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Abstract—Hardware data prefetching is a well-studied tech-1

nique to bridge the processor-memory performance gap.2

Bit-pattern-based prefetchers are one of the most promising3

spatial data prefetchers that achieve substantial performance4

gains. In bit-pattern-based prefetchers, the region size is a5

crucial parameter, which denotes the memory size that can be6

recorded by a pattern or prefetched by a prediction. However,7

existing bit-pattern-based prefetchers only support one fixed8

region size. Our experiment shows that the fixed region size9

cannot meet the requirements for numerous applications and10

leads to suboptimal performance and high hardware overhead.11

In this article, we propose PARS, a pattern-aware spatial data12

prefetcher supporting multiple region sizes. The key idea of13

PARS is that it supports multiple region sizes, enabling it to14

simultaneously enhance application performance while reducing15

the hardware overhead. Moreover, PARS supports dynamically16

switching appropriate region sizes for different patterns through17

an adaptive RS-switching mechanism. We evaluated PARS on18

numerous workloads and results show that PARS provides an19

average performance improvement of 40.6% over a baseline with20

no data prefetchers and outperforms the two state-of-the-art21

prefetchers Bingo by 2.1% (up to 24.4%) and Pythia by 3.9%22

(up to 111.2%) in the single-core system. In the four-core system,23

PARS outperforms Bingo by 5.0% (up to 66.0%) and Pythia by24

5.4% (up to 177.9%).25

Index Terms—Cache, data prefetching, hardware prefetching,26

microarchitecture.27

I. INTRODUCTION28

FREQUENT cache misses induce significant latency,29

severely constraining the processor performance. The30

processor-memory gap affects not only general-purpose pro-31

cessors but also embedded the system processors. As32

embedded system processors are increasingly expected to per-33

form tasks with high-performance demands [40], [41], [45],34
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such as those in autonomous driving and industrial automation 35

[6], [8], [11], optimizing memory access latency and enhanc- 36

ing performance have become crucial. 37

Hardware data prefetching is a widely adopted technique 38

to bridge the processor-memory performance gap. It predicts 39

future memory addresses to be accessed and preloads the data 40

into the on-chip cache. Existing prefetching techniques primar- 41

ily target general-purpose processors, effectively minimizing 42

the number of cache misses and enhancing performance. 43

However, these techniques often incur substantial area costs 44

and increase memory traffic [15], [25], [38], [42], leading to 45

higher power consumption [42], [48], which makes them less 46

suitable for deployment in the embedded systems. 47

Bit-pattern-based prefetchers [16], [19], [21], [23], [26], 48

[30], [39], [42] are a kind of hardware prefetchers and have 49

been deployed by many processors due to low hardware com- 50

plexity and substantial performance gains. They fundamentally 51

exploit the regularity in the layout of data objects and the 52

repetitiveness in access behaviors to predict future accesses. A 53

vector called bit-pattern is used to record the access footprint 54

within a fixed-size region (an address space consisting of 55

several consecutive blocks). In addition, they also record the 56

trigger event of the trigger access, i.e., the first access to the 57

region. For example, “program counter (PC)” is a common 58

trigger event. After recording, the prefetcher stores the pattern 59

in a history table and sets the trigger event as the index. If 60

an instruction with the same PC accesses a new region, the 61

prefetcher will look up the corresponding access pattern in 62

the history table using this PC. The prefetcher then preloads 63

the data according to the access footprint indicated by this 64

pattern. 65

Bit-pattern-based prefetchers fundamentally exploit the reg- 66

ularity in the layout of the data objects and the repetitiveness 67

in their access behavior to predict future accesses. They use 68

a vector that is called bit-pattern to record access footprint 69

within a fixed-size region (an address space consisting of 70

several consecutive blocks). In addition, they also record the 71

trigger event of the trigger access, i.e., the first access to the 72

region. For example, “PC” is a common trigger event. After 73

recording, the prefetcher stores the pattern in a history table 74

and sets the trigger event as the index. If an instruction with 75

the same PC accesses a new region, the prefetcher will look 76

up the corresponding access pattern in the history table using 77

this PC. The prefetcher then preloads the data according to 78

the access the footprint indicated by this pattern. 79
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(a) (b

Fig. 1. Performance of two different phases in 429.mcf with various region
sizes (a) 429.mcf-184B (b) 429.mcf-217B.

The region size is one of the most crucial parameters of80

bit-pattern-based prefetchers, which denotes the size of the81

memory that can be recorded by a pattern and prefetched82

by a prediction. The region size reflects the working gran-83

ularity of bit-pattern-based prefetchers and impacts both the84

performance and hardware overhead.85

All the existing bit-pattern-based prefetchers (e.g.,86

SMS [39], Bingo [16], DSPatch [19], and PMP [26]) only87

support one fixed region size, typically 2 or 4 KiB. However,88

this rigid approach results in suboptimal performance and89

wastes hardware resources for various applications. To90

quantify the effects of the region size, we evaluated the91

performance of numerous applications with different region92

sizes in the simulator. Fig. 2 demonstrates that different93

applications have unequal optimal region sizes. The optimal94

region sizes are also not the same in different phases for95

one application due to the variations of data structure sizes96

and memory access patterns, as shown in Fig. 1(a) and (b).97

With fixed the region size, applications may face performance98

bottlenecks because the prefetcher cannot select the optimal99

region size for various applications. Meanwhile, the fixed100

region size results in huge hardware resource consumption.101

We evaluated the impact of region size on the hardware102

overhead in Section III-B. When the region size is too small,103

some patterns may need to be stored in two entries, resulting104

in additional hardware overheads, which can be alleviated by105

adopting a larger region size. On the other hand, when the106

region size is too large, some patterns exhibit all the zeros107

in the half of the regions, causing high hardware overheads.108

Prefetchers can avoid storing this long string of zeros by109

adopting a smaller region size.110

In this article, we propose PARS, a pattern-aware spatial111

data prefetcher supporting multiple region sizes. PARS sup-112

ports prefetching data with multiple region sizes, achieving113

application performance enhancement, and hardware overhead114

reduction. In addition, we propose an adaptive RS-switching115

mechanism to dynamically adopt appropriate region sizes for116

various applications and phases of the application. The PARS117

can automatically set the appropriate region size based on the118

historical accuracy information of the prefetcher and the region119

footprint. We implemented PARS on Champsim [9] simulator120

and evaluated it on 198 traces from SPEC CPU 2006 [12],121

SPEC CPU 2017 [13], Ligra [37], and Cloudsuite [22].122

Results show that PARS outperforms the two state-of-the-art123

prefetchers Bingo [16] by 2.1% (up to 24.4%) and Pythia [18]124

by 3.9% (up to 111.2%) in the single-core system. In the four-125

core system, PARS outperforms Bingo by 5.0% (up to 66.0%)126

and Pythia by 5.4% (up to 177.9%) with only 17.5% overhead127

of Bingo.128

We make the following contributions in this article. 129

1) We identify the impact of region size on the bit- 130

pattern-based prefetchers and observe the drawbacks of 131

the existing single region size architecture: the single 132

region size architecture faces performance bottlenecks 133

for various workloads and high hardware overhead. 134

2) We propose a novel pattern-aware spatial data prefetcher 135

that supports multiple region sizes. Meanwhile, we 136

propose an adaptive RS-switching mechanism to dynam- 137

ically adopt appropriate region sizes for various 138

applications and phases of the application. 139

3) We implement PARS and evaluate it on 198 traces 140

from the four benchmark suites, PARS outperforms 141

the four state-of-the-art prefetchers. In particular, PARS 142

outperforms Bingo by 5.0% and Pythia by 5.4% with 143

only 17.5% overhead of Bingo. 144

II. BACKGROUND 145

A. Bit-Pattern-Based Prefetchers 146

The bit-pattern-based prefetcher is an essential type of 147

spatial data prefetcher, which adopts the bit vector to record 148

the footprints of a fixed-size memory (region) and prefetch 149

data. Each bit in the vector records whether a cache block is 150

accessed or not during the training period, where 1 means it is 151

accessed and 0 means it is not accessed. For instance, a 64-bit 152

vector can represent the footprint of a 4 KiB region consisting 153

of 64 consecutive cache blocks (typically 64 bytes). 154

During training, each vector will record the footprint starting 155

with the first access to the corresponding region and ending 156

with the eviction of any block in the region from the cache. 157

The prefetcher also records the trigger event which is extracted 158

from trigger access, i.e., the first access to the region. There 159

are five common trigger event types: PC, “Offset,” “Address,” 160

“PC+Offset,” and “PC+Address.” For example, the trigger 161

event of PC+Offset indicates the address of the instruction 162

and the ordinal position of the accessed cache block within 163

this region. 164

After recording, the prefetcher inserts the 〈event, pattern〉 165

pair into a pattern history table (PHT). When the same 166

trigger event occurs, the prefetcher uses it to look up the 167

corresponding pattern and preloads the cache blocks according 168

to the access footprint indicated by this pattern. For example, 169

the prefetcher adopts PC+Offset as the trigger event. An 170

instruction I accessing X+1 (the second cache block of 171

region X) triggers the recording for the region X. Then, the 172

applications only access the block X+3 of this region. As a 173

result, the pattern for the trigger event of instruction I and 174

offset 1 is 0101. After recording, if instruction I accesses 175

Y+1, the prefetcher will find the pattern 0101 based on the 176

instruction I and the offset 1, and then prefetch the block 177

of Y+3. Note that, the block Y+1 of trigger access is not 178

prefetched. 179

B. Common Framework of Bit-Pattern-Based Prefetchers 180

Modern bit-pattern-prefetcher [16], [26], [39] includes three 181

primary components: 1) a filter table (FT); 2) an accumulation 182

table (AT); and 3) a PHT. The FT records regions with only 183

one cache block accessed, which can not trigger any data 184
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(a) (b) (c) (d)

Fig. 2. Performance, coverage, and timeliness of four traces with various region sizes. (a) Ligra_PageRankDelta-24.5B. (b) 450.soplex-92B. (c) Ligra_BC-17B.
(d) 630.bwaves_s-891B.

prefetching. Then, the second access to the region in the FT185

will activate its recording phase and transfer the entry from186

FT to AT. The AT will keep track footprints of all the regions187

until the eviction of any block in the region from the cache.188

So far, the prefetcher finishes the training of one region and189

inserts the pair 〈event, pattern〉 of the region into the PHT.190

All the three tables are essentially set-associative caches and191

are managed by a replacement algorithm (e.g., LRU).192

C. Dual Trigger Events Design193

To achieve high accuracy and high matching probabil-194

ity simultaneously, emerging prefetcher [16] supports dual195

trigger events on PHT, which can look up patterns based196

on PC+Address or PC+Offset. During training, whenever197

inserting a new pattern to the PHT, the prefetcher uses198

PC+Offset to find a cache set. Then, the pattern is inserted199

into the set and tagged by PC+Address. In prediction, the200

prefetcher first looks up with PC+Address because it has201

higher accuracy. If a matching pattern is found, it will be202

used to issue prefetches. Otherwise, the prefetcher looks up203

with PC+Offset. In this case, the prefetcher only matches the204

PC+Offset bits in the tag and the other bits are masked.205

III. MOTIVATION206

Embedded systems, such as those in autonomous vehicles207

and industrial autonomous devices require extremely high208

performance to process the large volumes of the real-time209

data. Meanwhile, they are also constrained by limited hard-210

ware resources. However, existing prefetching techniques do211

not adequately address these demands and incur substantial212

storage overhead.213

In this section, we analyse the impact of region size on the214

prefetching performance (Section III-A) and storage overhead215

(Section III-B), respectively. We found that the fixed region216

size of the existing schemes cannot meet the requirements217

for all various applications, resulting in performance loss and 218

high storage overhead. This motivates us to design a novel 219

prefetcher that supports multiple region sizes. 220

A. Impact of Region Size on Prefetching Performance 221

To evaluate the performance impact of the region size, we 222

ran 198 traces on Bingo with various region sizes from 0.5 to 223

4 KiB. The storage overhead of configurations with different 224

region sizes are all comparable. Specifically, with each halving 225

of the region size, the number of entries for both AT and PHT 226

is doubled. 227

Fig. 2 illustrates three metrics (i.e., speedup, coverage, and 228

timeliness) for the four different applications in different region 229

size configurations. First, the data on speedup demonstrates 230

that different applications have different optimal region sizes. 231

Specifically, trace “450.soplex-92B” achieves the maximum 232

speedup when the region size is set to 1 KiB. While the trace 233

“Ligra_BC-17B” achieves the maximum speedup as the region 234

size is set to 2 KiB. Second, the coverage is also significantly 235

affected by the region size, which is consistent with the trend 236

of the speedup except for trace “Ligra_PageRankDelta-24.5B.” 237

Finally, the timeliness improves with increasing region size, 238

because prefetchers with large region sizes can predict larger 239

memory space each time. As a result, various applications have 240

diverse sensitivity to region size changes. At the same time, 241

Fig. 1(a) and (b) show that the optimal region size varies in 242

different phases for one application due to the difference in 243

the data structure sizes and memory access patterns. Therefore, 244

bit-pattern-based prefetchers with a fixed region size can not 245

meet the requirements for numerous applications and lead to 246

suboptimal performance. 247

There are significant performance variations in different 248

region size configurations because every application has its 249

optimal region size. Numerous factors influence the optimal 250

region size, such as the size of data structures, program access 251

behaviors, etc. When the region size falls below the optimal 252
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Fig. 3. Performance delta of the top 50 traces.

region size, the performance improves as the region size253

increases. For example, Fig. 2 (b), (c), and (d) have optimal254

region sizes of 1, 2, and 4 KiB, respectively. Larger region255

sizes in these cases exhibit enhanced timeliness and fewer256

trigger accesses that cannot be prefetched, resulting in better257

performance.258

On the other hand, performance begins to decline when the259

region size surpasses the optimal region size in Fig. 2 (a), (b),260

and (c), for the two following reasons.261

1) Large region sizes are more prone to encompass unre-262

lated data structures. Consequently, many accesses are263

unduplicated with respect to the trigger access, result-264

ing in pronounced overprediction. For instance, in the265

case of 450.soplex-92B, we found the increase in266

region size correlates with a substantial rise of 27% in267

useless prefetches, thereby consuming the bandwidth,268

contaminating the cache, and ultimately deteriorating269

performance.270

2) When the storage overhead of configurations with271

different region sizes is comparable, prefetchers with272

larger region sizes have fewer entries, resulting in poor273

performance. When a program accesses only a small274

subregion within a larger region, prefetchers with differ-275

ent region size configurations all allocate one AT entry276

and one PHT entry. However, in our setups, prefetchers277

with larger region sizes have fewer entries compared278

to those with smaller region sizes. As a result, they279

exhibit inferior training and storage capabilities, leading280

to decreased performance.281

To more intuitively show how much the region size affects282

performance, we define the performance delta for each trace as283

the difference between the maximum and minimum speedup284

in the four region sizes. Fig. 3 shows the performance delta of285

the top 50 traces. Trace “603.bwaves_s-891B” has the largest286

performance delta of 95%. Moreover, the average performance287

delta of the top 50 traces is 29.5%, indicating that most288

real-world applications are very sensitive to the region size,289

and improper region size would cause severe performance290

degradation.291

Fig. 4. Percentage of HP and FP. HP is the pattern where the first half or
the second half is all 0 and FP is the other pattern.

B. Impact of Region Size on Storage Overhead 292

Inappropriate region size also causes hardware inefficiency 293

and extra overhead. We recorded all the patterns captured by 294

Bingo with 4 KiB region size in 198 traces and classified 295

them into the half pattern (HP) and the full pattern (FP). In 296

particular, HP is the pattern where the first half or the second 297

half is all “0” and FP is the other pattern. We counted the 298

number of HP and FP, respectively, and the results are shown 299

in Fig. 4. 300

For 4 KiB region size, we found that Cloudsuite has the 301

maximum HP percentage of 59% and the HP accounts for 302

43% of all patterns on average, which indicates that the 303

prefetcher stores many “half 0s.” The half 0s do not contribute 304

to prefetching and waste one-third of a 4 KiB entry’s storage. 305

Therefore, the 4 KiB region size causes extra storage overhead 306

due to HPs. To address this issue, adjusting the region size 307

to 2 KiB can eliminate the half 0s’ in 4 KiB region size. 308

However, using 2 KiB region size would introduce another 309

issue. Notice that, entries contain not only data fields such as 310

patterns, but also metadata fields, such as tag and LRU. The 311

2 KiB prefetcher must allocate two entries to store each FP in 312

Fig. 4. Because of double metadata for two entries, the storage 313

overhead of two 2 KiB entries is also one-third more than a 4 314

KiB entry. Therefore, using only 2 KiB region size also results 315

in additional storage overhead due to extra tags and LRUs. 316

As a result, the prefetchers with fixed region sizes face 317

additional storage overhead. This motivates us to design 318
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Fig. 5. Overview of system with PARS prefetcher.

PARS that supports multiple region sizes to minimize storage319

overhead. The idea behind PARS is to replace a portion of320

entries of a single region size with entries of other region321

sizes. For example, for a 2 KiB table with 4K entries, PARS322

tries to replace 2K of those entries with 1K 4 KiB entries and323

stores HPs and FPs separately. The replaced entries can reduce324

the storage overhead while ensuring the same storage capacity325

for FPs.326

IV. DESIGN327

In this section, we describe the design of PARS, a pattern-328

aware spatial bit-pattern-based prefetcher that supports the329

multiple region sizes and can dynamically adopt appropriate330

region sizes for various applications through an adaptive RS-331

switching mechanism.332

A. Overview333

Architecture: Fig. 5 depicts the overall architecture of334

PARS. The key idea of PARS is that it supports multiple region335

sizes, enabling it to simultaneously enhance the application336

performance while reducing the hardware overhead. For each337

region size, PARS utilizes a dedicated set of AT, FT, and338

PHT for training and prediction purposes. These table sets339

are denoted as Seti(0 ≤ i < n), where n is the number of340

region sizes PARS supports. The PHTs adopt dual trigger341

events design as described in Section II-C. Besides, there is a342

prefetch buffer (PB) that uses Setn−1’s region size and stores343

the pattern of the region to be prefetched. To achieve dynamic344

region size switching, we introduce the region expansion unit345

(EU) and shrinkage unit (SU) for each table set. The EU is346

located between FT and AT, which detects whether there are347

mergeable regions. If the detection meets the requirements, it348

will merge two entries in Seti and send the new entry to ATi+1.349

In contrast, the SU is located between AT and PHT, which350

detects the half pattern (see Section III-B) and the prediction351

accuracy. If the detection meets the requirements, it would352

shrink the region in Seti and send the pattern to PHTi−1. In this353

way, PARS supports multiple region sizes and can dynamically354

adopt appropriate region sizes for applications.355

Training: PARS starts training a region when the program356

accesses a new region. Whenever an L1 miss comes, PARS357

Fig. 6. Training process of a region.

Fig. 7. Prediction process of a region.

looks up FTs and ATs of all the table sets. If there is no 358

corresponding entry in all FTs and ATs, which indicates that it 359

is a trigger access, PARS will start training the region. Fig. 6 360

illustrates an example of the training process of access patterns 361

of a new region, which consists of four steps. 362

1) When the program accesses a new region with a cache 363

line address of r+1, PARS assigns a new FT entry for 364

the region r with the offset 1 and the corresponding 365

pc. By default, PARS will insert the new FT entry into 366

a random Set, as PARS can switch it to an appropriate 367

region size effectively. 368

2) When another access to the address r+3 in the same 369

region r with another offset of 3, PARS delivers the FT 370

entry to the ATn−1. Then, the ATn−1 allocates a new AT 371

entry containing a pattern field that is initialized with the 372

first two accesses to the region (01010000). If it were 373

not in Setn−1, the FT entry would be sent to the EU 374

first rather than the AT, which checks whether this entry 375

needs to be expanded or not (detailed in Section IV-B). 376

3) Next, every subsequent access (e.g., r+5) to the region 377

will update the pattern (01010100) in the AT entry. 378

4) The AT will stop tracking the footprint of the region r 379

when either of the following two cases happens. (a) Any 380

block in the region r is evicted from the cache and 381

(b) the AT entry of the region r is evicted due to the 382

allocation of a new AT entry. 383

After stopping tracking the footprint, the AT entry is sent to 384

the SU, which checks whether this entry needs to be shrunk or 385

not (detailed in Section IV-B). Then, the pattern of the region 386

r is stored in the PHTn−1, which is indexed by PC+Offset 387

(pc+1) and tagged by PC+Address (pc+r+1). So far, the 388

training for the region r is finished. 389

Prediction: PARS predicts the footprints for a region when 390

the program accesses a new region. Fig. 7 illustrates an 391
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example of the prediction process, which consists of three392

steps.393

1) When an instruction pc accesses a new region with a394

cache line address of r0\ensuremath{+}0, PARS395

looks up PHTs of all table sets in parallel. Each PHT396

has three possible results: “Hit by PC+Address,” “Hit397

by PC+Offset,” and “Miss.” In the example in Fig. 7,398

the query with index pc+0 hits both the PHTn−1 and the399

PHTn−2. The result of PHTn−2 is Hit by PC+Address400

while the result of PHTn−1 is Hit by PC+Offset. PARS401

prefers the result of Hit by PC+Address to Hit by402

PC+Offset because of its higher accuracy. If the results403

of multiple PHTs are Hit by PC+Offset, PARS gives404

higher priority to the result from the PHT with a405

larger region size. Otherwise, PARS doesn’t generate a406

prediction for the region if the results of all PHTs are407

Miss.408

2) The predicted pattern will be sent to the PB and indexed409

by the currently accessed region. Since, PARS only has410

one PB that uses Setn−1’s region size, the pattern and the411

region number from the PHTn−2 should be aligned to the412

PB’s region size. The pattern 1100 should be expanded413

to 11000000 and the region number r0 should be414

shifted to match the PB’s region size.415

3) Inform the FT in the table set where the result is adopted416

to initiate the training of the region instead of the default417

table set. In addition to sending the pattern to the PB, a418

hit on the PHT lookup process also impacts the training.419

The table set, where the pattern is adopted, instead of a420

random table set is responsible for initiating the training421

of the new region, i.e., the FTn−2 would assign a new422

entry for the address r0+0.423

4) PARS looks up the PB and prefetches the corresponding424

blocks. For every program access and not just for trigger425

access, PARS would look up the PB based on the426

currently accessed region and prefetch relevant blocks.427

With the PB, PARS can easily constrain the prefetching428

aggressiveness.429

B. Adaptive RS-Switching Mechanism430

We design the EU and SU in PARS and propose the adaptive431

RS-switching mechanism to enable the dynamical region sizes432

switching for different patterns.433

Expansion Unit: We design the EU between FT and AT,434

which converts and transfers entries to a table set with a larger435

region size. When two mergeable regions are trained in Seti at436

the same time, the EU switches their region sizes to Seti+1’s.437

PARS considers two regions to be mergeable when 1) the two438

regions are adjacent and 2) the new region merged by the two439

regions is aligned.440

Fig. 8 demonstrates the process of one region expansion,441

which consists of the following steps. Taking the access to442

the region 0x80 with the offset 2 as an example, we assume443

that the region 0x80 with the offset 1 is in the FT and its444

mergeable region 0x81 is in the AT.445

1) After the access to region 0x80 with the offset 2, the446

PARS tries to send the FT entry to the EU.447

Fig. 8. Work process of the region EU.

2) The EU detects whether there are mergeable regions in 448

the ATi. It looks up the entry of region 0x81 in the ATi. 449

If the entry of region 0x81 is found, the EU merges the 450

two entries into one and sends it to the ATi+1. Otherwise, 451

the entry of region 0x80 would be sent to the ATi, and 452

no further steps. 453

3) The EU merges the two mergeable entries into a larger 454

one and sends the new entry to the ATi+1. 455

If the EU decides to merge two entries, the four fields 456

(region, offset, PC, and pattern) of the new ATi+1 entry have 457

to be calculated based on these two entries. 458

1) The new region number can be obtained by dividing the 459

original region number by two since the region size is 460

doubled. In our example, the region field is set to 0x40, 461

i.e., 0x80 divided by 2. 462

2) The new offset field is set based on the trigger access 463

of the entry in the AT, which is earlier accessed. The 464

new offset is the offset of the trigger access in the new 465

region, which is set to 4 in the example. We take the 466

Offset 0 in the region 0x81 entry as the trigger access. 467

Meanwhile, the offset of the trigger access is 4 in the 468

new region. 469

3) Similarly, the new PC field is set the same as the PC 470

field of the entry in the AT. We set the PC as pc0 based 471

on the trigger access of region 0x81. 472

4) The new pattern field is set to 01101100 by splicing 473

the two patterns of region 0x80 and region 0x81 in 474

order. In this way, the EU effectively merges region 475

0x80 and region 0x81 and switches the region size to 476

a larger one. 477

Shrinkage Unit: We design the SU between AT and PHT to 478

shrink regions to a smaller size, which eliminates half 0s and 479

enhances the prefetching accuracy. When the ATi(0 < i < n) 480

finishes recording an entry, it will send the entry to the SU. 481

The SU determines whether to split and insert new entries to 482

the table set with a smaller region size. 483

PARS would shrink the region when 1) the entry contains 484

a half 0 or 2) the prediction accuracy of the half region that 485

does not contain the trigger access is lower than the threshold. 486

The prediction accuracy can be obtained by calculating the dif- 487

ference between the actual access footprint and the predicted 488

footprint. Specifically, the actual access footprint is the pattern 489

coming from the AT, and the predicted footprint is the pattern 490

stored in the PHT with the same PC+Address (if it exists). 491

Fig. 9 illustrates an example of region shrinkage due to the 492

presence of half 0. 493

1) When the ATi finishes recording region 0x22, it will 494

send the entry to the SU. Since the pattern 00001010 495
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Fig. 9. Work process of the region SU. The region is shrunk due to the
presence of half 0.

has a half 0, the SU decides to switch its region size to496

a smaller one.497

2) When the SU decides to shrink the region from the ATi,498

it updates three fields (region, offset, and pattern) and499

stores the new pattern into the PHTi−1.500

3) The new region number field is set to twice the origin501

region number and its lowest bit is set to 0 or 1 based502

on the reserved half pattern. In our example, the lowest503

bit is set to 1, so the region number is updated from504

0×22 to 0x45.505

4) The new offset field is set to the offset of the trigger506

access block in the new small region. The offset in the507

example is set to 0.508

5) The new pattern is set to 1010, which is the half of the509

original pattern containing the trigger access. Finally, the510

new pattern is stored in the PHTi−1, which is indexed511

by PC+Offset (pc+0) and tagged by PC+Address512

(pc+0x45+0). As a result, the SU effectively shrinks513

the original region into an appropriate one.514

C. Region Size Selection515

The architecture diagram of PARS depicted in Fig. 5 accom-516

modates n region sizes, necessitating the precise selection of517

the appropriate region sizes. Since, the RS-Switching mech-518

anism achieves dynamic switching between the neighboring519

region sizes by the EU and SU, these n sizes need to follow520

a progression of consecutive powers of two. In addition, in521

systems with a 64B block size and 4 KiB page size, the region522

size should fall within the range of [0.125, 4] (KiB). We523

evaluated the performance of the whole region size config-524

urations as shown in Fig. 20. For the best tradeoff between525

the performance enhancement and hardware complexity, the526

implementation of PARS in this article adopts the [2, 4] (KiB)527

configuration as detailed in Section V-G.528

V. EVALUATION529

A. Experimental Setup530

We used Champsim [9] to evaluate PARS. Champsim is531

a trace-driven simulator that has been used for the second532

and third data prefetching championships (DPC-2 [2] and533

DPC-3 [3]). We list the simulation parameters in Table I. In534

both single-core and multicore evaluations, we used the first535

50 M instructions to warmup and the next 200 M instructions536

to simulate. We report the performance in terms of the IPC537

improvement (speedup) over a baseline without any prefetcher.538

TABLE I
SIMULATOR PARAMETERS

TABLE II
CONFIGURATIONS OF FIVE PREFETCHERS

Workloads: We used 198 traces from the four benchmark 539

suites, including SPEC CPU 2006 [12], SPEC CPU 2017 [13], 540

Ligra [37], and Cloudsuite [22]. For SPEC CPU 2006 and 541

SPEC CPU 2017, we reused the traces provided by DPC-2 and 542

DPC-3. For Ligra, we used the traces provided by Pythia [18]. 543

For Cloudsuite, we reused the traces provided by CRC-2 [1]. 544

In all the evaluations, we ignored traces whose LLC miss 545

per kilo instructions (MPKI) is less than 1 because all the 546

prefetchers have similar performance improvements for these 547

traces. 548

Prefetchers: We compared PARS with four prior prefetching 549

proposals: 1) Pythia [18]; 2) MLOP [35]; 3) Bingo [16]; 550

and 4) PMP [26]. Pythia is an emerging prefetcher that 551

employs reinforcement learning. MLOP is an excellent offset 552

prefetcher, which is one of the winners in DPC-3. Bingo 553

is one of the state-of-the-art spatial prefetchers which is 554

based on SMS [39]. PMP is the latest lightweight bit-pattern- 555

based prefetcher that employs the strategy of merging similar 556

patterns. To be fair, we placed all the prefetchers on L2 cache 557

(L2C) and no other prefetchers in L1 cache (L1C) or LLC. 558

All the prefetchers were trained on L1C miss and fill the 559

prefetched cache lines into L2C and LLC. Table II shows the 560

configurations of the five prefetchers. 561

B. Single-Core Performance 562

Fig. 10 shows the performance of five prefetchers in 563

a single-core system, indicating that PARS surpasses the 564

performance of the other four prefetchers. On average, PARS 565

improves performance by 40.6% (up to 342.5%) over the 566

baseline without a prefetcher and outperforms Pythia, MLOP, 567

Bingo, and PMP by 3.9% (up to 111.2%), 5.9% (up to 87.5%), 568

2.1% (up to 24.4%), and 3.3% (up to 57.4%), respectively. For 569

Cloudsuite, the performance of all the prefetchers is similar, 570

due to the majority of workloads exhibiting low MPKI. 571

PARS outperforms Pythia and MLOP by leveraging deep 572

prediction. Pythia and MLOP struggle to prefetch deeply since 573

they use “delta” features to make predictions. In contrast, 574
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Fig. 10. Single-core performance of five prefetchers.

Fig. 11. Single-core performance of Bingo (state-of-the-art prefetcher) and
PARS on SPEC CPU 2017.

PARS can generate a few dozen blocks in one prediction.575

Benefiting from the deep prefetching, PARS has better timeli-576

ness and outperforms Pythia and MLOP by more than 6% for577

all the benchmark suites except Cloudsuite. PMP employs an578

unstable strategy, including merging and extracting patterns.579

When its extracting precision is poor, such as in SPEC CPU580

2006, its performance is much lower than PARS by 7.7%.581

Compared to Bingo, PARS can adaptively adjust the region582

size according to the memory pattern of workloads. Thus,583

PARS performs better than Bingo on most benchmarks and584

consumes only 17.5% storage of Bingo. Since, Bingo is a585

state-of-the-art prefetcher, we have a head-to-head comparison586

of Bingo and PARS for each trace in SPEC CPU 2017 as587

shown in Fig. 11. For SPEC CPU 2017, PARS outperforms588

Bingo by 5.3% on average. On the majority (25 out of 30)589

of traces, PARS has better performance improvement than590

Bingo. Specifically, PARS outperforms Bingo by 24.0% on591

“605.mcf_s-472B.”592

C. Prefetching Metrics593

Coverage and Overprediction: Are both important metrics594

for prefetching performance. Coverage is the ratio of reduced595

load misses relative to total load misses of the baseline with596

no prefetcher while the overprediction is the ratio of increased597

read misses relative to total read misses of the baseline with598

no prefetcher.599

Fig. 12 shows the metrics of each prefetcher across all the600

benchmark suites in the single-core system. On average, PARS601

offers 8.5%, 15.9%, 5.5%, and 26.8% higher coverage than602

Pythia, MLOP, Bingo, and PMP, respectively. The highest cov-603

erage is an important cornerstone for PARS to gain the optimal604

performance improvement. Meanwhile, the overprediction of605

PARS is 1.7%, 19.5%, and 256.4% lower than MLOP, Bingo,606

and PMP, respectively.607

Fig. 12. Coverage and overprediction of five prefetchers.

Fig. 13. Coverage and overprediction of Bingo and PARS on SPEC CPU
2017. For each trace, the left bar is Bingo and the right bar is PARS.

Fig. 14. Timeliness of five prefetchers.

Fig. 13 shows a head-to-head comparison between Bingo 608

and PARS for each trace on SPEC CPU 2017. On the majority 609

(27 out of 30) of traces, PARS exhibited enhanced coverage 610

(up to 39%). On average, PARS boosted coverage by 10%, 611

and decreased overprediction by 23%. 612

Timeliness: A useful prefetch should ensure that the data 613

is filled into the cache before it is accessed; otherwise, it is 614

considered a late prefetch. We define timeliness as the ratio 615

of useful prefetches to the total of useful prefetches and late 616

prefetches. The results of five prefetchers are shown in Fig. 14. 617

We observe that both PARS and PMP have excellent timely 618

rates that are all greater than 97% because they can learn 619

patterns for 4 KiB regions and issue up to 63 prefetches at a 620

time. Pythia has the worst timeliness. In Ligra, the timeliness 621

of Pythia is only 86%. 622

DRAM Traffic: We define the additional DRAM traffic 623

(ADT) as the ratio of increased DRAM accesses to those in the 624

baseline. Fig. 15 shows the ADT of the five prefetchers. We 625

can observe that the ADT of PARS is lower than that of MLOP, 626

Bingo, and PMP, indicating that PARS consumes less memory 627

bandwidth and achieves better performance. PARS is more 628

aggressive than Pythia and has a little higher ADT. Increasing 629

the prefetch degree of Pythia can make it as aggressive as 630
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Fig. 15. ADT of five prefetchers.

Fig. 16. Performance scaling with DRAM bandwidth.

PARS. PARS still outperforms the aggressive Pythia by 1.2%631

with 6.9% lower ADT. On the other hand, simply controlling632

the prefetching degree of PB can limit the aggressiveness of633

PARS. The limited PARS reduces 10.3% ADT with 1.4%634

performance loss, which still outperforms Pythia by 2.5%.635

The simple mechanism of limiting prefetching aggressiveness636

through PB can effectively reduce ADT, making PARS more637

suitable for the embedded systems.638

D. Sensitivity in Single-Core System639

Varying DRAM Bandwidths: Fig. 16 shows how the640

performance improvements of all the prefetchers change when641

we scaled the DRAM bandwidth from 1200 to 7200 MT/s. We642

observe that PARS gains the highest performance improvement643

in all the bandwidth configurations. In a low-bandwidth644

scenario at 1200 MT/s, PARS shows excellent adaptive ability645

and outperforms Pythia, MLOP, Bingo, and PMP by 0.1%,646

3.3%, 2.3%, and 8.2%, respectively. PARS only has a slight647

advantage over Pythia because bit-pattern-based prefetchers648

have greater bandwidth requirements. As the bandwidth grows,649

PARS shows better performance and quickly pulls away650

from Pythia. When the bandwidth reaches 6000 MT/s, the651

performance of all the prefetchers stabilizes, and PARS outper-652

forms Pythia, MLOP, Bingo, and PMP by 5.7%, 7.3%, 2.3%,653

and 1.1%, respectively.654

Varying LLC Size: Fig. 17 shows the average speedup across655

the four benchmark suites when the LLC size varies from656

0.25 to 8 MiB. We observe that PARS outperforms other657

prefetchers in all the LLC size configurations. When the658

LLC size is small, PARS exhibits greater advantages over659

the other prefetchers. Specifically, in 1 MiB configuration,660

PARS outperforms Pythia, MLOP, Bingo, and PMP by 4.1%,661

6.9%, 2.6%, and 4.5%, respectively, indicating that PARS is662

better adapted to the environment where the LLC resources663

are highly competitive. When the LLC size is greater than664

1 MiB, the performance of all the prefetchers declines as the665

Fig. 17. Performance scaling with LLC size.

Fig. 18. Multicore performance of five prefetchers.

Fig. 19. Frequency of analysis and switching for EU and SU, measured in
occurrences PKI.

baseline IPC increases rapidly. Nevertheless, PARS continues 666

to outperform the other prefetchers. In 4 MiB configurations, 667

PARS outperforms Pythia, MLOP, Bingo, and PMP by 3.0%, 668

4.4%, 2.0%, and 2.9%, respectively. 669

E. Multicore Performance 670

Fig. 18 shows the performance of five prefetchers in a four- 671

core system. PARS outperforms Pythia, MLOP, Bingo, and 672

PMP by 5.4%, 6.6%, 5.0%, and 7.4%, respectively. The advan- 673

tages of PARS are more pronounced in multicore systems 674

than in single-core systems. The main reason is that multiple 675

workloads will compete for the DRAM bandwidth and LLC 676

resources, and PARS adapts well to both the low-bandwidth 677

and low LLC size scenarios. In SPEC CPU 2006 and 2017, 678

PARS significantly outperforms the remaining four prefetchers 679

by more than 8%. This is because the benchmarks in SPEC 680

are diverse, and PARS’s multiple region size architecture has 681

a wider adaptability to various types of applications. 682

F. Region Analysis and Resizing Frequency 683

Fig. 19 shows how frequently the region is analysed and 684

resized by the EU and SU of thirty traces. Across the four 685

benchmark suites, the EU and SU analyse 1.82 and 1.80 686

times per kilo instructions (PKI), respectively, to determine 687
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Fig. 20. Speedup with different region size configurations. The x-axis
represents the minimum region size in the configuration, while the y-axis
represents the maximum region size. For instance, the block (x, y)
= (0.25, 2) shows the performance of configuration [0.25, 0.5, 1, 2] (KiB),
which is 1.398.

whether to adjust the region size. On average, they perform688

further resizing operations at frequencies of 0.02 and 0.35 PKI,689

respectively. These frequencies are very low compared to the690

L2C MPKI in baseline, which is 9.00. For each analysis, EU691

and SU require one lookup for AT and PHT, respectively. The692

SU also needs simple operations, such as XOR and PopCount.693

For each resizing, EU and SU only need simple bitwise694

operations, which can be done in one cycle. The latency of695

EU and SU in the worst path is 6 and 14 cycles, respectively.696

We employed a prefetcher without region size switching697

to evaluate the minimum time interval from when a pattern698

is trained to its first use across the four benchmark suites.699

On average, the minimum interval is 112 cycles, significantly700

exceeding the longest delay caused by region size switching.701

Additionally, the EU and SU are not on the critical path of702

prefetching (e.g., lookup the PB and issuing prefetch requests).703

Therefore, they do not decrease prefetching performance.704

G. Preset Parameters705

Region Sizes: PARS supports region sizes ranging from706

the two blocks up to the size of a page, and these sizes707

must be consecutive powers of two. To identify the optimal708

region size set, we evaluated the whole combinations of region709

sizes, totaling 15 combinations. The allocations of entries are710

comparable.711

Fig. 20 illustrates the speedup for all the combinations. We712

make three key observations as follows.713

1) Enhanced performance is achieved with larger maximum714

region sizes.715

2) Performance improves with a greater variety of sup-716

ported region sizes.717

3) Adding smaller region sizes, particularly 0.125, 0.25,718

and 0.5 KiB, results in a marginal performance improve-719

ment of less than 0.1%.720

When the maximum region size is set to 4 KiB (as shown721

in the top row of Fig. 20), PARS achieves the best speedup,722

at least 1.406. For the minimum region size choices, ranging723

from 2 to 0.125 KiB, PARS yields only a slight performance724

improvement. However, the increase in the number of levels725

leads to greater hardware complexity. For the best tradeoff726

between performance enhancement and hardware complex-727

ity, the implementation of PARS in this article adopts the728

TABLE III
OVERHEAD AND PERFORMANCE OF PARS WITH DIFFERENT PHT SIZES

Fig. 21. Performance of original SMS and SMS with multiple region sizes.

[2, 4] (KiB) configuration. Additionally, for the integration 729

into various processors, we can determine the optimal config- 730

uration of the PARS architecture according to the workloads. 731

PHT Sizes: PHT sizes represent the number of patterns 732

that the PHT can store. We varied the PHT size to evaluate 733

its impact on performance and overhead. We set the size of 734

2 and 4 KiB PHTs to be the same. Table III shows the overall 735

overhead and performance of the prefetcher for each PHT 736

size because PHT contributes the majority of PARS’s storage, 737

the prefetcher’s overhead nearly doubles when the PHT size 738

doubles. It is clear that the performance improves as the PHT 739

size increases. Specifically, when the PHT size is increased 740

from 512 to 1K, the performance improves most significantly 741

by 1.1%. For the best tradeoff between the performance and 742

overhead, we set PHTs’ size to 1K. 743

H. Applying on Other Prefetchers 744

To further demonstrate the advantages of the multiple region 745

sizes architecture, we applied the PARS design concepts to 746

SMS [39] which is one of the most typical bit-pattern-based 747

prefetchers. We named the new prefetcher SMS-MultipleRS. 748

Both prefetchers use PC+Offset as the trigger event. SMS- 749

MultipleRS has two table sets that can support both 2 and 750

4 KiB region sizes. Each PHT in SMS-MultipleRS has 1K 751

entries and the PHT of SMS has 8K entries. Fig. 21 shows 752

the performance of the two prefetchers. SMS-MultipleRS 753

outperforms SMS by 3.6% on average, while the overhead is 754

only 37.2% of SMS. We can conclude that multiple region 755

sizes can effectively enhance the bit-pattern-based prefetchers 756

regardless of their trigger events. 757

VI. DISCUSSION 758

A. Overhead Analysis 759

Table IV lists the details and storage overhead of each 760

structure in PARS with the configuration of [2, 4] (KiB). In 761

the default configuration of PARS, each FT, AT and PHT 762

has 32, 32, and 1K entries, respectively, and the PB can 763

store 16 patterns for 4 KiB regions. All tables are 16-way 764

set associative and adopt LRU as replacement policies. The 765

EU and SU do not require additional SRAM for data storage, 766
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TABLE IV
DETAILS OF PARS’S STORAGE OVERHEAD

TABLE V
AREA AND POWER OVERHEAD OF PARS

because they simply read data from FT, AT, or PHT, perform767

basic bitwise operations, and then insert the data into the768

corresponding tables. The total storage overhead of PARS is769

about 21.3 KB, which is only 17.5% of Bingo.770

To accurately estimate PARS’s hardware complexity, chip771

area, and power overheads, we used the Chisel [10] hardware772

design language (HDL) to implement the full-blown PARS,773

including all the tables, the EU and SU, and the control774

logic. For comparison, we also implement Bingo. We used775

Synopsys Design Compiler [14] and 7-nm library to estimate776

PARS’s area and power overhead as shown in Table V. PARS777

consumes 0.09 mm2 of area and 14.01 mW of power, which are,778

respectively, 13.04% and 16.70% of Bingo’s values (0.69 mm2
779

and 83.89 mW). Specifically, the EU and SU consume 691780

combinational cells, whose area and power consumption account781

for just 0.08% and 0.38% of PARS, respectively, indicating the782

EU and SU have low hardware complexity.783

Regarding the total die area and power consumption, the784

PARS implementation incurs minimal overheads as shown in785

Table V. Specifically, for a six-core Ryzen Embedded v2546786

processor with 54 W TDP [7], PARS costs 0.35% and 0.16%787

of the area and power, respectively. We conclude that PARS788

improves performance with low area and power overhead.789

B. Integrating Into Embedded Systems790

Embedded system processors are typically constrained by791

strict requirements on latency, power consumption, and area.792

PARS can reduce cache misses to enhance the system793

performance and response speed, incurring only minor power794

and area consumption increases.795

Since, embedded systems typically perform only specific796

tasks, it is critical to customize the optimal region size and797

entries for a particular embedded system. Determining the798

region size configuration based on the overhead analysis799

and performance evaluation within particular benchmarks is800

advisable. Furthermore, the number of entries needed depends801

on the code and data volume of the applications. For smaller-802

scale applications, reducing the size of each table can effectively803

decrease the hardware overhead. Finally, we can employ two804

dedicated registers to more flexibly manage PARS’s impact805

on the system performance and power consumption. One 806

register controls the enabling and disabling of PARS, and the 807

other adjusts the prefetching aggressiveness (i.e., the prefetch 808

degree of PB). 809

VII. RELATED WORK 810

To our knowledge, PARS is the first bit-pattern-based 811

prefetcher that supports multiple region sizes. PARS can 812

adaptively adjust the region size based on the current pattern 813

and the past prediction precision. In Section V, we have 814

compared PARS with some recent state-of-the-art prefetching 815

techniques quantitatively. In this section, we compare PARS 816

with the other relevant prefetching techniques. 817

Temporal Prefetchers: Temporal prefetchers [15], [17], [25], 818

[27], [38], [43], [44], [46], [47] record the full block addresses 819

of memory accesses. When a cache miss occurs, a temporal 820

prefetcher will try to replay the historical miss sequence and 821

issue prefetches for the subsequent addresses followed by 822

the current address. Temporal prefetchers originated with the 823

Markov prefetcher [27], which uses the fixed-size entries to 824

store the address sequences. STMS [43] exploits variable- 825

length temporal streams by utilizing a circular FIFO buffer. ISB 826

[25] creates a structural address space and maps the physical 827

addresses in a temporal stream into a continuous sequence 828

of addresses, which can be prefetched by a simple next-line 829

prefetcher. These temporal prefetchers are constrained by the 830

large amount of metadata, which is usually multimegabytes 831

and stored in the off-chip memory (DRAM). In contrast, PARS 832

only requires 21.3 KiB and does not need to use the off-chip 833

storage. 834

Spatial Prefetchers: The spatial prefetchers [16], [19], [20], 835

[23], [24], [26], [28], [29], [31], [32], [33], [34], [35], [36] 836

learn spatial correlations of access addresses rather than store 837

full block addresses and have lower storage overhead than 838

the temporal prefetchers. Emerging spatial prefetchers mainly 839

learn the following two features as follows. 840

1) Delta [28], [31], [32], [34], [35], [47]: VLDP [36] 841

can effectively enhance the performance of applications 842

with multidelta sequences. SPP [28] creates signatures 843

for address sequences and uses the signatures to predict 844

the next delta. Sandbox [34] is an offset prefetcher 845

that trains only one global delta from a predefined set. 846

Moreover, BOP [31] builds on Sandbox by considering 847

the timeliness of prefetching and learning a better delta. 848

However, these prefetchers only issue one prefetch 849

per prediction and have to use the strategy for deep 850

prefetching recursively. In contrast, PARS learns the bit- 851

pattern feature and can easily achieve deep prefetching. 852

2) Bit-pattern [16], [19], [21], [23], [26], [30], [33], [39], 853

[42]: Ferdman et al. [23] adopted rotated bit-patterns 854

to reduce the storage overhead. BuMP [42] enables 855

bulk transfers by identifying high-density pages, which 856

reduces energy consumption and improves throughput. 857

DSPatch [19] learns two bit-patterns simultaneously by 858

using AND and OR operations and selects them dynam- 859

ically based on the bandwidth usage. Nevertheless, all 860

these prefetchers can only learn bit-patterns with a fixed 861
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region size. PARS supports multiple region sizes and can862

adaptively adjust the region size for each bit-pattern.863

VIII. CONCLUSION864

This article proposes PARS, a pattern-aware spatial data865

prefetcher supporting multiple region sizes. PARS supports866

multiple region sizes and dynamically switching appropriate867

region sizes for different patterns through an adaptive RS-868

switching mechanism. Evaluation results show that PARS869

can simultaneously enhance application performance while870

reducing hardware overhead and outperforms the state-of-the-871

art bit-pattern-based prefetcher.872
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