
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Meta-Scanner: Detecting Fault Attacks via Scanning
FPGA Designs Metadata

Hassan Nassar , Jonas Krautter, Lars Bauer , Dennis Gnad, Mehdi Tahoori , Fellow, IEEE,
and Jörg Henkel , Fellow, IEEE

Abstract—With the rise of the big data, processing in the1

cloud has become more significant. One method of accelerating2

applications in the cloud is to use field programmable gate3

arrays (FPGAs) to provide the needed acceleration for the4

user-specific applications. Multitenant FPGAs are a solution to5

increase efficiency. In this case, multiple cloud users upload their6

accelerator designs to the same FPGA fabric to use them in7

the cloud. However, multitenant FPGAs are vulnerable to low-8

level denial-of-service attacks that induce excessive voltage drops9

using the legitimate configurations. Through such attacks, the10

availability of the cloud resources to the nonmalicious tenants11

can be hugely impacted, leading to downtime and thus financial12

losses to the cloud service provider. In this article, we propose a13

tool for the offline classification to identify which FPGA designs14

can be malicious during operation by analysing the metadata of15

the bitstream generation step. We generate and test 475 FPGA16

designs that include 38% malicious designs. We identify and17

extract five relevant features out of the metadata provided from18

the bitstream generation step. Using ten-fold cross-validation to19

train a random forest classifier, we achieve an average accuracy of20

97.9%. This significantly surpasses the conservative comparison21

with the state-of-the-art approaches, which stands at 84.0%, as22

our approach detects stealthy attacks undetectable by the existing23

methods.24

Index Terms—Hardware security, machine learning, reconfig-25

urable logic.26

I. INTRODUCTION27

F IELD programmable gate arrays (FPGAs) are now heavily28

utilized as versatile accelerators in the cloud computing29

domain [1], [2], [3], [4], where the users can realize almost30

arbitrary circuits on these programmable logic chips. The ever-31

increasing amount of programmable resources per FPGA chip32

enables the fine-grained virtualization to optimize efficiency33

and utilization [5]. Virtualization and multitenancy (multiple34
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users, i.e., tenants share the resources of the same FPGA) 35

is heavily discussed in [6], [7], and [8]. However, researchers 36

demonstrated unsolved security issues of FPGA multitenancy 37

in the form of remote fault attacks [9], [10], [11], [12]. The 38

attacks have been escalated to the actual cloud devices in the 39

Amazon AWS instances [13], enabling large-scale denial-of- 40

service attacks that can result in financial loss for the cloud 41

service provider (CSP). The attacker causes strong fluctuations 42

in the FPGA’s power distribution network (PDN), resulting in 43

its sudden shutdown. The attacker achieves this by implement- 44

ing several thousands of oscillators on the FPGA [12]. 45

To address these security issues, offline and online coun- 46

termeasures have been proposed [10], [14], [15], [16], [17], 47

and basic design rule checks are already employed by the 48

industry [13]. Existing offline countermeasures based on the 49

bitstream checking [14], [15], [16] fail to identify the most 50

recent malicious designs. For instance, seemingly benign 51

circuit designs, based on the minor modifications to the AES 52

encryption modules, have been demonstrated as capable of 53

inducing timing faults or causing a denial-of-service [18]. 54

These seemingly benign circuits achieve strong PDN fluctua- 55

tion through the specific input patterns instead of using simple 56

oscillators. Moreover, it is also possible to build an attack by 57

using multiple malicious tenants in a coordinated way, even 58

though none alone would lead to a successful attack [19]. 59

Thus, attacks are getting more stealthy and are harder to detect. 60

Two online methods to disable malicious tenant designs 61

during the operation have been proposed [10], [17], but both 62

have restrictions on the type of malicious designs they can 63

prevent and how fast they can do that. Thus, to effec- 64

tively stop an attack, a hypervisor must know upfront which 65

the tenant could be potentially malicious, as its adversary 66

effects can already become effective a few microseconds 67

after it was deployed. If not, targeting the malicious ten- 68

ant would take several milliseconds and the attack will be 69

successful [10]. 70

In this work we propose a machine-learning-based clas- 71

sification that can be used offline on the tenant designs 72

before loading them to an FPGA. We show the basic flow 73

of our approach in Fig. 1. In the cloud, a tenant design 74

is compiled into a bitstream with accompanying metadata, 75

such as estimated power consumption. Our classification scans 76

the metadata as input and categorizes the tenant’s designs 77

into three categories. These categories correspond to its risk 78

level of becoming a potential threat to the integrity of other 79

tenants or the entire system. Based on the scanner, hypervisors 80

can choose a suitable mapping of tenant designs to different 81
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Fig. 1. Basic principle of our proposed meta-scanner and loading flow.

FPGAs that can maximize security through the additional82

online countermeasures as in [10] and [17].83

Tenant designs of the high-risk category (red) are banned84

from being loaded to any FPGA region. Designs of the low-85

risk category (green) can be arbitrarily placed together with86

the other low-risk tenant designs on the same FPGA. The87

hypervisor would deploy at most a single mid risk (yellow)88

tenant design on the same FPGA. In this case, existing runtime89

countermeasures [10], [17] in case of detected malicious90

activity will be able to disable the yellow tenant design. If we91

deploy more than one yellow tenant design to the same FPGA,92

the online tools cannot stop both of them fast enough, in case93

of an attack.94

Altogether, our novel contributions are as follows.95

1) We propose an offline FPGA design classification in96

which we identify and extract five relevant features from97

a tenant design, using the metadata from the bitstream98

generation step to categorize its risk level.99

2) Our proposed classifier covers more types of malicious100

designs than any state-of-the-art solution. It reaches an101

average cross-validated accuracy of 97.9%, whereas the102

state-of-the-art checkers only achieve accuracies up to103

84.0% in a conservative comparison.104

3) We generate a comprehensive set of 475 tenant designs105

based on the malicious and benign logic.1 We label them106

using the three risk classes red, yellow, and green.107

The organization of the remainder of this article is as108

follows. We describe the necessary background and state-109

of-the-art approaches in Section II. Our main contributions,110

the offline design classification and the required metadata111

scanning are explained in Section III. Section IV presents112

the generation of the bitstreams. We present our results and113

analysis in Section V. In Section VI, we discuss the limitations114

and advantages of our work. Section VII provides conclusion.115

II. BACKGROUND AND RELATED WORK116

A major aspect of this work is to focus on the remaining117

blind spots of the existing countermeasures against the fault118

attacks in the cloud FPGAs. To get sufficient background,119

we first explain the current assumptions on the multitenant120

FPGAs. Then, we detail the existing attacks and their conse-121

quences to CSPs. Moreover, we elaborate on which attacks can122

be performed in the cloud and which further countermeasures123

are available.124

1https://gitlab.kit.edu/hassan.nassar/Meta-Scanner

A. Multitenant FPGAs for Cloud Applications 125

Multitenant FPGAs are a heavily discussed topic. It has 126

interest from both academia [8] as well as industry, e.g., 127

IBM [20]. The idea stems from the fact that the FPGA 128

resources increase and one user, i.e., tenant, might not need 129

to use all the resources on the FPGA. Hence, to increase 130

efficiency, the FPGA can be shared by different tenants. To 131

manage the tenant designs, a static part of the FPGA is used 132

by the CSP to manage the communication and interfaces of the 133

different tenants. The tenant designs reside in a dynamic part, 134

with several accelerator slots that can be used by tenants [5]. 135

The tenant design focuses mainly on the application accel- 136

erated by the user [5], [8], [20], [21]. Any memory controllers 137

or PCIe subsystems would not reside in the tenant region. Such 138

components would rather belong to the static design controlled 139

by the CSP to avoid conflicts between the tenants when using 140

the shared resources, such as off-chip RAM. AWS already 141

does this in its commercial single-tenant systems [22]. 142

B. Cloud FPGA Attacks 143

The interest in multitenant FPGAs sparked security con- 144

cerns [6], [7], [23]. As in the cloud FPGAs, physical attacks 145

that do not require physical access to the chip become 146

increasingly concerning [12], [24]. In the literature, passive 147

side-channel [24] and active fault attacks [9], [12], [25], [26] 148

are mentioned for the cloud FPGAs. This work solely focuses 149

on the latter. 150

In such fault attacks, high power-consuming designs cause 151

instability in the PDN. When the attacker uses a large 152

enough design, the whole FPGA or its power supply can 153

crash. This requires manual power cycling to recover the 154

system [12], [25], leading to a major loss of availability. 155

Recently, it was shown that denial-of-service attacks work 156

in commercial FPGA clouds, with only minimal modifica- 157

tions [13]. The authors also show that significant financial 158

loss can be expected for the CSPs, when denial-of-service 159

attacks are performed, leading to longer downtimes of the 160

FPGA infrastructure. 161

The initial versions [9], [12] of FPGA fault attacks used 162

ring oscillators or other combinational loops for high power 163

consumption. However, these clearly malicious circuits can 164

also be replaced by more stealthy variants, with the first step 165

being synchronous flip-flops [25]. Later, it was shown that 166

the intermittent short-circuits could be caused by certain block 167

RAM access patterns, causing sufficient voltage drop, and even 168

bitflips in configuration memory [27]. Another alternative is 169

“glitch amplification,” which uses a fast-clocked flip-flop with 170

a large output network designed to have many glitches and thus 171

high power consumption [28]. A wider overview of similar 172

circuits optimized for high power consumption is presented 173

in [15]. 174

All of these mentioned circuits use uncommon circuit struc- 175

tures. However, it has also been shown that combining multiple 176

benign synchronous IP modules, e.g., AES, can be used for 177

attacks [18], [29]. Moreover, the attack can be distributed to 178

multiple malicious tenants launching a coordinated attack [19]. 179
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C. Offline Countermeasures Against Fault Attacks on180

Cloud FPGAs181

From the malicious designs in Section II-B, only some182

combinational loops are detected by the FPGA CSPs through183

the typical design-rule checks (DRCs) that are not necessarily184

meant for security. In the literature, more sophisticated checks185

have thus been proposed in [14], [15], and [16]. Reverse-186

engineering is used by [14] and [15] to perform the security187

checks. They look into detecting patterns to find the malicious188

elements. Krautter et al. [14] presented a heuristic to check189

for high-fanout-nets that are often used in attacker designs to190

toggle large amounts of logic synchronously. Regarding the191

method presented La et al. [15] used the reverse-engineered192

bitstream to recreate the netlist. From the netlist, they can193

find any self-oscillating structures that might escape the DRC194

done by the CSPs. Moreover, Elnaggar et al. [11] offered a195

similar approach to ours using ML on the bitstreams. They196

are limited to work on the full bitstreams, lacking support197

for the partial bitstreams, and they focus on detecting the198

self-oscillating structures. They improve over previous works199

by detecting the hidden malicious designs within the benign200

designs. Similar to [11] and [16] provides the initial results on201

training a convolutional neural network (CNN) to detect the202

self-oscillating structures.203

However, all these offline countermeasures cannot detect204

recent malicious designs. As even standard IP-core modules,205

such as AES and shift registers can be used to provoke206

crashes [18], [29] because they seem benign. Very recently,207

Chaudhuri and Chakrabarty [30] and Alrahis et al. [31]208

showed the initial results for detecting the cryptographical-209

circuits-based malicious designs. However, they cannot detect210

many sequential malicious designs, such as shift registers [18]211

or RAM-based malicious designs [27] which escape detection212

by all the state-of-the-art solutions. We compare our approach213

with all the tools from the state-of-the-art in Section V.214

D. Online Countermeasures Against Fault Attacks on215

Cloud FPGAs216

Another mitigation approach is to detect the attacks online,217

and try to prevent them, i.e., ways for detection and for218

prevention. For the detection of attacks, a delay line can be219

used to detect the voltage drops [12]. By distributing multiple220

of them, the exact location of the attacker can be found in221

about 9.9–21.0 µs [17], but some attacks succeed faster than222

that [10].223

Preventing attacks can be more challenging, as the FPGAs224

are not designed to disable an entire region rapidly. When the225

attack relies on an external clock, a clock disable will be suffi-226

cient to stop the attack quickly enough [12], [13], [17], but it227

cannot prevent the attacks with a self-generated clock [10]. To228

prevent such attacks, LoopBreaker can stop attacks at runtime229

by quickly reconfiguring all the interconnects of the malicious230

tenant to high impedance in about 1.5 µs [10]. However, due231

to limitations in the reconfiguration time, LoopBreaker needs232

to know in advance which tenant shall be stopped before the233

attack even starts. LoopBreaker can quickly stop an ongoing234

attack if and only if that information is available upfront.235

III. META-SCANNER: IDENTIFYING MALICIOUS 236

FPGA DESIGNS 237

Our main goal is to develop an offline scanner that allows 238

the CSP to analyse the tenant designs before uploading them 239

to an FPGA. This should be done without a time consuming 240

and extensive netlist analysis, and at the same time, it should 241

be sufficient to complement and assist the existing runtime 242

countermeasures [10], [17]. We classify tenant designs into 243

three categories: 1) high risk (red), 2) mid risk (yellow), and 244

3) low risk (green), which removes the burden from the exist- 245

ing runtime countermeasures to identify the malicious tenant 246

before starting the countermeasure. Our chosen random forest 247

classifier consists of several decision trees. Each decision tree 248

is actually very similar to a simple rule-based inference. The 249

main difference is in finding appropriate thresholds for the 250

rules. The ML part can be seen as an automated way to 251

determine the individual decisions and finding the thresholds 252

during training. This ML training step helps to ensure that 253

the rules are not mistakenly overfitted to the known attacks 254

used for training, but that they remain generic enough to also 255

cover the other attacks. Additionally, it helps to adjusting to 256

novel attack types as soon as they occur, as retraining is an 257

automatic operation. 258

A. Threat Model and Assumptions 259

The threat model We target is a cloud scenario with 260

multitenant FPGAs, i.e., multiple tenants share an FPGA 261

in a cloud system with potentially multiple FPGAs. The 262

attacker might rely on intra-FPGA coordination, i.e., using 263

multiple regions on a single FPGA together to crash the 264

FPGA (see Section II-B). Our focus is mainly on detecting 265

malicious tenant designs. By correctly classifying the risk level 266

of each tenant design, we provide CSPs with the ability to 267

decide whether or not to upload it. We assume that CSPs 268

perform security checks or attestation of the FPGA design 269

through a hypervisor as explained by previous works [32]. 270

Moreover, CSPs can combine our risk classification with other 271

data they might have. Usually, CSPs can have access to more 272

information about their users, e.g., their history of previous 273

tenancy on FPGAs. Hence, they may have some trust metric 274

for the users, which is beyond the scope of our work. 275

The steps to use our solution are shown in Fig. 1. Normally, 276

a tenant would upload a design as an HDL code or as a netlist 277

to the CSP. The CSP then generates the bitstream and extracts 278

the features (see Section III-C) used by our scanner from the 279

metadata. Then, based on our scanner, the CSP can correctly 280

evaluate the risk category of the bitstream. 281

The hypervisor should never upload the red tenants (see 282

Fig. 1), as they will very likely exhibit malicious behavior, 283

whereas the green tenants can always be uploaded, as they 284

are incapable of displaying the malicious behavior. Yellow 285

tenants can be uploaded to an FPGA, but special care must be 286

taken as explained in Section I. When ensuring that at most 287

one yellow tenant is executing on an FPGA, then the online 288

countermeasures like [10] and [17] can aim at the potentially 289

malicious tenant, which allows them to shut it down as soon 290

as it measures any malicious activity. Instead, if two or more 291

yellow tenants were on the same FPGA, it would no longer be 292
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known which of them started the malicious activity. Thus, the293

online countermeasures would no longer be able to localize294

and stop the activity fast enough before a crash occurs.295

B. Tenant Design Analysis296

To classify the tenants accordingly, we start by thoroughly297

analysing both the malicious- and benign designs (generation298

of the dataset of the tenant designs is described in Section IV),299

to get an idea of which features would be helpful to detect the300

malicious designs. As typical malicious designs aim at trigger-301

ing a voltage drop to cause denial-of-service (see Section II-B),302

the most straightforward idea is to use the estimated power303

consumption of a tenant. However, our analysis shows that this304

power estimation is very inaccurate for the earlier published305

malicious designs [28] that used highly regular structures306

(e.g., mux-based, latch-based, or glitch amplification-based;307

see Section II-B). The power estimation alone will not be308

enough to classify the malicious designs properly. However,309

it is noticeable that the earlier published malicious designs310

have a highly regular structure and repetitive elements in their311

design, as they are composed of many relatively small building312

blocks. We show in Section III-C how to extract and exploit313

this property of the bitstream metadata for our classification.314

Repetitive elements in the bitstream are not always an315

indicator of malicious tenants, because simple benign tenant316

designs, which have a low power consumption and are mostly317

empty. Therefore, they will show a high degree of repetition318

in their bitstreams as the unused resources will have similar319

configuration data setting them to blank. Hence, these benign320

tenants can unintentionally appear like malicious tenants to the321

bitstream classifier. The observable repetition is because most322

resources in their tenant region are unused. For example, AES323

uses only very few DSP blocks. We will have to distinguish the324

repetition due to repeated attack blocks from the repetition due325

to the repeated unused blocks in the bitstream classification.326

Complex benign designs like a Bitcoin miner or a cluster of327

different big designs have a high estimated power consumption328

and a high utilization with a low degree of repetition. It should329

be easy to distinguish them from the malicious designs with330

highly regular structures. However, malicious designs that are331

based on the benign modules (e.g., the AES-based attacks [18]332

explained in Section II), also show a high estimated power and333

a low degree of repetition, which makes them appear similar334

to complex the benign designs.335

C. Metadata Extraction336

Our idea is to identify the area utilization of a tenant and337

its internal regularity by extracting corresponding properties338

directly from its bitstream. Fig. 2 shows the structure of Xilinx339

bitstreams. It has headers and trailers for synchronizing the340

bitstream upload and the payload. Internally, the main payload341

of a bitstream consists of so-called frames, i.e., the smallest342

reconfigurable unit in an FPGA (in the low kiB range per343

frame depending on the FPGA family). For every reconfig-344

urable region, the synthesis tools for partially reconfigurable345

designs create a so-called blank bitstream [shown in Fig. 2(a)]346

that reconfigures the region into an empty state.347

(a) (b)

Fig. 2. Bitstream Structure for (a) blank bitstream and (b) design bitstream.

TABLE I
ANNOTATION OF THE MATHEMATICAL EXPLANATION FOR THE FEATURES

A normal design bitstream for the same region can be seen 348

in Fig. 2(b). It has the same structure as the blank bitstream. 349

For unused regions, the frame data is identical to the frame 350

data of the blank bitstream. Hence, any frame with data 351

identical to the corresponding frame in the blank bitstream can 352

be seen as empty. 353

Based on the bitstream structure, we extract five features as 354

follows. Note that, for the equations, we use the annotation 355

from Table I. 356

1) Repetition: The number of nonunique frames. If there 357

are for instance 100 frames with the identical data, that 358

adds 100 to the repetition. Nothing is added to the 359

repetition for an unique frame (i.e., no other frame has 360

the same data). A higher repetition indicates a higher risk 361

of self-oscillating structures, as they normally consist of 362

many repeated frames 363

Repetition = BitstreamLen − (NUFrames + NBFrames). 364

2) Utilization: The number of frames different from the 365

frame data at the same position in the blank bitstream. 366

This helps to identify the complex designs that use a 367

large degree of their resources 368

Utilization = BitstreamLen − NBFrames. 369

3) Average Frame Frequency (AvgFrameFreq): We create 370

a histogram of all the nonblank frames in the bitstream, 371

i.e., of those frames that are different than the corre- 372

sponding frame in the blank bitstream. The frequency of 373

the histogram’s bins denotes how many frames belong 374

to that bin, i.e., how many frames have the same data. 375

For the AvgFrameFreq, we calculate the average over 376

the frequencies and divide it by the largest frequency. If 377

the AvgFrameFreq is near one, it indicates a low degree 378

of repetition, while if it is close to zero, it indicates a 379

higher degree of repetition 380

AvgFrameFreq = mean(hist(NonBFrames))

max(hist(NonBFrames))
. 381
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4) Standard Deviation of the Frame Frequency382

(StdFrameFreq): The metric calculates the standard383

deviation of the frame frequencies and then divides it384

by the largest frame frequency. This helps identify how385

much repetition exists. A low deviation means that there386

is a high degree of repetition and a high deviation means387

that there is a low degree of repetition388

StdFrameFreq = std(hist(NonBFrames))

max(hist(NonBFrames))
.389

5) Estimated Power: This feature estimates the design’s390

power consumption. It is the only feature not directly391

calculated from the bitstream but is reported by the392

synthesis tools after the design is placed and routed.393

Note that, for the Amazon cloud, the CSP has access394

to this information, as the place and route of a tenant395

design is performed under the control of Amazon (see396

also Section VI)397

EstimatedPower = VivadoPowerEstimation.398

Using these five features covers all the important aspects399

of high utilization, high power, regular structures, and regular400

structures hidden with some irregularities, which we need for401

classifying the designs. Overall, they were effective enough to402

keep our accuracy, recall, and precision around 97%. Initially,403

we experimented with ten features from the metadata, but404

through experimentation, we found that the five we use are405

enough. The five features excluded are the most repeated406

frame, the number of occurrences of the most repeated407

frame, the average value of all the bitstream words, and the408

standard deviation of all the bitstream words. The final five409

features we use have some overlaps but cover different aspects.410

StdFrameFreq and repetition are somehow correlated. In case411

of a nonhidden attack, repetition is very powerful to detect the412

attack while StdFrameFreq cannot be of the same strength.413

However, for the cases where a malicious design is hidden414

within a benign design, repetition cannot really be used on its415

own, the StdFrameFreq is then more accurate. Therefore, both416

the features are needed. We evaluate the features’ relevance to417

our classification problem in Section V-B using the scikit-learn418

library [33].419

D. Proposed Classification420

We demonstrate the feasibility of a machine learning421

approach on the features enlisted in Section III-C by first422

manually labeling a set of 475 different tenant designs that423

were tested on a ZCU102 FPGA board (more information in424

Section IV) according to our three risk classes and evaluating425

various classifiers on the set. The tenant designs are labeled426

according to the following principles.427

1) RED (High Risk): These tenant designs contain actual428

attack circuits, which we intentionally designed as mali-429

cious using different approaches both from [9], [18],430

[25], [27], and [29]. The hypervisor should never load431

them to tenant regions on the cloud FPGAs.432

2) YELLOW (Mid Risk): If a circuit contains a lot of433

resources and may be used in combination with another434

similar design on the same FPGA to invoke crashes,435

we label it as a yellow design. The hypervisor can436

permit these designs but requires consideration regard- 437

ing the mapping into the FPGA regions. Note that, 438

this definition includes completely benign but resource- 439

intensive as well as intentional malicious designs. For 440

instance, additional logic may be added to confuse 441

offline bitstream checker and hide the attack, or attackers 442

might use reduced variants of the red designs based 443

on multiple seemingly benign IP modules. Multiple 444

yellow-labeled tenants should not be present at any 445

given time in the FPGA to prevent attacks. If at most a 446

single yellow design is deployed per FPGA, the existing 447

runtime countermeasures [10], [17] will be fast enough 448

to disable it in case of any detected malicious activity 449

(see Section III-A). 450

3) GREEN (Low Risk): Tenant designs from the green 451

category are considered harmless and can be arbitrarily 452

placed into different FPGA regions by the hypervisor. 453

They are neither resource-intensive nor contain known 454

malicious structures, such as self-oscillating circuits. 455

Attacks are highly unlikely even if combined with 456

yellow designs on the same FPGA. 457

To correctly classify the tenant designs, we use the insights 458

from the bitstream analysis in Section III-B to extract the 459

metadata. By performing the metadata extraction based on the 460

template of the empty tenant region, we can use this metadata 461

to train a lightweight classifier that does not need any complex 462

models to reach far superior results compared to the state-of- 463

the-art as we show in Section V-C. 464

Based on the recommendations in [34], we evaluate ten-fold 465

cross-validation for different classification methods. We tested 466

a support vector machine (SVM), a multilayer perceptron 467

(MLP), and a random forest classifier. We determined the 468

random forest performed the best on our dataset and used 469

it in all the further experiments. We use the scikit-learn 470

python library [33] to implement the classifier and focus on 471

optimizing the recall for the classification of the red bitstream 472

class by setting the class weights to 200, 30, and 1 for red, 473

yellow, and green, respectively. This approach prevents the 474

misclassification of attack bitstreams into a lower-risk class. 475

Thus, it maximizes the security at the cost of very few lower- 476

risk bitstreams not being loaded to the FPGA. 477

E. Flow of Using Meta-Scanner 478

Our proposed Meta-Scanner is easy to use. CSPs will have 479

to deploy a training phase over the existing tenant designs and 480

known malicious designs, then use the trained meta-scanner 481

on any tenant design being uploaded. 482

1) Training Phase: Algorithm 1 summarizes the steps for 483

the training phase by the CSP. It has first to estimate the 484

floorplanning for its different FPGAs to partition them into 485

several tenant regions. The CSP already has several tenant 486

designs from its previous users. For each tenant region, 487

generate the blank bitstream to be used as a reference for the 488

feature extraction. Then, for each tenant design, the bitstream 489

for all the fitting tenant regions has to be generated, and extract 490

the features from the metadata. If no data about whether the 491

design is malicious or not, it has to be uploaded to an FPGA to 492

get the ground truths. Based on the labeled tenant designs, the 493
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Algorithm 1: CSP Classifier Training
Input: List of tenant designs
Output: Trained classifier model
ImplementDifferentFloorplans();
foreach tenant region do

GenerateBlankBitstreams();
foreach tenant design do

GenerateBitstream();
CompareToBlankBitstream();
ExtractFeatures();
UploadToFPGAAndGetGroundTruths();

end
end
FeedLabeledDataToTrainClassifierModel();

classifier has to be trained to be used to scan the new tenant494

designs.495

2) Scanning Phase: The trained classifier is continuously496

used to scan new tenant designs to find out whether they are497

malicious or not and guide the upload of the tenant designs498

on the FPGA. The steps of using the scanner are summarized499

in Algorithm 2. The user usually uploads the tenant design500

as a synthesized netlist [13]. Therefore, an estimation of501

the resource needed exists. Based on this estimation, the502

CSP can choose a suitable tenant region from the floorplan.503

The CSP generates the bitstream for the tenant region and504

extracts the features from the metadata. The scanner uses the505

features extracted to get the label for the design. Based on the506

label, the tenant design is either banned (red), uploaded with507

consideration (yellow), or uploaded and trusted (green).508

IV. DATASET GENERATION509

To evaluate the effectiveness of our scanner in fulfilling its510

goal, we generated the dataset of the bitstreams. In Table II511

we summarize the terminology used to describe the dataset512

generation.513

We built a set of bitstreams to extract the metadata and test514

our solution. The set is based on the 26 basic designs, of which515

nine are malicious and 17 are benign. We create 475 different516

tenant designs by configuring, combining, and modifying these517

26 basic designs. Six of the nine malicious basic designs are518

from the state-of-the-art mentioned in Section II-B. Moreover,519

we implement three new malicious designs, similar to the AES520

malicious design, that we detail later in Section IV-B. The521

16 benign basic designs are based on the groundhog bench-522

mark [35], ISCAS benchmark [36], open cores designs [37],523

Berkeley benchmarks [38], Xilinx HLS tutorials [39], and524

RISC-V dual core [40]. In addition to these benchmarks,525

we use some of our developed basic designs, such as JPEG526

compression/decompression, the secure hash algorithm (SHA),527

and RSA. We mix and match the basic designs from these528

benchmarks to build the tenant designs. Table III shows all529

the basic designs, the benchmarks they originate from, and530

the frequency of using them in our dataset. Accessing and531

using the real tenant designs from CSPs is not possible. Even532

though AWS Marketplace [41] provides FPGA cores, they533

are typically either simple IP cores meant for integration into534

Algorithm 2: Tenant Design Classification and FPGA
Deployment

Input: Tenant design netlist
Output: Label
// Step 1: Synthesize netlist of the

tenant design
// Step 2: Estimate a fitting tenant

region
EstimateTenantRegion();
// Step 3: Perform Place and Route
PerformPlaceAndRoute();
// Step 4: Compare to blank bitstream
CompareToBlankBitstream();
// Step 5: Extract features
ExtractFeatures();
// Step 6: Feed features to classifier

and get label
// Step 7: Handle label
if Label is RED then

// Step 7a: Do not upload to FPGA
Do not upload to FPGA;

end
else if Label is YELLOW then

// Step 8a: Find suitable FPGA
FindSuitableFPGA();
// Step 8b: Upload to FPGA
UploadToFPGA();
// Step 8c: Alert online tool
AlertOnlineTool();

end
else if Label is GREEN then

// Step 9a: Upload to first fitting
FPGA

Upload to first fitting FPGA;
end
// Step 10: Return label
return Label;

TABLE II
TERMINOLOGY USED IN SECTIONS IV AND V

larger designs [42], or they are complete systems running 535

in software that uses hardware IPs. The complete systems 536

utilize hardware accelerators through an interface without 537

direct access to the tenant design itself [43]. Therefore, we 538

rely on the benchmarks as done by [30] and [31] to fulfill 539

our evaluation, covering a range of applications suitable for 540

the FPGA acceleration, including neural networks and Bitcoin 541

mining. 542

We generate bitstreams for the ZCU102 FPGA board, 543

utilizing its Xilinx UltraScale+ FPGA for measurements to 544

establish labeling ground truths. These bitstreams are then 545
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TABLE III
BASIC DESIGNS FOR BITSTREAM GENERATION

Fig. 3. Floor-planning of tenants. (a) AES and benign cluster coordinated
tenant attacks. (b) SHA and DES coordinated tenant attacks.

loaded onto the FPGA board. Our focus lies in detecting546

the success of attacks, which determines the labeling of547

the bitstreams. The same bitstreams can be used across the548

multiple target FPGA boards, mirroring a cloud scenario from549

the user’s perspective.550

A. Generating the Tenant Designs551

We employed various strategies to create the tenant552

regions. For example, Fig. 3 demonstrates the implementa-553

tion of the coordinated attacks from the multiple tenants554

(see Section II-B). The FPGA’s floor plan is divided into four555

regions, with two hosting malicious designs and the other two556

hosting benign ones. One region utilizes 50% of the resources,557

while the other three each utilize 15%, leaving 9% for the558

static design. In the example shown in Fig. 3, the 50% region559

is positioned in the middle of the FPGA. However, for another560

floor plan, the 50% region can be placed at the top or bottom of561

the floor plan, not necessarily in the middle. This contributes562

to diversifying the bitstreams by avoiding constraining them563

into fixed regions but instead across several different regions.564

A CSP typically maintains several floor plans to accom- 565

modate various types of users. For instance, the 50% tenant 566

region from Fig. 3 can be substituted with two smaller tenant 567

regions, each utilizing 25% of the resources. We employed six 568

different floor plans to generate 24 distinct tenant regions for 569

placing the tenant designs. The sizes of these regions vary, 570

ranging from 50% of the FPGA resources to 15% of the FPGA 571

resources. 572

Not all the tenant designs were used in all the tenant regions 573

as they might not fit into them, i.e., they need more resources 574

than the region provides. Those tenant designs that did not 575

fit were either modified, like changing the RISC-V dual core 576

to a single core, or we diversified the designs further by the 577

following modifications. 578

1) Mixing them more, e.g., substituting a large FFT 579

module with a smaller PID-controller module and a 580

Manchester encoder. 581

2) Increasing the repetition within the design, e.g., adding 582

multiple JPEG compression instances after removing a 583

large data encryption standard (DES) module. 584

Moreover, we hide some malicious modules with the benign 585

modules making the attacks stealthier similar to [30]. The 586

generated tenant designs are categorized into 153 green ones, 587

120 red ones, and 177 yellow ones as detailed in Section III-D. 588

B. Implementation of Attacks Based on Benign Constructs 589

We generated malicious tenant designs similar to the AES 590

malicious design from [18] to enrich the dataset. These 591

malicious tenant designs are based on the DES, SHA, and 592

Reed–Solomon as depicted in Fig. 4. The malicious DES- 593

based design in Fig. 4(a) utilizes unrolled DES S-boxes 594

as the fundamental building block. Multiple blocks are 595

interconnected in a chain with adjustable chain lengths to 596

fit the size of the tenant region. The output of each block 597

serves as the input for the subsequent block. The key 598

for each block is computed by XORing the output of the 599

preceding block with the original key. This process amplifies 600

the toggling along the path, thereby increasing the power 601

consumption. 602

The malicious SHA-based design also employs a chain of 603

interconnected SHA subfunctions [shown in Fig. 4(b)]. Each 604

subfunction receives six inputs, which are mixed to produce 605

the various components of the SHA algorithm, resulting in six 606

outputs. The output of one subfunction can be directly con- 607

nected to the next’s input, with the chain’s length configurable 608

as desired. Note that, only the first input originates from the 609

registers, and no combinational loops are present in the design. 610

As the Reed–Solomon encoder inherently comprises a chain 611

of multiply accumulate operations, the registers between the 612

adder stages are simply removed to transform it into a 613

malicious design [see Fig. 4(c)]. This modification results in 614

a lengthy combinational path, which can be configured as 615

desired. The inputs originate from tenant-internal registers 616

initialized by constants and subsequently inverted in every 617

cycle to enhance toggling. 618

Furthermore, to enhance the difficulty of detection, we 619

explore the concept of hiding these malicious designs among 620



8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

(a) (b) (c)

Fig. 4. Implemented attacks, derived from the benign modules. With small modifications, removing sequential elements, and special toggling input patterns,
they lead to successful attacks. (a) DES-based attack. (b) SHA-based attack. (c) Reed–Solomon-based attack.

the benign ones to evade detection by the current state-of-621

the-art solutions. We integrate the malicious designs alongside622

a cluster of ISCAS sequential circuits [36]. Consequently,623

a bitstream scanner would identify slightly modified benign624

designs and encounter additional circuits introducing random-625

ness to the structural design. This combined setup presents a626

more complicated functionality resembling a standard design,627

performing tasks beyond solely cryptographic operations or628

encoding.629

V. EVALUATION630

We implement the tenant designs using Vivado 2019.1631

to evaluate our proposed meta-scanner. The bitstreams were632

uploaded to a ZCU102 board. Meta-scanner is implemented633

in python and tested on an AMD Ryzen 5 6-Core processor634

with 24 GiB main memory.635

A. Ground Truth of Benign-Based Attacks636

To label the malicious tenant designs from Section IV-B we637

run them on a ZCU102 board to see if they crash the FPGA.638

Table IV shows the results. Utilization (%) is based on the total639

LUTs available in the ZCU102 FPGA board. Any version of640

the malicious designs having the size from Table IV or larger641

are labeled as red.642

Furthermore, we classify smaller malicious designs as643

yellow due to their potential for the coordinating attacks,644

substantiated by the findings presented in Table IV. Initially,645

when both the tenants, SHA and DES are malicious and646

deploy weakened versions of their attacks, a coordinated647

attack becomes feasible. Second, in scenarios where only648

one tenant (AES) is malicious but cannot execute an attack649

independently, it can exploit the presence of a resource-650

intensive benign tenant. When executed concurrently, the651

benign tenant inadvertently facilitates an attack, resulting in a652

system crash. Consequently, any benign large design capable653

of instigating an attack when combined with the small AES654

attack is classified as “yellow.” It should be noted that in655

Table IV we show the speed of a crash for the minimum656

area. However, using more FPGA resources would cause657

faster attacks [10]. Moreover, LoopBreaker [10] can stop an658

attack fast only with preselection of the malicious tenant.659

Without our tool, LoopBreaker will not be able to identify the660

malicious-tenant and would need the lengthy selection step661

which requires hundreds of microseconds which is enough for662

almost all the attacks to succeed.663

B. Metadata Features’ Importance664

As mentioned in Section III-C, we use the scikit-learn665

library [33] to evaluate the relevance of our features to the666

TABLE IV
MINIMUM TIME AND UTILIZATION NEEDED FOR ACHIEVING CRASHES

Fig. 5. NMI of each feature individually to the data, 1 is maximum correlation
and 0 means no correlation at all.

classification problem. In Fig. 5, we show the normalized 667

mutual information (NMI) between each feature and the data 668

before classification. NMI is one of the metrics from the 669

scikit-learn library [33]. It assesses a normalized value with 670

1 being the highest value (the feature is very relevant to 671

the classification problem) and 0 being the lowest value (the 672

feature is not relevant at all to the classification problem). 673

Utilization and estimated power have the highest NMI values 674

of around 0.7. The other three features have NMI values 675

around 0.5. The figure shows that all the metadata features 676

relate significantly to the classes. Hence, they are all relevant 677

to the classification problem and can correctly classify the 678

tenant designs. For the five excluded features mentioned in 679

Section III-C the NMI score is less than 0.5. Therefore, they 680

are less suitable for the classification problem and excluding 681

them is sensible. 682

Attacks rely on the malicious basic designs, e.g., AES- 683

based, RAM-based, etc. Therefore, we further evaluate their 684

importance per basic design. To be able to perform this 685

evaluation, we had to use an one-class classifier method [44]. 686

One-class classifiers belong to the unsupervised learning 687

approach, where data from only one class is used for training. 688

The result of the classification is a binary true or false. 689

For example, if we train an one-class classifier on the DES 690

malicious designs, it will detect and label them as true. 691

Anything else, even AES or Reed–Solomon malicious designs 692

would be labeled as false. 693
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TABLE V
FEATURE IMPORTANCE PER BASIC DESIGN WHEN USED IN AN ONE CLASSIFIER MODEL

TABLE VI
RESULTS OF TEN-FOLD CROSS VALIDATION

The results are presented in Table V. Notably, no feature694

scored 50% or higher in importance across all the cases.695

Exceptions were observed where the relevance of features var-696

ied among different basic designs. For instance, the Repetition697

feature held the highest importance for the Reed–Solomon698

malicious design with a score of 37.3%. Conversely, for the699

AES malicious design, the power estimation feature scored700

44.0%, while utilization scored 25.5%. Additionally, in cases,701

such as RSA, serial keyboard, and FIR, the average frame702

frequency feature, typically of low importance exhibited sig-703

nificant relevance. Similarly, estimated power was less critical704

for the ANN and Bitcoin miner designs, with repetition705

playing a more substantial role. Furthermore, estimated power706

played a minor role for several malicious designs like RAM,707

glitch, mux, and shift registers, reaching 0.0% for the glitch708

malicious designs. For these malicious designs, the standard709

deviation of frame frequency gained importance.710

C. Performance of the Classifier711

The metadata extracted from the bitstream generation is712

used to train the random forest classifier as described in713

Section III-D. The training and test data are split randomly by714

having 10% of the data for testing and the remainder as the715

training data. The split is done using the split method from 716

the scikit-learn library [33]. Additionally, we perform ten- 717

fold cross-validation using our 475 bitstreams, and the results 718

are shown in Table VI. The red class has the highest recall 719

and precision to avoid banning legitimate designs and not 720

uploading malicious designs (achieved by fine tuning the class 721

weights as explained in Section III-D). The other two classes 722

(green and yellow) still have high precision and recall and the 723

whole classifier has a mean accuracy of 0.979. Moreover, we 724

ran inference on malicious designs based on our designs from 725

Section IV-B. It had a mean accuracy of 0.95, a precision of 726

1.0, and a recall of 0.963. For false negatives and positives, 727

Table VI shows that the FPR and FNR are at highest of the 728

value 0.021 which is comparably low. The FPR of the yellow 729

class is roughly the double of the other two classes. This is 730

due to the fact that it is the class in the middle, therefore, a red 731

design will most likely be misclassified as yellow and same 732

for green. For FNR, it is slightly lower for the yellow class 733

than the other two, but in general, it stays low for the all three 734

classes. 735

Table VII compares our scanner against the five state-of- 736

the-art approaches [11], [14], [15], [16], [30]. As they can 737

only classify into two classes (attack versus no attack), we 738

decided to consider the yellow and green classes as “no 739

attack,” to give them an advantage and to have a conservative 740

comparison. Still, all the state-of-the-art approaches have 741

significantly lower accuracy compared to our scanner. Note 742

that, for the tools from [11] and [30] the tool does not even 743

support partial bitstreams in its current format. However, for a 744

fair comparison, we assume they could be updated to support 745

them. Our scanner is the only tool that detects BRAM short 746

circuit malicious designs and noncryptographic benign-based 747
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TABLE VII
COMPARING OUR SOLUTION TO THE STATE OF THE ART

Fig. 6. Mean detection accuracy depending on basic designs.

malicious designs (Reed–Solomon-based and shift-register-748

based).749

Moreover, Fig. 6 shows the accuracy of classifying each750

basic design to the correct classes. The accuracy is defined751

as the number of samples correctly classified, divided by the752

total number of samples used for the inference. Many of the753

accuracy values are at 1.0, which means that no false positives754

nor false negatives occur for this basic design. Overall, all the755

accuracy values are higher than 0.85. DES and SHA (which756

are both used as the benign designs as well as the malicious757

designs hidden using the ISCAS circuits) have a high accuracy758

of 1.0. Hence, our scanner was able to correctly detect hidden759

malicious designs, and differentiate between using a module760

for an attack or using it as a true benign design. Moreover,761

our scanner can detect all the new malicious designs with high762

accuracy.763

Additionally, we evaluate our timing overhead. As men-764

tioned in Section III-A, the CSP performs place and route,765

feature extraction from the metadata, and scanning (inference766

of the classifier). Table VIII shows the results of running our767

scanner on the AMD Ryzen 5 6-Core processor with 24 GiB768

main memory. On average, place and route for one bitstream769

needed 27 min, while our feature extraction needs less than770

2 s and the inference needs less than 10 ms. Hence, our771

feature extraction and inference have negligible overhead. The772

feature extraction takes more time than the inference as it773

needs to parse the bitstream frame by frame. Moreover, we774

also measure the time needed for training, our solution needs775

on average 2 min to train the decision tree.776

D. Performance Against Unseen Designs777

To complement the classical validation from Section V-C,778

we use an additional training and test strategy to evaluate779

the generalization of our classifier. For each basic design b,780

we perform a training/evaluation experiment, declaring b as781

Fig. 7. Accuracy and recall per unseen category.

“unseen basic design” and excluding all the bitstreams from 782

the training phase that contains b. This mimics the scenario 783

where a new malicious or benign design emerges that has been 784

used for training. The not-excluded bitstreams are all used to 785

train the model and we test the performance based on the 786

excluded bitstreams. Note that, this evaluation against unseen 787

designs is not performed by any state-of-the-art solution [11], 788

[16], [30], [31]. However, we decided to perform it as an extra 789

step to evaluate the robustness of our scanner. 790

First, we start by evaluating the case where a full category 791

of designs is unknown. For example, if no cryptography-based 792

attacks were ever used before or if large circuits like neural 793

networks or bitcoin miners are not used before. Fig. 7 shows 794

our results. For most categories, neither recall nor accuracy 795

dropped under 0.9. However, for RO-attacks that use muxes 796

and latches or sequential attacks that use RAM or reed- 797

solomon encoder the accuracy and recall drop. The reason is 798

that these attacks look very similar to the benign small attacks. 799

We extend our analysis to be even more fine grained. We 800

do it per basic block level Fig. 8 shows (a) the accuracy 801

and (b) recall of the red class for the different unseen basic 802

designs. Recall of the red class is of significant importance, 803

as it shows how well our scanner stops malicious designs 804

from being uploaded. It can be seen from the figures that the 805

scanner’s performance is adequate against the unseen designs 806

with many of them nearly reaching the ideal value of 1 for 807

both the accuracy and recall. 808

However, there are some outliers. The outliers are analysed 809

and explained in the following, i.e., the Reed–Solomon mali- 810

cious design, latch malicious design, RAM malicious design, 811

keyboard serial, and the cluster of ISCAS benchmarks. The 812

accuracy and recall are very low for the RAM- and latch- 813

based malicious designs because they are the only malicious 814

designs that do not use any LUTs. Both malicious designs 815

can be implemented using only RAMs or latches, respectively. 816
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TABLE VIII
TIMING OVERHEAD OF OUR CLASSIFIER

(a)

(b)

Fig. 8. Performance of the classifier against unseen attacks. (a) Accuracy.
(b) Recall of the red class.

When completely excluding them from training, the classifier817

does not have any preceding knowledge that using only these818

resources can realize an attack. To counter that, all the basic819

primitives that can be used for attacks must be included to train820

the classifier. This is conceptually the same as we did in the821

normal training of our classifier as evaluated in Section V-C.822

Similarly, the Reed–Solomon malicious design is the only823

one that neither uses high repetition of primitives nor crypto-824

graphic primitives. Instead, it is the only malicious design in825

our collection that uses long chains of combinational paths.826

Similar to the case of unseen RAM- and latch-based malicious827

designs, the classifier does not have any hint or knowledge828

that such a structure may cause a risk.829

Only the red recall is low for the cluster of ISCAS830

benchmarks, but the general accuracy is good. This is because831

it is used as the irregularity that hides the malicious designs.832

Thus, without using it, the classifier does not know that such833

hidden attacks exist and have a suboptimal recall.834

Finally, for the serial keyboard, the accuracy is also pretty835

low. This is because it is used in several green designs. Without836

having it, the classifier only sees clusters of different yellow837

class modules and will classify the green as yellow. Note that,838

the recall on red is still 1.0, so no security degradation occurs.839

These results show that using tenant designs with a high840

diversity for training is helpful. In a real-world deployment841

of the classifier, it should be continuously updated (retrained)842

with bitstreams from the real usage on the CSP. The possibility 843

of fast and easy retraining of our decision tree classifier 844

(see Table VIII) highlights the important flexibility of our 845

approach. As no offline bitstream checker can always perfectly 846

separate malicious from the benign designs (including mali- 847

cious designs that have not been discovered yet), our proposed 848

classifier can be easily and automatically adapted to any new 849

malicious designs. More importantly, if a new malicious design 850

is based on a similar concept to a previously known malicious 851

design, e.g., using DES or SHA instead of AES, our classifier 852

can detect it with high accuracy even when no retraining is 853

performed, as seen in Fig. 8. When new types of malicious 854

designs are detected or reported, the CSP simply needs to 855

retrain the lightweight ML model and it can achieve high 856

security again. The new malicious bitstreams are simply added 857

to the training pool to perform the retraining. 858

VI. DISCUSSION 859

One struggle that we faced during our work is the bench- 860

mark to evaluate our solution. Unfortunately, to the best of 861

our knowledge, no cloud-based FPGA benchmark exists. A 862

cloud-based FPGA benchmark could have helped to evaluate 863

our classifier more accurately. Moreover, as we mention in 864

Section IV, the available examples from the commercial CSPs 865

like AWS were not feasible to use as a benchmark. Hence, 866

we had to build our benchmarking setup based on the same 867

FPGA benchmarks used by the state-of-the-art [11], [16]. 868

The problem that clients currently have to entrust their unen- 869

crypted design netlists to the CSP for verifying the absence of 870

potentially malicious circuits is an important ongoing research 871

topic. In [32], a trusted attestation scheme is proposed, which 872

could also be applied in our scenario, allowing the client to 873

upload the encrypted bitstreams together with a trusted shell 874

for the CSP to verify the bitstream classification. 875

During our evaluation in Section V-D, we noticed out- 876

liers in detection for the malicious designs not represented 877

in other bitstreams. These instances were undetected until 878

included in the training. This mirrors real-world scenarios 879

where a new malicious design category may emerge initially 880

undetected but can be added to training for the subsequent 881

detection. Furthermore, excluding specific malicious designs, 882

while including the others from the same category led to 883

successful detection, exemplified by AES malicious designs 884

being detected due to the inclusion of the other cryptographic 885

core malicious designs like DES or SHA. 886

For retraining, we stand in contrast with the state-of-the- 887

art as they are either very hard to retrain, e.g., the tools 888

from [15] and [29] that need to add the new designs and 889

their rules manually, or the tools from [11] and [16] that 890

only support self-oscillating structures and therefore cannot 891

be seen as applicable against more advanced attacks. The 892

only promising tools are from [30] and [31] but both mention 893

nothing about their retraining. For the tool from [30] it is 894

not open source so we could not evaluate it but for the tool 895

from [31] it is open source so we evaluated it. They use a 896

parser for the simulation netlists which needs to be updated 897

and maintained for each new type of circuits which is a 898

significant overhead not only for training but as an engineering 899
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effort. Our tool works directly on the bitstream and does not900

require any special maintenance.901

VII. CONCLUSION902

In this work, we proposed an meta-scanner, a tool for903

detecting fault attacks in multitenant cloud FPGA instances.904

We first analyse the bitstream structure to extract relevant905

metadata based on them we implemented the classifier for906

our scanning scheme. By categorizing the client bitstreams907

into three different risk classes through a machine learn-908

ing approach, high-risk designs are prevented from being909

uploaded, whereas the low-risk designs can be mapped to the910

FPGA regions arbitrarily. Potential attack designs in the mid-911

risk class can be uploaded, but as long as only a single such912

design is mapped per FPGA chip, they can be dealt with913

by existing on-chip countermeasures. Evaluating a random914

forest classifier on a comprehensive set of 475 different915

malicious and nonmalicious bitstreams leads to an overall916

average classification accuracy of 0.979 ± 0.02, proving the917

feasibility of our proposed approach. Our solution has a low918

overhead for training and scanning (inference). Moreover, it919

can be easily adapted to any new emerging type of attack.920
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