w3) + 2b2w2w3 + 2w2

1w3 + 4b1w1w3 + b1w
2
2 + 2b2w2 − b1

)
+ 2b21w3 + 2b1b2w3 + b2b3 = 0 (17)

The ELBO maximization is equivalent to the loss function
minimization described by the encoder (ϕ) and decoder (θ)
parameters as:

Loss(θ, ϕ) =
1

n

(
n∑

i=1

(xi − fθ (hϕ (xi)))
2

)
+

1

n
× 1

2

n∑
i=1

(
1 + h

(2)
ϕ (xi)−

(
h
(1)
ϕ (xi)

)2
− e

(
h
(2)
ϕ (xi)

))
,

(8)

where the first term is the reconstruction loss, and the latter is
the similarity loss. Expanding the reconstruction loss in terms
of the VAE parameters ϕ = {w1, b1, w2, b2} and θ = {w3, b3}
we get:

LossR =
1

n

(
n∑

i=1

(xi − fθ (hϕ (xi)))
2

)

=
1

n

(
n∑

i=1

(xi − w3((w1xi + b1) + (w2xi + b2)ϵi)− b3)
2

)
,

(9)

where ϵi ∼ N (0, 1) and xi ∼ Be(pbit). The Bernoulli input
distribution is the simplest approximation of an ideal RNG
entropy source, where the bits are considered i.i.d. but with a
probability of pbit. Similarly, the similarity loss Losssim can
be expressed as:

1

n
× 1

2

n∑
i=1

(
1 + h

(2)
ϕ (xi)−

(
h
(1)
ϕ (xi)

)2
− e

(
h
(2)
ϕ (xi)

))
=

−1

2n

n∑
i=1

(
1 + (w2xi + b2)

2 − (w1xi + b1)
2 − ew2x1+b2

)
.

(10)

The only random variables in the loss function are xi

and ei, whose sample means can be replaced using their
expected values for large n, where n denotes the number of
bits in the VAE training bitstream. The replacement of sample
means via the expected values considerably simplifies the
loss expression, making the analysis more tractable, providing
insights into the dependence of the optimal VAE parameters

𝑝!"#

Fig. 3. Latent distributions across different entropy parameters pbit.

(µ, σ2) on the entropy source parameters (pbit). Furthermore,
the expected values of the terms with ϵ in them going to zero,
i.e., E[ϵ],E[xϵ],E[x2ϵ] = 0 and E[ϵ2] = 1 as they are sampled
from the standard Gaussian distribution N (0, 1). On the other
hand, the expected values of x terms are well known for the
Bernoulli distribution with both the E[x] = E[x2] = pbit.
Substituting the expected values of the RVs in Eq. (9) and
(10), we obtain a closed-form expression for the total loss
given by Eq. (11). The algebraic expression for loss can be
differentiated with respect to the VAE parameters to obtain
Eq. (12), (13), (14), (15), (16), (17), with six variables i.e.
{b1, b2, b3, w1, w2, w3}. This set of equations, as shown in
Table. I, can be solved using optimization methods such as
gradient descent.

Figure 3 shows the drift in the latent distribution N (µ, σ2)
w.r.t. the change in entropy parameters the RNG, i.e., pbit. The
noticeable separation between the distributions signifies the
ability of VAEs to abstract the properties of the entropy source
in its latent distribution. Minimizing the KL divergence with
respect to the standard normal, both the (µ, σ2) parameters
are close to (0, 1). However, their exact values depend on
the entropy parameter pbit, as minimizing the loss function
in Eq. 10 also requires us to minimize the reconstruction loss.
This leads to a noticeable vertical distribution drift as we move
away from the ideal value of 0.5 (zoomed-in plot of Fig. 3).

We extend the idea of latent space representation of entropy
source to practical VAEs with deep neural networks as en-
coders and decoders, generating a synthetic bitstream from the
RNG data. One of the critical limitations associated with VAEs
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Fig. 4. ML-based randomness testing including VAE for generating synthetic bitstream xs, and non-interference test.

is the proximity of the latent and input distributions, which
affects probabilistic sample generation. This proximity is in-
fluenced by both the latent space dimension and the encoder-
decoder architecture. Interestingly, for different RNGs with
varying levels of entropy and intrinsic dimensions, the VAE
output can distinguish between different entropy sources by
employing a low latent space dimension. Thus, we transform
a potential drawback into a strategic advantage for randomness
testing by using a low-dimensional representation of entropy
sources. The synthetic bitstream amplifies the deterministic
properties of the RNG entropy source, making it easier to
distinguish the quality of randomness. Typically, the low-
dimensional latent space is multivariate and cannot be visually
distinguished for different entropy sources. Therefore, in the
next section, we employ the principle of non-interference
testing to distinguish between the synthetic bitstreams for
different RNGs generated from the latent distribution.

B. Synthetic Data Generation

In order to model the RNG entropy source, we learn the
parameters of a latent space representation of the RNG using
a VAE with multi-layer perception (MLP) based encoders and
decoders as shown in Fig. 4. The RNG bitstream is broken into
N -bit chunks, fed as the input to the first layer of the encoder,
followed by two hidden layers of sizes h1, h2 respectively.
Thereafter, the last layer of the encoder maps to the multivari-
ate latent space parameters of µ and the log

(
σ2
)

each with h3

dimensions. These latent space parameters are reparametrized
with an independently sampled standard multivariate Gaussian
N (0, I) to obtain the latent variable samples z as follows:

z = µ+ elog(σ
2) ⊙ ϵ, (18)

where ⊙ is the element-wise multiplication operation between
two vectors elog(σ

2) and ϵ. The decoder generates a N -
dimensional synthetic bitstream that is interleaved over multi-
ple runs to obtain xs.

1 class VAE(nn.Module):
2 def __init__(self, input_size, latent_size):
3 super(VAE, self).__init__()
4

5 # Encoder
6 self.fc_mean = nn.Linear(mlp_h1(input_size),

latent_size)
7 self.fc_logvar = nn.Linear(mlp_h2(input_size

), latent_size)
8 # Decoder

Algorithm 1: Synthetic bitstream generation using
VAE
Training phase inputs: RNG bitstream xtrain
/* VAE with MLP-based encoder and

decoder structure defined in
Listing 1 */

model = VAE(input-size, latent-size)
epoch = 0
while epoch < num-epoch do

reconx, mean, logvar = model(xtrain)
model.train(reconx, mean, logvar, xtrain)
/* train using ADAM to minimize

reconstruction and similarity
loss */

epoch = epoch + 1
Generation phase inputs: RNG bitstream xtest
/* synthetic bitstream generation */
xs = model(xtest)

9 self.fc = nn.Linear(mlp_f(latent_size),
input_size)

10

11 def encode(self, x):
12 mean = self.fc_mean(nn.reLU(mlp_h1(x)))
13 logvar = self.fc_logvar(nn.reLU(mlp_h2(x)))
14 return mean, logvar
15

16 def reparameterize(self, mean, logvar):
17 std = torch.exp(0.5 * logvar)
18 eps = torch.randn_like(std)
19 return mean + eps * std
20

21 def decode(self, z):
22 recon_x = nn.Sigmoid(nn.reLU(mlp_f(z)))
23 return recon_x
24

25 def forward(self, x):
26 mean, logvar = self.encode(x)
27 z = self.reparameterize(mean, logvar)
28 recon_x = self.decode(z)
29 return recon_x, mean, logvar

Listing 1. VAE for synthetic bitstream generation

C. VAE Network Architecture

We utilize MLP networks for both the encoder and decoder
stages of the VAE, as illustrated in Listing 1. During training,
the VAE aims to minimize two key losses over num-epochs
iterations using the ADAM optimizer: a) the reconstruction
loss, quantifying the disparity between the synthetic output
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Fig. 5. (a) Principle of non-interference in general; Applying non-interference
theory for sequences (b) with distinguishable and (c) indistinguishable ran-
domness

generated by the VAE and the training bitstream xtrain uti-
lized to produce it, and b) the similarity loss, measuring the
difference between the distributions N (µ,σ2) and the prior
standard distribution N (0, I), as depicted in Algorithm 1.
Both the encoder (responsible for both mean and variance)
and decoder networks consist of identical MLPs comprising
two hidden layers each. The output dimensions of the en-
coder and the input dimension of the decoder are set to be
identical, corresponding to the latent dimension of the VAE.
Subsequently, the trained model is employed to generate the
synthetic bitstream xs from a test RNG bitstream xtest. In the
next section, we use the non-interference testing to distinguish
between the strength of the entropy sources via the synthetic
bitstreams generated from their latent space representation.

IV. GENI’S NON-INTERFERENCE TESTING

In the realm of synthetic bitstream generation using Varia-
tional Autoencoders (VAEs), we evaluate randomness through
the lens of non-interference testing. At its core, interference
signifies the disclosure of sensitive information, where a high
variable serves as the source and a low variable as the target.
This principle, introduced in [16], dictates that sensitive infor-
mation should remain concealed. Non-interference implies that
if program executions with identical low inputs but different
high inputs produce varying low outputs, information about
the high inputs has leaked (Fig. 5a).

Our randomness evaluation centers on the analysis of non-
interference within masked sequences. These sequences are
generated by XORing synthetic bitstreams with deterministic
sequences a and b of having low correlation. A detection
test discerns between two distributions am = a ⊕ xs and
bm = b ⊕ xs, where xs is the synthetic bitstream generated
by the VAE. A deep learning binary classifier evaluates the
randomness level in xs using the distribution detection accu-
racy Ad, discerning between low (Fig.5b) and high (Fig.5c)
randomness scenarios.

We first establish the criteria that we develop to evaluate the
quality of the randomness of the tested sources. First, let us
define the notion of randomness formally: A generator G(x)

is said to qualify as a random number generator if there does
not exist any efficient algorithm, say A, which can distinguish
the output of G(x) and U , where U is a uniform distribution,
with a probability more than 1

2+ϵ, where ϵ is a non-negligible
quantity.

Now, we state the test formally as follows:

Lemma IV.1. A sequence xs is drawn from a random number
generator (RNG) if and only if there does not exist any efficient
algorithm to distinguish between the masked bitstreams am =
a ⊕ xs, and bm = b ⊕ xs, where a and b are drawn from
two distinct distributions.

Proof. The sufficient condition is trivial. If xs is sampled from
U , then it is straight-forward to see both am and bm are drawn
from U too. Wlog for a one bit value am ∈ am, if xs ∈ xs, st.
Pr[xs = 1] = Pr[xs = 0] = 1

2 , ⇒ Pr[am = a ⊕ xs = 1] =
Pr[a = 1].P r[xs = 0] + Pr[a = 0].P r[xs = 1] = 1

2 (Pr[a =
0] + Pr[a = 1]) = 1

2 . Likewise, Pr[am = 0] = 1
2 too, and

hence they are indistinguishable.
The necessary condition, can be proved by the contra-

positive statement, that if xs is not sampled from U ⇒ there
exists an efficient algorithm B to distinguish between am
and bm, given that a and b are drawn from two distinct
distributions. The definition of B can be stated by using A,
which can distinguish xs and U . B takes the input am, and
computes am ⊕ a = xs. On the other hand, it takes the input
bm, and computes bm ⊕ u, where u ∈ U . By the proof of
the sufficient condition, bm ⊕ u ∈ U . Hence, now A can be
used to distinguish xs from U , in turn leading B to efficiently
distinguish am and bm.

30 model = nn.Sequential(
31 nn.Linear(input_size, 1024),
32 nn.BatchNorm1d(1024),
33 nn.ReLU(),
34 nn.Linear(1024, 128),
35 nn.BatchNorm1d(128),
36 nn.ReLU(),
37 nn.Linear(128, 2),
38 nn.Softmax())

Listing 2. MLP architecture for non-interference testing

A. Deep Net Architecture for Detecting Non-interference

Deep Net’s ability to represent abstract data makes it im-
mensely valuable for classification tasks. For non-interference
testing using DL models, a higher accuracy indicates that
the masked bitstreams are distinguishable or the synthetic
bitstream has low randomness. The average inference accuracy
of a K-fold cross-validation framework indicates the masking
prowess of the synthetic bitstreams and, thereby, the quality
of the residual entropy sources.

Our approach to randomness testing with DL involves an
iterative process to optimize dataset sizes for training. Given
the absence of a definitive guideline for determining the
appropriate amount of training data in DL, we start with
reasonably small training and inference sets, taking cues from
previous applications of non-interference testing [26]. These
sizes are then incrementally adjusted until a user-defined
dataset size limit is reached, which reveals the minimum
number of samples required for detecting non-interference.
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Algorithm 2: Non-interference Testing using MLP
Input: synthetic bitstream xs

Output: distribution detection accuracy Ad

am = a⊕ xs, a ∼ Be(0.25)
Ta = ⟨am,0⟩
bm = b⊕ xs, b ∼ Be(0.75)
Tb = ⟨bm,1⟩
D := Ta ∪ Tb;
Ad = {0}, s = sinit, t = 0
while s < S do

/* MLP classifier from Listing 2 */
model = MLPClassifier(input-size)
Dt = SubSample(D, s) /* select s/2

samples from Ta and Tb */
⟨D1

t ,D2
t , . . . ,DK

t ⟩ := GenCrossValidSet(Dt)
epoch = 0; i = 0;
while i < K do

model.ResetWeights()
Ti,train := ∪K

j=0,j ̸=iD
j
t ; Ti,test := Di

t

while epoch < num-epoch do
/* train using ADAM to

minimize cross-entropy loss

*/
model.train(Ti,train)
epoch = epoch + 1

/* Classification stage */
Ad[t] = Ad[t] + model.evalAcc(Ti,test) ;
i = i + 1

Ad[t] = Ad[t]/K /* Average Ad[t] */
s = s+ sinit; t = t+ 1

Note that once the size of the data set is known, the model is
trained once, and inference is performed multiple times using
the trained model for a given RNG.

The DL-based leakage assessment experiment is outlined
in Algorithm 2, where the complete dataset D under con-
sideration is a union of two subsets: Ta ∪ Tb. The masked
instances from Ta are labeled as 0, while those from Tb are
labeled as 1. The training and inference process commences
with a modest dataset Dt of size sinit obtained by subsampling
equal constituents of Ta, Tb from the complete dataset D,
denoted by the SubSample in Algorithm 2. The size of the
dataset Dt is progressively expanded in each iteration by
adding an equal number of samples from both constituent
sets. For cases involving high entropy RNGs, an optimization
strategy is proposed to streamline the learning process. If
the classification accuracy saturates below < 100% with the
maximum sample size (e.g., S = 107), a final confirmation test
is conducted with a larger sample size (e.g., 5×107 samples),
ensuring reliability in test results.

To ensure the robustness of our training and validation
procedures, especially when dealing with small datasets, we
employ the stratified K-fold cross-validation method [29].
This approach is widely recognized for its effectiveness in
preventing overfitting. The K-fold cross-validation operates by
randomly dividing the entire dataset Dt into K equal-sized

subsets, denoted as D1
t ,D2

t , . . . ,DK
t . The stratified nature

of this partitioning ensures that each subset Dj
t contains an

equal number of samples from both classes (label-0 and label-
1) as implemented by the GenCrossValidSet function in
Algorithm 2. Subsequently, K - 1 of these subsets is utilized
for training the model M, while the remaining subset serves
as the inference or test set. This process is iterated K times,
allowing each subset to be used as the inference set once.
The primary objective is to assess whether the model M can
effectively generalize its learned knowledge to unseen datasets.
The distribution detection accuracy is computed for different
dataset sizes (indexed by t) after taking the average Ad[t] over
K-subsets. Next, we test GeNI for different types of RNGs
with varying strengths of entropy sources.

V. COMPARISON OF DIFFERENT RNGS USING GENI

In this section, we present results for the conventional
randomness testing techniques, followed by our proposed ran-
domness testing methodology on different types of RNGs. We
use VAE parameters of input-size of 8192, h1 = 1024, h2 =
512, and latent-size of 16. On the other hand, MLP for non-
interference follows the parameters of Listing 2, with an input
size of 32, unless otherwise specified. Thereafter, we analyze
the dependence of the model parameters of the distribution
detection accuracy Ad.

A. Case Studies for Different RNGs

In this subsection, we elaborate on the limitations of tradi-
tional randomness evaluation methods, such as min-entropy,
Shannon entropy, autocorrelation function (ACF) for assess-
ing correlation, and the analysis of stationarity through the
variance of the power spectral density (PSD) function, in
accurately assessing the randomness characteristics of RNGs.

1) TERO TRNG: Table II shows that RNG data obtained
from a TERO TRNG implementation [23], [30] on Artix-7
FPGA passes all NIST tests. In Fig. 6a, the speckle pattern
corresponding to a subset of the RNG bitstream x is depicted,
revealing a min-entropy of “0.99990327” and a Shannon-
entropy of “0.99999999” over a sample set of 100M samples.
However, the synthetic bitstream xs, generated from the TERO
TRNG data using a VAE, exhibits subpar statistical properties
due to the low-dimensional representation of the entropy
source. While both x and xs display consistent autocorrelation
properties over varying lags, the correlation for xs surpasses
that of x owing to reduced entropy. Similarly, the stationarity
analysis reveals that while the variance of the power spectral
density for both x and xs falls within an expected range, the
latter exhibit higher variance. Moving forward, we leverage
the conventional randomness testing results for TERO TRNG
as a benchmark for evaluating the efficacy of these testing
schemes for Specious Randomness and PRNG sequences.

2) Mersenne Twister Based PRNG: The Mersenne Twister
(MT) based PRNGs are widely utilized for generating random
numbers in popular Python libraries such as NumPy [27] and
Linux libraries due to their efficient implementation and strong
randomness properties. Our conventional randomness tests
confirm this, with the MT-PRNG successfully passing all NIST
tests and exhibiting comparable performance to TERO TRNG
in terms of min-entropy, Shannon-entropy, autocorrelation, and
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TABLE II
NIST SP800-22 AND GENI TEST RESULTS FOR DIFFERENT TYPES OF RNGS

TERO Mersenne Twister CSPRNG Low bias Low Correlation Specious Memory
Requirement

(GB)

Execution
Time

(seconds)
TRNG [23] PRNG [27] [28] CSPRNG [28] CSPRNG [28] RNG [8]

Entropy Source Strong Weak Weak†

NIST Tests P-values Result P-values Result P-values Result P-values Result P-values Result P-values Result
Frequency 0.657933 PASS 0.4486 PASS 0.1981 PASS 0 FAIL 0.7061 PASS 1∗ PASS 1.1 6.52

Block Frequency 0.935716 PASS 0.3798 PASS 0.7514 PASS 0 FAIL 0.5461 PASS 0.4321 PASS 1.1 7.28
Cumulative Sums 0.419021 PASS 0.5927 PASS 0.3214 PASS 0 FAIL 0.7820 PASS 0.8341 PASS 0.98 176

Runs 0.096578 PASS 0.4664 PASS 0.0931 PASS 0 FAIL 0 FAIL 0.9016 PASS 1.1 16.74
Longest Run 0.4934392 PASS 0.2566 PASS 0.2123 PASS 0.8088 PASS 0 FAIL 0.8066 PASS 1.1 0.054

Rank 0.085587 PASS 0.1329 PASS 0.3078 PASS 0.7918 PASS 0.4905 PASS 0.3206 PASS 1.1 112.41
FFT 0.383827 PASS 0.7089 PASS 0.9943 PASS 0.0210 PASS 0 FAIL 0.5320 PASS 1.1 72.34

Non Overlapping Template 0.616305 PASS 0.7411 PASS 0.9895 PASS 1 PASS 1 PASS 0.3401 PASS 1.1 21.64
Overlapping Template 0.574903 PASS 0.3518 PASS 0.5591 PASS 0.0563 PASS 0 FAIL 0.2127 PASS 1.09 0.197

Universal 0.236810 PASS 0.3737 PASS 0.0158 PASS 0 FAIL 0 FAIL 0.7379 PASS 1.09 13.27
Approximate Entropy 0.574903 PASS 0.7496 PASS 0.1579 PASS 0 FAIL 0 FAIL 0.9999 PASS 0.98 1777
Random Excursions 0.980883 PASS 0.0571 PASS 0.0848 PASS 0.1327 PASS 0 FAIL 0.0946 PASS 0.98 176

Random Excursions Variant 0.585209 PASS 0.01933 PASS 0.1878 PASS 0.0845 PASS 0.333 PASS 0.0118 PASS 0.99 30
Serial 0.574903 PASS 0.4806 PASS 0.1541 PASS 0 FAIL 0 FAIL 0.9999 PASS 0.98 1725

Linear Complexity 0.122325 PASS 0.0282 PASS 0.3052 PASS 0.298 PASS 0.3748 PASS 0.2736 PASS 1.1 5560
NIST SP800-22 Evaluation PASS FAIL PASS† 1.1& 5560

GeNI Accuracy 59.8% 61.28% 60.22% 79.8% 69.89% 72.58%
3.3# 335GeNI Evaluation PASS FAIL FAIL†

∗ specious RNG [8] has exactly equal number of ones and zeros; † Specious RNG has artificial randomness but passes all the NIST SP800-22 tests, whereas our proposed GeNI captures its inherent
compressibility [8]; & Memory access for NIST SP800-22 is for the test with the worst case execution time, i.e., Linear Complexity Text including the RNG data; # Memory access on case GeNI involves
VAE, MLP parameters for non-interference, and RNG data.
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Fig. 6. The speckle pattern (Black = “1”, White = “0”), autocorrelation function (ACF), and variance of the power spectral density (PSD) as a measure of
stationarity for the RNG bitstream x and the synthetic bitstream xs generated from VAE for (a) TERO TRNG [23], (b) Mersenne Twister based PRNG [27],
(c) Biased CSPRNG [28], (d) Correlated CSPRNG [28], (e) CSPRNG [28], and (f) Specious RNG [8]. It may be noted that these results signify that the
conventional metrics are necessary but not sufficient for evaluating randomness.

stationarity properties, as depicted in Table II and Fig. 6b.
However, the synthetic sequence xs demonstrates a slightly
lower min-entropy of “0.86354751” and Shannon-entropy of
“0.99784521” than that of the TERO TRNG. Consequently,
further randomness testing using non-interference tests is

deemed necessary.
3) CSPRNG: To thoroughly assess our proposed random-

ness testing suite for PRNGs with weak entropy, we conducted
experiments on a cryptographically secure (CS) PRNG [28],
including its biased and correlated variants. While the pure
CSPRNG successfully passes all NIST tests, as evidenced
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Fig. 7. Distribution detection accuracy Ad of the masked distribution generated from the synthetic bitstream xs vs. (a) input dimension of MLP in the
non-interference stage with VAE latent dimension of 16, (b) latent dimension of VAE for MLP input dimension of 128, and (c) the number of training bits
for the RNG with MLP input dimension of 32.

Biased CSPRNG Specious RNG Correlated CSPRNG
CSPRNG TERO TRNG MT-PRNG

(a) (b)

Fig. 8. Loss function vs. number of epochs due training for (a) VAE, including
the reconstruction loss and similarity loss, and (b) cross entropy loss in MLP
for the non-interference stage in the case of different types of RNGs.

in Table II, it encounters failures upon introducing a bias
of 0.51 (zero bias condition of 0.5) and correlation of 0.02
(zero correlation condition of 0). Notably, the biased-induced
CSPRNG (Fig. 6d) exhibits a decrease in min-entropy and
Shannon-entropy compared to the pure CSPRNG (Fig. 6c)
and the correlated CSPRNG (Fig. 6e). Interestingly, while
the autocorrelation and stationarity properties remain largely
unchanged upon the addition of bias (Fig. 6d), they exhibit an
increase in magnitude with the incorporation of correlation in
the bitstream (Fig. 6e). Similar to the previous observations for
TRNG and specious RNG, the synthetic bitstreams xs have
poor statistical properties compared to original bitstream x.

4) Specious Randomness: The artificial patterns created by
shuffling all elements of the 24-bit binary number system
exhibit specious randomness [8], contrasting with genuine
randomness obtained from an entropy source. Surprisingly,
these specious RNGs pass all NIST tests, as indicated in Ta-
ble II, and demonstrate similar min-entropy, Shannon-entropy,
autocorrelation, and stationarity properties compared to the
TRNG, as illustrated in Fig. 6f. However, the low-dimensional
modeling of the entropy source diminishes the min-entropy to
“0.78781191” and Shannon-entropy to “0.98181442”, captur-
ing only the randomness inherent in the ordering of the 24-
bit binary numbers in the concatenated bitstream. Although
the autocorrelation function (ACF) and power spectral density
(PSD) variances resemble the synthetic TRNG sequence, fur-
ther randomness testing using non-interference is warranted.
These findings underscore the necessity of adopting a more

comprehensive approach to randomness testing, which in-
cludes the modeling of the entropy source, as a single metric
may not fully capture all relevant information.

B. Accuracy vs. Input Dimension of MLP (Non-Interference)

Figure 7(a) illustrates the effectiveness of GeNI in detecting
masked distributions particularly, by applying it to the syn-
thetic sequences derived from all the six randomness sources
discussed previously in Table II with NIST SP 800-22 tests.
As discussed in Sec. IV we present the detection accuracy
Ad for the masked distributions. We observe high distribution
detection accuracy (Ad) for correlated PRNGs, biased RNGs,
and specious RNGs at lower input dimensions for MLPs when
the size of the training RNG set is fixed to 106 (includes both
VAE and MLP for non-interference). Note that training is done
once with a fixed RNG dataset to obtain the model parameters.
The accuracy saturates as the input dimension of MLP or
the size of the first layer increases. This increase indicates
that a successful distribution detection is possible at a low
MLP input dimension of 32, amounting to ≈100k RNG bits,
10× lower than the 1M bits typically needed for NIST tests.
RNGs with high internal entropy exhibit lower distribution
detection accuracy as they resist low dimensional entropy
source modeling. Conversely, weaker entropy sources enable
low-dimensional modeling achieved through VAEs capturing
entropy source properties with higher fidelity and resulting in
higher Ad. Note that specious RNGs characterized by com-
pressible bitstreams demonstrate higher Ad even when they
successfully pass all NIST tests. This underlines the superior
quality of the proposed tests in identifying weaknesses in a
given candidate RNG.

C. Accuracy vs. Latent Space Dimension of VAE

We determine the optimal choice for the latent dimension
of the Variational Autoencoder (VAE) through empirical ex-
periments. As illustrated in Fig. 7(b), diminishing the latent
dimension enhances the discrimination in non-interference
testing accuracy until reaching a saturation point below 16 di-
mensions. For weak entropy sources, lower latent dimensions
increase accuracy, indicative of a pronounced deterministic
influence within the synthetic bitstream. Conversely, enlarg-
ing the latent dimension diminishes both accuracy and the
distinguishability between strong and weak entropy sources,
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as augmenting the model’s complexity better captures the
inherent characteristics of RNGs in synthetic outputs. In our
case, a latent dimension of 16 adequately represents effectively
evaluating and contrasting the performance across TRNGs,
PRNGs, and specious RNGs.

D. Accuracy vs. Training Set Size of Non-Interference Testing

Figure 7(c) demonstrates that the accuracy in detecting
distributions reaches a plateau with increased training dataset
size. Initially, the training process involves both the VAE
for synthesizing data and the MLP for conducting non-
interference testing, utilizing inputs from various RNGs as
outlined in Algorithms 1 and 2. The detection accuracy,
denoted as Ad, stabilizes once the dataset size exceeds 106

bits, indicating a common saturation point applicable across
different RNG categories. Furthermore, the loss functions of
both the VAE (Fig. 8(a)) and MLP (Fig. 8(b)) models decline
over successive training epochs with a slight but noticeable
divergence in the final VAE loss values. This hints at the
relationship between the entropy source and the VAE model
parameters, consistent with our latent distribution analysis for
VAEs with different pbit in Fig. 3.

E. GeNI Test PASS/ FAIL Criterion

To determine an accuracy threshold for the PASS/FAIL
criteria using GeNI, we selected the most parameter-efficient
testing conditions: an input dimension of 32 for the MLP in
the encoder/ decoder architecture, a latent dimension of 16,
and a minimum of 106 training samples for non-interference
testing. Under, these assumptions, a dotted line in Fig. 7(c)
marks the minimum accuracy (65%) needed to identify non-
random patterns within a synthetic bitstream. This threshold
is used to determine the PASS/ FAIL criteria of RNG sources,
as shown in Table II. However, this accuracy limit will vary
with different parameter choices for the MLP architecture and
latent dimension, as illustrated in Fig. 7 (a) and (b). The limit
increases with the input dimension and decreases with the
latent dimension. Adjusting the parameters of GeNI can be
useful for determining the point of failure of an RNG source
whose entropy is affected by PVT variations or adversarial
noise. All our experiments were conducted on an Intel(R)
Xeon(R) Gold 6226 CPU @ 2.70 GHz with 96 cores, 2
threads per core, 12 cores per socket, and 256GB DRAM.
Table II shows that the execution time for GeNI is 16.5 times
faster compared to NIST, whose execution time is determined
by the linear complexity test requiring the maximum time.
Additionally, the memory access for GeNI includes VAE,
non-interference MLP model parameters, and the RNG data,
leading to a slightly higher overhead compared to the NIST
test, which only requires the RNG data.

F. Accuracy vs. Entropy

To gain deeper insights into the dependence of GeNI accu-
racy on the strength of the entropy source, we varied the corre-
lation coefficient and bias for a CSPRNG, effectively altering
the strength of its entropy source. Figure 9 demonstrates that
as correlation and bias in the bitstream increase, the accuracy
improves while the min-entropy decreases. The correlation is
a less effective tuning parameter for reducing overall entropy

(a) (b)
Fig. 9. GeNI accuracy and min-entropy trends vs. (a) correlation coefficient,
and (b) bias for CSPRNG.

TABLE III
r-ROBUSTNESS OF VAES FOR TERO TRNG FOR r = 30, FOR DIFFERENT

LATENT SPACE DIMENSIONS, AND NOISE LEVELS.

Noise Type No
Noise

Bias
pn-bias 0.25 0.5 0.75 1

Latent
Dimension

8 0.534 0.21 0.01 0 0
16 0.560 0.28 0.05 0 0
32 0.553 0.29 0.07 0 0
64 0.556 0.31 0.07 0 0
128 0.545 0.32 0.08 0 0

compared to bias, as indicated by the percentage change
in min-entropy in Fig. 9. This result highlights the strong
relationship between the strength of the entropy source and
the classification accuracy in our proposed randomness testing
scheme. It is important to note that altering the entropy for a
TRNG would require circuit modifications, whereas modifying
the entropy for MT-PRNGs and specious RNGs would involve
algorithmic changes. The dependence of GeNI accuracy on the
entropy of these RNGs necessitates a focus on both design and
analysis, presenting a promising direction for future research.

G. Reliability and Robustness of VAEs

To assess robustness, we evaluated the impact of noise
δ added to the RNG x. This was done by observing the
change in the synthetic bitstream xs, upon noise injection. We
modeled the noise in the case of RNGs as bias, where each
RNG bit is set to ‘1’ with a Bernoulli probability pn−bias.
When pn−bias = 1, the bitstream consists entirely of ‘1’s and,
pn−bias = 0 represents a no-noise scenario. Bias injection
can occur due to process-voltage-temperature variations or
intentional noise injection by an adversary.
We then evaluated the r-robustness of the VAE [31], measured
by the probability that the change in the synthetic bitstream
xs is less than r (in terms of the L2 norm), given by:

Pr(∥fθ(hϕ(x+ δ, ϵ1))− fθ(hϕ(x, ϵ2))∥2 < r), (19)

where fθ(hϕ(.)) is the VAE, δ is the noise, ϵ1, ϵ2 are
the standard Gaussian noise samples following (6) and r is
the robustness bound. The value of r is chosen to be 30,
matching the mean value of the L2 norm of the difference
in the synthetic bitstream xs in the no-noise scenario, i.e.,
E[∥fθ(hϕ(x, ϵ1))− fθ(hϕ(x, ϵ2))∥2].

Table III lists the r-robustness values of a VAE with an
input sequence length of 8192 for TERO TRNG with r = 30.
Probability values greater than 0.5 indicate strong robustness
for the VAE in all scenarios [31]. In the case of bias injection
with pn−bias > 0.5, we observe r-robustness drop to 0, since
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the L2 norm exceeds the threshold of r = 30, approaching
the limiting value of

√
8192× 0.5 = 64 when the noisy xs

approaches an all ‘1’s state, compared to xs in the no-noise
case with 50% 1s and 0s. This robustness analysis confirms the
reliability of the test, i.e., the ability of the test to distinguish
between the original and the perturbed scenario is very high.

VI. CONCLUSION

This is the first work that explores the use of GeNI,
generative AI-based non-interference testing techniques, to
address the key shortcomings of the popularly employed
NIST SP 800-22 testing suite: the lack of entropy source
modeling. We employ a variational autoencoder (VAE) with
a low-dimensional latent space representation to contrast the
entropy of different RNGs. The synthetic bitstreams generated
via VAEs accentuate the deterministic attributes of weak
entropy sources, which are more likely to reside on a low-
dimensional manifold compared to strong entropy sources.
The subsequent non-interference detection step evaluates the
masking capability of these synthetic bitstreams, achieving
higher accuracy in distinguishing weak-entropy sources from
strong ones. Additionally, our proposed GeNI operates with
bitstreams of ≈ 100k in length instead of the 1M bits used for
NIST tests and achieves 16.5× faster execution time. GeNI
can detect the quality of the entropy source, flagging artificial
sources of randomness, such as specious RNGs, which pass
all NIST tests.
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[8] J. Almlöf et al., “Creating and detecting specious randomness,” EPJ
Quantum Technology, vol. 10, no. 1, p. 1, 2023.

[9] B. Yang et al., “TOTAL: TRNG on-the-fly testing for attack detection
using lightweight hardware,” in IEEE DATE, 2016, pp. 127–132.

[10] National Institute of Standards and Technology (NIST), “Decision
to Revise NIST SP 800-22 Rev. 1a,” https://csrc.nist.gov/news/2022/
decision-to-revise-nist-sp-800-22-rev-1a, 2022.

[11] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[12] D. P. Kingma et al., “An introduction to variational autoencoders,”
Foundations and Trends® in Machine Learning, 2019.

[13] W. Liu et al., “Towards visually explaining variational autoencoders,”
in Proceedings of the IEEE CVPR, 2020, pp. 8642–8651.

[14] W. Peebles and S. Xie, “Scalable diffusion models with transformers,”
in Proceedings of the IEEE CVPR, 2023, pp. 4195–4205.

[15] “Representation learning: A review and new perspectives,” IEEE trans-
actions on PAMI, 2013.

[16] D. Clark, S. Hunt, and P. Malacaria, “Quantified interference: Informa-
tion theory and information flow,” in WITS, 2004.

[17] J. J. M. Chan et al., “Ensuring quality of random numbers from trng:
Design and evaluation of post-processing using genetic algorithm,”
Journal of Computer and Communications, 2016.

[18] F. Dörre and V. Klebanov, “Practical detection of entropy loss in pseudo-
random number generators,” in ACM CCS, 2016, pp. 678–689.

[19] V. Fischer and D. Lubicz, “Embedded evaluation of randomness in
oscillator based elementary trng,” in CHES 2014. Springer.

[20] W. H. Zurek, “Algorithmic randomness and physical entropy,” Physical
Review A, vol. 40, no. 8, p. 4731, 1989.

[21] J. B. Tenenbaum et al., “A global geometric framework for nonlinear
dimensionality reduction,” science, 2000.

[22] D. Zhao et al., “Latent variables on spheres for autoencoders in high
dimensions,” arXiv preprint arXiv:1912.10233, 2019.

[23] P. Haddad et al., “A physical approach for stochastic modeling of tero-
based trng,” in CHES 2015. Springer, pp. 357–372.

[24] S. Coretti et al., “Seedless fruit is the sweetest: Random number
generation, revisited,” in Annual International Cryptology Conference.
Springer, 2019, pp. 205–234.

[25] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint
arXiv:1606.05908, 2016.

[26] S. Saha et al., “Leakage assessment in fault attacks: a deep learning
perspective,” Cryptology ePrint Archive, 2020.

[27] NumPy Developers, “Random generator,” https://numpy.org/doc/stable/
reference/random/generator.html#numpy.random.Generator.

[28] David Johnston, “A python implementation of the sp800-22 rev 1a prng
test suite.” https://github.com/dj-on-github/sp800 22 tests, 2021.

[29] X. Zeng et al., “Distribution-balanced stratified cross-validation for
accuracy estimation,” Journal of Experimental & Theoretical Artificial
Intelligence, 2000.

[30] K. Pratihar et al., “Birds of the same feather flock together: A dual-mode
circuit candidate for strong PUF-TRNG functionalities,” IEEE TC, 2022.

[31] A. Camuto et al., “Towards a theoretical understanding of the robustness
of variational autoencoders,” in ICAIS. PMLR, 2021, pp. 3565–3573.

Kuheli Pratihar is a PhD student at the De-
partment of Computer Science and Engineering,
IIT Kharagpur under the supervision of Prof.
Debdeep Mukhopadhyay and Prof. Rajat Subhra
Chakraborty. Her primary research work involves
design, lightweight implementation, and analysis of
hardware security primitives like Physically Un-
clonable Functions (PUFs), True Random Number
Generators (TRNGs) etc..

Rajat Subhra Chakraborty is a professor with the
Department of Computer Science and Engineering,
IIT Kharagpur. His area of research is hardware
security, VLSI design and digital content protection
through watermarking. He is a senior member of the
IEEE and ACM.

Debdeep Mukhopadhyay received his PhD degree
from IIT Kharagpur. Currently, he is a full professor
with the Department of Computer Science and En-
gineering, IIT Kharagpur. His research interests in-
clude hardware security, micro-architectural attacks,
cryptography, VLSI. He is a senior member of IEEE
and ACM, and the recipient of the prestigious Shanti
Swarup Bhatnagar prize 2021.


