
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Flexible Generation of Fast and Accurate
Software Performance Simulators From

Compact Processor Descriptions
Conrad Foik , Robert Kunzelmann , Daniel Mueller-Gritschneder , Senior Member, IEEE,

and Ulf Schlichtmann , Senior Member, IEEE

Abstract—To find optimal solutions for modern embedded
systems, designers frequently rely on the software performance
simulators. These simulators combine an abstract functional
description of a processor with a nonfunctional timing model
to accurately estimate the processor’s timing while maintaining
high simulation speeds. However, current performance simulators
either inflexibly target specific processors or sacrifice accuracy
or simulation speed. This article presents a new approach to
the software performance simulation, combining flexibility with
highly accurate estimates and high simulation speed. A code
generator converts a compact structural description of the target
processor’s pipeline into sets of timing constraints, describing the
processor’s instruction execution. Based on these, it generates
corresponding scheduling functions and timing variables, repre-
senting the availability of the modeled pipeline. The performance
estimator uses these components to approximate the processor’s
timing based on an instruction trace provided by an instruction
set simulator. Results for the state-of-the-art CV32E40P and
CVA6 RISC-V processors show an average relative error of
0.0015% and 3.88%, respectively, over a large set of benchmarks.
Our approach reaches an average simulation speed of 24 and
15 million instructions per second (MIPS), respectively.

Index Terms—Design space exploration (DSE), instruction set
simulation, performance simulation, RISC-V.

I. INTRODUCTION

TO PUSH toward increasingly strict performance and
power requirements, modern embedded systems move to

highly workload-tailored designs, such as application-specific
instruction set processors (ASIPs). To find optimal solutions
for ASIPs, early simulation-based software (SW) profiling and
design space exploration (DSE) of the target microarchitecture
are essential. Simulations thus play a crucial role during
the development of ASIPs, resulting in a new demand for
fast and accurate simulators. Even though the processor’s

Manuscript received 7 August 2024; accepted 10 August 2024. This work
was supported in part by the German Federal Ministry of Education and
Research (BMBF) and ITEA within the Project GenerIoT under Contract
01IS22084G. This article was presented at the International Conference on
Hardware/Software Codesign and System Synthesis (CODES + ISSS) 2024
and appeared as part of the ESWEEK-TCAD Special Issue. This article was
recommended by Associate Editor S. Dailey. (Corresponding author: Conrad
Foik.)

The authors are with the Chair of Electronic Design Automation, Technical
University of Munich, 80333 Munich, Germany, and also with the Institute of
Computer Engineering, TU Wien, 1040 Wien, Austria (e-mail: conrad.foik@
tum.de; daniel.mueller-gritschneder@tuwien.ac.at).

Digital Object Identifier 10.1109/TCAD.2024.3445255

Fig. 1. Flexible performance simulation environment.

register transfer level (RTL) representation could theoretically
be used for the cycle-accurate simulations, these simulations
are very slow and, thus, unsuitable for DSE and fast SW
profiling. A more appropriate alternative is the use of so-called
instruction set simulators (ISSs) [1], [2]. This type of simulator
models the processor’s behavior based on its instruction set
architecture (ISA) description. As a result of this increased
level of abstraction, an ISS is considerably faster than the RTL
simulations.

While an ISS correctly models the functional behavior of
a processor, it does not capture microarchitectural aspects
and is, therefore, incapable of delivering reliable estimates
of the timing behavior. However, since convincing DSE and
SW profiling require accurate performance estimates, several
performance simulators have been proposed in [3] and [4].
These simulators typically combine the ISS approach with
nonfunctional timing models of the target processor, offering
a good combination of accurate performance estimates and
high simulation speeds. A key challenge of DSE and SW
profiling is the flexible adaptation of simulators to quickly
evaluate many different processor variants, e.g., to explore
custom instructions or pipeline variants. Thus, flexibility,
along with high accuracy and simulation speeds, becomes a
central requirement. However, the majority of performance
simulators inflexibly target a specific processor variant. Earlier
approaches focusing on flexibility either do not focus on the
processor’s timing behavior [5] or use computational heavy
timing models sacrificing simulation speed [6].

In this article, we propose a new flexible approach to
performance simulation illustrated in Fig. 1. It consists of
two main components. A code generator translates a com-
pact description of the target processor into an intermediate
representation, based on which it creates timing variables

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-0205-5836
https://orcid.org/0009-0002-3615-9382
https://orcid.org/0000-0003-0903-631X
https://orcid.org/0000-0003-4431-7619

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

and a set of instruction type-specific scheduling functions. A
performance estimator utilizes these outputs to approximate
the processor’s performance based on a provided instruction
trace. External models of complex dynamic microarchitecture
aspects might further extend the estimator. The contributions
of this article are the following.

1) As the key conceptual novelty, we introduce an intuitive
and powerful constraint-based dependency graph as an
intermediate representation of the target processor’s tim-
ing behavior. It is directly derived from a compact and
flexible pipeline description and is sufficiently powerful
to model multi-issue concepts, unconsidered by the
previous approaches.

2) We propose a fast and accurate performance estimation
concept based on the completion-based timing vari-
ables, which represent the availability of the processor’s
components as well as the data dependencies and
are updated once per instruction by simple algebraic
scheduling functions. Both the timing variables and
scheduling functions are directly generated from the
above-mentioned intermediate representation and can be
precompiled for ultrafast simulation speed.

3) Our approach is completely instruction trace-based
and thus generically applicable regardless of the
employed ISS.

Our approach offers several advantages. In terms of 1) accu-
racy, the constraint-based dependency graph used as an
intermediate representation allows for an intuitive but highly
accurate description of the target processor’s timing behavior
that provides timing estimates at the perinstruction level and
not only for full program execution or program sections. It is
capable of capturing single- as well as multi-issue concepts.
Regarding 2) simulation speed, the constraint-based represen-
tation results in simple algebraic scheduling functions called
once per instruction. This enables high simulation speeds,
especially compared to the cycle-based simulators. Since the
functions are independent of the instructions’ execution order,
they can be fully established and compiled before the sim-
ulation, further increasing the simulation speed. Concerning
3) flexibility, the compact nature of the code generator’s
input permits flexible and fast adaptation of the performance
estimator to new microarchitecture versions, including multi-
issue concepts. Further, the support of external models allows
designers to quickly evaluate the effect of complex dynamic
components, like caches, by exchanging the corresponding
models. Finally, considering 4) portability, the proposed
performance estimator can easily be connected to an existing
functional ISS since it is fully trace-based. Additionally, pre-
existing performance models might be incorporated as external
models.

We demonstrate the advantages of our approach by applying
it to the RISC-V processors CV32E40P [7] and CVA6 [8]. The
experimental results show a consistent accuracy of above 99%
for the low-power CV32E40P processor and 96% for the more
complex CVA6 application class processor. The simulations
reach average speeds of 24 and 15 million instructions per
second (MIPS), respectively, which is comparable to manually

created simulators and more than five times faster than the
other generator-based approaches [6]. To highlight the ability
of our approach to closely follow variations in the target SW,
we also report the average absolute cycle error per instruction.
We observe an average deviation of 0.0001 and 0.1 cycles per
instruction, respectively. This highlights the capability of our
approach to closely follow performance variations during the
execution of the target SW, which is crucial for effective SW
profiling.

II. RELATED WORK

As RTL simulations are too slow for DSE, approaches,
like [9] and [10], speed up these simulations. But they
still require complete RTL designs, less suited for flexible
explorations.

ISSs, like QEMU [1] and Spike [2], simulate the functional
behavior of a processor at high speed but lack information
about its microarchitecture. Therefore, ISSs usually roughly
estimate the number of required clock cycles by multiply-
ing the number of executed instructions by an assumed or
obtained average cycle-per-instruction (CPI) ratio. However,
this approach is generally too inaccurate and does not allow
to identify performance variations over the cause of the
target SW.

Statistical and machine-learning approaches can improve
the accuracy of an ISS-based performance estima-
tion [11], [12], [13]. However, these methods are black box
models that offer little insights for DSE and require expensive
training with an RTL implementation or accurate performance
models as a reference.

The gem5 simulator [14] uses a detailed functional model
of the target microarchitecture. This allows for accurate
performance estimates but also drastically reduces simulation
speed due to the low level of abstraction.

Performance simulators, such as [3] and [15], combine
an ISS’s abstract functional simulation with nonfunctional
timing models of the target microarchitecture. The RISC-
V VP [4] performance simulator also uses an ISS-based
approach focusing on an RISC-V processor. These approaches
can deliver accurate performance estimates while maintaining
comparably high simulation speeds. However, to the best of
our knowledge, neither of these approaches provides a generic
method to derive the required timing models that would enable
a flexible adaptation to new microarchitecture variants as
provided by our approach.

The GVSoC simulator [5] offers configurability through a
Python-based modular build setup but focuses on full-platform
simulation instead of modeling the microarchitecture in detail.

The work in [6] proposes a generator-based approach
to flexibly adapt the microarchitecture model. It describes
the target processor using the HARMLESS domain-specific
language (DSL) [16]. From this description, a finite-state
machine (FSM)-based simulator is generated, which explicitly
models the state of the pipeline for every simulated cycle.
While highly flexible, this method results in low simulation
speeds due to the computational overhead introduced by the
FSM’s frequent (cycle-based) updates and its large state space.

FOIK et al.: FLEXIBLE GENERATION OF FAST AND ACCURATE SOFTWARE PERFORMANCE SIMULATORS 3

In contrast, our approach reduces the simulation overhead by
utilizing simple algebraic scheduling functions applied only
once per simulated instruction to update a small set of timing
variables.

The ComCAS simulator [17] accelerates the FSM-based
approach by compiling the simulator for a fixed target SW.
Even though this increases the simulation speed, the generated
simulator cannot be reused for another target SW. In compar-
ison, our approach can be reused for any target SW compiled
for the supported instruction set.

To the best of our knowledge, neither the aforementioned
performance simulators, the GVSoC, nor the HARMLESS
approach explicitly consider multi-issue concepts addressed by
our approach.

III. FLEXIBLE PERFORMANCE SIMULATION

ENVIRONMENT

Fig. 1 presents our proposed flexible performance simula-
tion environment. The two main components of the approach
are a trace-based performance estimator, which is connected
to an arbitrary ISS, and a corresponding code generator, which
generates the microarchitecture-specific parts of the estimator.

The usage of the environment can be divided into two
phases. During the build up of the simulation, the code gener-
ator flexibly adapts the performance estimator to a new target
microarchitecture. For this purpose, the generator receives
an abstract and simple-to-create input format consisting of
a structural description of the target microarchitecture and
a complementing instruction mapping. Based on this, the
generator derives a series of timing constraints for each
instruction type. Using as-soon-as-possible (ASAP) schedul-
ing, the generator then transforms the constraints into a set
of instruction type-specific scheduling functions, which model
the timing behavior of instructions of the corresponding type.
In addition, the code generator also provides timing variables,
which represent the availability of the target microarchitec-
ture’s components. The generated outputs are then compiled
and linked to the performance estimator. Besides the auto-
matically generated outputs from the code generator, the
presented environment also allows for the incorporation of
external models. These manually created components typically
describe complex timing behaviors that need to be determined
dynamically, for example, the branch prediction schemes.

During the execution of the simulation, the performance
estimator receives an instruction trace from an ISS, which
executes the target SW. According to this trace, the estimator
selects the appropriate scheduling function for each executed
instruction and uses it to update the timing variables. If
applicable, external models support this process by dynami-
cally resolving more complex timing behaviors based on the
additional information provided by the instruction trace and
the models’ internal states. It is worth noting that since the
scheduling functions are only dependent on the instruction
type, they are independent of the actual order of the executed
instructions. As such, the estimator can use the already
compiled scheduling functions to directly compute the timing
estimates in an instruction-by-instruction manner instead of

Fig. 2. Dependency graph expressing constraints during the execution of
instructions ai−1 and bi.

constructing complex trace-dependent functions during the run
time. As mentioned above, this reduces the computational
overhead during the simulation and thus increases the simula-
tion speed.

A. Constraint-Based Instruction Modeling

This section outlines the central concept of our approach
based on a simple, generic example. It conceptually demon-
strates how timing constraints can express the dependencies
during the execution of instructions and, as such, model the
timing behavior of a processor. It then shows how instruction
type-specific scheduling functions are derived from the estab-
lished timing constraints to allow for an effective calculation
of the instructions’ timing behavior.

As an example, we consider a sequence of two generic
instructions, ai−1 and bi. The two instructions are of instruc-
tion type a and b, respectively, where the instruction type
(such as ADD, SUB, MUL) describes the functionality of
the instruction. The index, i, indicates the order of execution.
Thus, ai−1 is conceptually invoked before bi.

To execute an instruction, a processor needs to complete
a number of instruction type-specific actions, for example,
utilizing a resource of the pipeline. With regards to the timing,
it is reasonable to assume that a processor strives to complete
these actions in an ASAP manner and ideally would complete
them all at once. However, in reality, this is not possible
due to dependencies between the actions, which constrain the
execution of the instructions.

Fig. 2 illustrates this for the given example in the form
of a dependency graph. Each node represents an action (of
type x, y, or z), which the corresponding instruction must
execute. The delay associated with each specific action is given
in parentheses. Actions x and y have a constant delay of a
single cycle, while the delay of z, di

z is dynamic and specific
to the instruction bi. The edges between the nodes represent
dependencies between the actions.

Each of the presented dependencies corresponds directly to
a timing constraint. For instance, the horizontal edge between
x and z of bi represents an instruction-internal dependency,
implying that bi must first complete x before starting z.
Considering the delay of x, this yields the following timing
constraint for x:

tiz,start ≥ tix,start + 1 (1)

where tix,start and tiz,start are the points in time when bi can start
x and z, respectively. However, for the purpose of this article,

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 3. Graph representation of the timing behavior computation over the
instruction sequence.

it is beneficial to adopt a completion-oriented representation
and rephrase (1) to:

tiz ≥ tix + di
z (2)

where tix and tiz mark the points in time when bi completes the
respective actions.

Similarly, the vertical edge in Fig. 2 represents a cross-
instruction dependency between the actions y of ai−1 and z of
bi. The corresponding timing constraint can be expressed as

tiz ≥ ti−1
y + di

z. (3)

Finally, the dashed edges mark dynamic dependencies. They
express a relation between an action and some token, typically
describing a data dependency. For the given example, token β

is provided by action x, while action z requires the availability
of token α. It is further assumed that some relationship exists
between α and β. However, this relationship is complex and
must be dynamically resolved, and is therefore not explicitly
expressed in Fig. 2.

The dependency on α results in the following constraint for
z:

tiz ≥ tiα + di
z (4)

where tiα marks the point in time when α is available for bi.
Vice versa, the point in time, ti−1

β , at which ai−1 makes β

available is constrained by

ti−1
β ≥ ti−1

x . (5)

Based on these constraints, the completion time of the
actions can be calculated. As mentioned above, it is reasonable
to assume that each action will be completed as quickly as
possible. Thus, by applying ASAP scheduling to the derived
constraints, it is possible to express the completion time of
each action as a simple single equation consisting of a max
and an add operation. For instance, considering (2)–(4), the
completion time of z in bi can be expressed as

tiz = max
(

tix, ti−1
y , tiα

)
+ di

z. (6)

By establishing similar equations for each action and com-
bining them, it is possible to compute the timing behavior of
the considered sequence of instructions. Fig. 3 illustrates this
calculation as a graph. It is assumed that each instruction starts
its unconstrained actions (i.e., x) at some point in time, t0,
which marks the start of the processor’s operation.

Fig. 4. Computation of the timing behavior of bi based on scheduling function
fb and timing variable set V .

In addition, external models are incorporated into the
computation. These manually created models can resolve the
values dynamically during run time based on the information
provided by the instruction trace and their initial state. For
instance, a resource model provides the dynamic delay di

z. The
relation between the tokens α and β is resolved by a connector
model, which uses ti−1

β as an input to determine tiα .
Conceptually, the computation presented in Fig. 3 would

enable the calculation of the timing behavior of the considered
instruction sequence as a whole. However, this would require
knowledge of the execution order of the instructions. As stated
above, it is, therefore, beneficial to split the computation into
small instruction type-specific scheduling functions, which are
independent of the instruction order.

Fig. 4 illustrates this approach. The scheduling function fb
contains all the operations corresponding to instruction bi.
However, it is important to note that fb is valid for all the
instructions of type b since the operations are directly related
to the instruction’s actions, which are identical for all the
instructions of the same type.

A set of timing variables, V , is introduced to allow for
a separate execution of the scheduling functions. For each
action, x, y, and z, a corresponding timing variable, vx, vy,
and vz, is created, which acts as storage for the completion
time of the action between the execution of two scheduling
functions. For example, to compute the timing of instruction
bi, the scheduling function fb reads the required completion
time ti−1

y from vy. Vice versa, fb updates the applicable timing
variables, which a potential subsequent scheduling function
might use.

Similarly to the timing variables, the scheduling function
receives any dynamically derived values from the external
models as input and, in turn, updates any applicable connector
model.

B. Compact Microarchitecture Description

This section discusses the required input information of the
generator flow. It consists of a structural pipeline description
and a corresponding instruction mapping. While our tool
currently uses a custom DSL, called CorePerfDSL [18], to
compactly express the required information, it is important to
note that any machine-readable microarchitecture description
containing the required information could conceptually be
used as an input format. In the remainder of this section,
we, therefore, use a more convenient graphical representation
instead of a textual description to discuss the required input.

FOIK et al.: FLEXIBLE GENERATION OF FAST AND ACCURATE SOFTWARE PERFORMANCE SIMULATORS 5

Fig. 5. Simplified structural description of the CV32E40P microarchitecture
(Gray tinted components are the ones used by the DIV instruction type).

Fig. 5 shows a simplified structural description of the
CV32E40P processor. The central element is the pipeline,
which consists of the four stages of the processor. Each stage,
in turn, contains its corresponding resources. For example,
the arithmetic logic unit (ALU) is located in the execution
stage, EX. The delay associated with each resource is shown
in parentheses. While for most resources, the delay is static
and represented as a fixed number of cycles, the delay is
dynamically dependent for certain resources. For instance, the
delay of the divider resource depends on the value of
the involved operands. Dynamic delays are expressed as a
reference to an external resource model, which provides the
situation-specific delay during run time.

Connections depict data dependencies between the
resources. For instance, a valid program counter (PC) is
required to execute the resources in the instruction fetch
stage, IF. The previous instruction generates PC, either
during the IF stage or by using the ALU. As these kinds
of dependencies across instructions typically are not static,
external connector models, inserted between the resources,
resolve them dynamically. For example, the CV32E40P
applies the static branch prediction model to
determine the PC dependency.

Both external resource and connector models are only
referenced in the input description, as they are custom-made
and directly incorporated into the performance estimator. The
models’ complexity varies since it depends on the correspond-
ing processor component. However, it is important to note that
the models are nonfunctional. For instance, the resource model
of a cache only has to provide the delay of a memory access
but not the corresponding value. Similarly, connector models
only need to provide the time of availability of the dynamic
dependencies.

A central multi-issue feature is the ability of stages to hold
and operate on multiple instructions at a time. The capacity
attribute expresses this capability as illustrated by Fig. 6 for
the two final stages of the CVA6 processor. For instance, the
EX stage implements a scoreboard buffer capable of holding
up to eight instructions. This enables the stage to load and
operate on a new instruction, even if prior instructions are not
yet completed. Furthermore, once the EX stage has completed

Fig. 6. Simplified structural description of the EX and COM stages of the
CVA6 microarchitecture (Gray tinted components are the ones used by the
MUL instruction type).

Fig. 7. Generation of scheduling functions and timing variables from an
abstract structural microarchitecture description.

its operation on an instruction, it writes the results back to
the scoreboard buffer. This frees the required resource for the
following instruction, even if the current instruction cannot yet
leave EX. The output-buffer attribute expresses this behavior.

To operate on multiple instructions, the EX stage uses
subpipelining to arrange its resources. For example, we model
the two-stage multiplier unit of the CVA6 as the EX_MUL
subpipeline, containing two sequential resources. If a stage
contains multiple subpipelines, the subpipelines might operate
in parallel unless the blocks attribute is set accordingly. For
example, while the EX_DIV subpipeline is active, EX_ALU
and EX_MUL cannot start on a new instruction.

Finally, the CVA6’s commit stage, COM, implements a
resource capable of operating on two instructions simultane-
ously. Similar to the stages, the capacity attribute indicates this
feature. As a result, the CVA6 is capable of committing up to
two instructions in the same cycle.

An instruction mapping complements the structural descrip-
tion. It maps each supported instruction type to the required
resources and connectors of the processor. Fig. 5 illustrates
this by depicting all the corresponding components a DIV
instruction needs as gray tinted. Similarly, Fig. 6 marks
components required by instructions of type MUL.

C. Code Generator

The functionality of the code generator is outlined in Fig. 7.
It first combines the structural microarchitecture description
and the instruction mapping inputs, to establish for each
supported instruction type a pipeline usage description. This
description specifies which of the pipeline’s components the
corresponding instruction requires. Based on this, the gener-
ator creates a set of timing constraints for each instruction
type. Finally, using the concept outlined in Section III-A,
the generator derives the desired outputs from the established
timing constraints.

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Listing 1. Sets describing the usage of the CV32E40P pipeline by DIV
instructions (empty connection sets are ignored).

1) Single-Issue Concepts: This section first presents the
basic concepts of the generator, which apply to standard
single-issue pipelines.

a) Pipeline Usage: The code generator first identifies
which components of the microarchitecture are used by
a specific instruction type. The instruction mapping itself
already specifies for each instruction type, ι, a set of required
resources, Rι. Combining this information with the structure
of the microarchitecture, the code generator derives for each
instruction type a sequence of required stages, Sι. Further, for
each of these stages, s, a subset of resources, Rι,s, is created,
containing all the required resources belonging to that specific
stage.

In addition, for each required resource, r, two sets are
derived, containing, respectively, all the required in-coming
(Cι,r,in) and out-going (Cι,r,out) connections. Also, this
information is directly given by the instruction mapping.
Listing 1 lists all the sets and sequences describing the
pipeline usage of the DIV instruction type for the CV32E40P
microarchitecture as illustrated in Fig. 5.

b) Timing Constraints: Based on the derived sets of
required components, a series of timing constraints can be
derived for each instruction type. The first timing constraints
result directly from the order in which an instruction pro-
gresses through the processor’s pipeline. In other words,
following the notation of Section III-A, these constraints
describe instruction-internal dependencies for some instruc-
tion, ιi.

An instruction proceeds through the pipeline by completing
one stage before moving to the next. To complete a stage, s,
every required resource, r, of that stage must have finished
to operate on the considered instruction. Thus, the following
constraint must hold for any instruction ιi:

∀s ∈ Sι ∀r ∈ Rι,s : tis ≥ tir (7)

where tis and tir are the completion times of stage s and resource
r, respectively.

Similarly, the resources of a stage can only start to operate
on an instruction once the instruction has completed the
previous stage. The only exception is the first required stage,
s0, as it has no preceding stage. Using a completion-oriented
notation similar to (2), this requirement can be expressed as

∀s ∈ Sι \ {s0} ∀r ∈ Rι,s : tir ≥ tis− + di
r (8)

where s− denotes the stage preceding s in Sι, and di
r repre-

sents the delay associated with resource r for the considered
instruction.

Fig. 8. Dependency graph for a DIV instruction preceded by a BNE
instruction for the CV32E40P.

The resources of the first required stage, s0, may start
to operate as soon as the instruction enters the processor’s
pipeline at tiEnter. Thus, the equivalent of (8) for s0 is

∀r ∈ Rι,s0 : tir ≥ tiEnter + di
r. (9)

Fig. 8 illustrates the constraints of (7) to (9) as instruction-
internal dependencies in a dependency graph of an example
instruction sequence. The actions represent the required
resources (IMem, PCGen, Decoder, etc.) and the completion
of the required stages (IF, ID, and EX). In addition, the
action labeled Enter represents that the instruction enters the
pipeline.

Aside from the instruction-internal dependencies, an instruc-
tion is also affected by other instructions currently in the
pipeline. These cross-instruction dependencies cause addi-
tional timing constraints.

For an instruction to leave the current stage, s, the next
required stage, s+, must be available. For a typical single-issue
pipeline, this means that the last instruction that employed s+
must have completed the stage. The only exception to this rule
is the last stage of Sι, sn, as it has no succeeding stage. Hence,
the following constraint must hold:

∀s ∈ Sι \ {sn} : tis ≥ tjs+ (10)

where j is the index of the last instruction using s+.
With the same reasoning, the time at which the instruction

enters the pipeline, tiEnter, can be constrained. Since instruction
ιi cannot start using the pipeline before its first required stage,
s0 is available, it must hold that

tiEnter ≥ tjs0
. (11)

It is worth noting that, most stages are used by every
supported instruction type. For instance, for the CV32E40P,
every instruction uses the IF, ID, and EX stages. This means
that the final instruction using these stages must be the
previous instruction, and hence, j can be simplified to i − 1
for these stages.

For the given example sequence, Fig. 8 illustrates the
constraints formulated in (10) and (11) as cross-instruction
dependencies between the BNE and the DIV instruction.

Finally, as mentioned in Section III-B, additional con-
nections between the resources may further constrain the

FOIK et al.: FLEXIBLE GENERATION OF FAST AND ACCURATE SOFTWARE PERFORMANCE SIMULATORS 7

Fig. 9. Scheduling function for the DIV instruction type of the CV32E40P
processor, fDIV, and the set of timing variables, V .

Listing 2. Extract of the generated scheduling function for the DIV
instruction type of the CV32E40P processor.

execution of the instruction. These connections typically
describe the dynamic data dependencies.

Since a resource cannot start to operate on an instruction
before every required in-coming connection, cin, is available,
the following constraint must hold:

∀r ∈ Rι ∀cin ∈ Cr,in : tir ≥ ticin
+ di

r (12)

where ticin
is the point in time at which the in-coming

connection cin is available for the instruction ιi.
Vice versa, any out-going connection, cout, provided by ιi is

first available once the corresponding resource has completed
its operation

∀r ∈ Rι ∀cout ∈ Cr,out : ticout
≥ tir (13)

where ticout
is the time at which cout is made available by ιi.

The dynamic dependencies shown in Fig. 8 illustrate the
constraints of (12) and (13), for the given example.

c) Output: Based on the established constraints for each
instruction type ι, a corresponding scheduling function, fι, is
derived by following the approach outlined in Section III-A.
For example, Fig. 9 depicts the scheduling function fDIV for
the DIV instruction type of the CV32E40P microarchitecture.
Listing 2 shows the corresponding generated code implemen-
tation after removing the redundant operations.

The complementing set of timing variables, V , provides the
timing values of the previous scheduling functions required
to solve cross-instruction dependencies. However, as shown
in Fig. 8, in the case of a typical single-issue pipeline, cross-
instruction dependencies are only caused by actions that mark
the completion of a stage. It is, therefore, sufficient to create
one timing variable per stage of the processor. Further, since
the constraints formulated in (10) and (11) are only dependent
on the final instruction using the stage (j), the timing variables
can be implemented as simple single value variables, which

Listing 3. Sets and sequence describing the usage of the EX and COM stages
of the CVA6 by the MUL instruction type.

are overwritten by the following scheduling function that uses
them.

Applicable external models provide the remaining required
input values, as specified in the structural microarchitec-
ture description (c.f. Fig. 5). For example, the delay of the
divider resource, di

Divider, is determined by the divider
model. The connector models the static branch
prediction model and the register model provide
the availability times of PC and the required operands (Xa
and Xb), respectively. Vice versa, the scheduling function
updates the connector models with the availability times of the
following PC (PC_p) and the operation’s result (Xd).

2) Multi-Issue Concepts: The constraints introduced in the
previous section describe the timing behavior of fundamental
pipeline concepts. This section demonstrates how these con-
straints can be modified and extended to cover some typical
multi-issue concepts.

a) Pipeline Usage: Multi-issue pipelines typically
arrange the resources of certain stages into subpipelines. To
express the timing behavior of this feature, the pipeline usage
description has to be extended. Instead of mapping a stage,
s, to a set of resources, Rι,s, a sequence of substages, Pι,s is
derived. Stages that do not explicitly implement a subpipeline
are represented as subpipelines with a single substage. Each
substage, p, in Pι,s is then mapped to a set of resources, Rι,p,
following the structural microarchitecture description.

If s implements multiple parallel subpipelines, an additional
set Bι,s is defined. This set contains the last substages of each
subpipeline that blocks the subpipeline required by instruction
type ι. Listing 3 depicts the sets and sequence describing the
usage of the EX and COM stages of the CVA6 by the MUL
instruction type, as illustrated in Fig. 6.

b) Timing Constraints: A central multi-issue concept is
the ability of stages to hold more than one instruction at a
time. For the timing behavior, this means that the transition
into a stage is no longer necessarily blocked by the previous
instruction using that stage, but it depends on whether the stage
has free capacities. Thus, assuming that stage s+ can hold k
instructions simultaneously, (10) is rephrased as

∀s ∈ Sι \ {sn} : tis ≥ tjks+ (14)

where jk is the index of the kth final instruction using s+.
Equation (11) is modified accordingly. This expression can
be further simplified if every instruction type uses s+. In that
case, jk can be expressed as i − k.

The constraints for a design with substages can be derived
based on the substage sequence as presented in Listing 3.
Considering the transition of an instruction into a subpipelined
stage, this transition is typically only possible once the first

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

substage of the required subpipeline is available. Using (10)
as a reference, this new constraint can be expressed as

∀s ∈ Sι \ {sn} : tis ≥ tjkp′
0

(15)

where p′
0 is the first substage of the subsequent stage, s+,

and k denotes the number of instructions p′
0 can handle

simultaneously. For a substage, k is derived based on the
capacity of its resources.

Following the same reasoning, transitioning into a stage
with parallel subpipelines is only possible once no other sub-
pipeline is blocking the required subpipeline. In other words,
any blocking subpipeline must have been completed. Using
the established set Bι,s, this constraint can be formulated as

∀s ∈ Sι \ {sn} ∀p′
n ∈ Bι,s+ : tis ≥ tjkp′

n
. (16)

Constraints for tiEnter, corresponding to (15) and (16), are
derived using (11) as a reference.

In addition, when entering a subpipelined stage, s, an
instruction only enables the resources of the first substage.
Thus (8) is rephrased to

∀s ∈ Sι \ {s0} ∀r ∈ Rι,p0 : tir ≥ tis− + di
r (17)

where p0 denotes the first element of Pι,s. To also express a
similar constraint for s0, (9) is modified accordingly.

Once an instruction has entered a substage, it transitions
from substage to substage in a standard pipeline manner.
As such, the instruction-internal dependencies between the
substages and their resources correspond directly to the
instruction-internal dependencies of a typical single-issue
pipeline. The corresponding timing constraints can thus be
expressed by reformulating (7) and (8) as

∀s ∈ Sι ∀p ∈ Pι,s ∀r ∈ Rι,p : tip ≥ tir (18)

and

∀s ∈ Sι ∀p ∈ Pι,s \ {p0} ∀r ∈ Rι,p : tir ≥ tip− + di
r (19)

respectively.
Furthermore, since an instruction can only leave a substage

once the next substage is available, cross-instruction dependen-
cies arise between the substages, similar to the dependencies
between the stages. As such, these dependencies can be
expressed as

∀s ∈ Sι ∀p ∈ Pι,s \ {pn} : tip ≥ tjkp+ (20)

similar to (14).
An instruction completes the subpipeline of a stage, s, once

it leaves the final substage, pn, at tipn
. For most standard stages,

leaving pn is only possible if the instruction simultaneously
leaves the stage. In other words, for these stages, tis and tipn
are identical and hence share the same constraints.

However, more advanced stages enable instructions to leave
the subpipeline before the transition to the next stage is
possible. We refer to this stage feature as an output buffer. An
example of such a stage is the EX stage of the CVA6 processor
(c.f. Fig. 6), which can store the results of an instruction in
the processor’s scoreboard if it cannot directly commit the
instruction, allowing it to operate on the next instruction.

Fig. 10. Dependency graph for an instruction sequence in the EX and
COM stages of the CVA6. Numbers on the edges refer to the equations of
the corresponding generated constraints. (Dynamic dependencies omitted for
readability).

Thus, depending on its specific output characteristics, the
completion time of a subpipelined stage s is constraint by

∀s ∈ Sι :

{
tis ≥ tipn

, if s has output buffer
tis = tipn

, otherwise.
(21)

Finally, while multi-issue stages can operate on multiple
instructions in parallel, embedded processors typically ensure
that instructions leave the stage in the same order in which
they were invoked. Thus, an instruction can only leave a stage
once the previous instruction is also ready to leave the stage.
The following constraint expresses this behavior:

∀s ∈ Sι : tis ≥ tjs. (22)

Fig. 10 illustrates the above-derived constraints for an
example sequence of instructions, using the EX and COM
stages of the CVA6 processor. For readability, any dynamic
dependencies that might apply are omitted.

As shown in the graph, the EX stage has a capacity of
eight instructions. Further, as mentioned above, the stage
implements an output buffer, which effectively decouples the
completion of its subpipelines (e.g., action EX_MUL_2) from
the completion of the stage itself (action EX). The graph also
illustrates the effect of the subpipelined multiplier unit and
how the DIVi−2 instruction blocks the subsequent MULi−1

instruction from entering the EX stage until its operation is
completed.

The COM stage has a capacity of two instructions. Since it
does not implement an output buffer, the defined subpipeline
of the stage (c.f. COM_1 in Listing 3) is completed simul-
taneously with the stage itself. Therefore, both incidents are
represented as one action, COM.

c) Output: Based on the derived constraints, the schedul-
ing functions for each supported instruction type can be
generated similarly to a typical single-issue processor. Fig. 11
illustrates this for the MUL instruction type of the CVA6.

However, the generation of the set of timing variables, V , has
to be modified slightly. As shown in Fig. 10, besides stages,
also substages can cause the cross-instruction dependencies.
Thus, in addition to the timing variables corresponding to the
stages, timing variables for each substage of the processor have
to be established. Further, for components with an instruction
capacity, k, larger than one, cross-instruction dependencies are
no longer dependent on the final instruction (j) but the kth last

FOIK et al.: FLEXIBLE GENERATION OF FAST AND ACCURATE SOFTWARE PERFORMANCE SIMULATORS 9

Fig. 11. Simplified representation of the scheduling function (EX and COM
stage) for the MUL instruction type of the CVA6, fMUL, and the corresponding
timing variables.

Fig. 12. Instruction trace-based performance estimator.

instruction (jk). As such, the corresponding timing variables
must be capable of holding the time values provided by the
previous k scheduling functions. Implementing these timing
variables as k-element buffers as illustrated by vEX and vCOM
in Fig. 11, fulfills this requirement.

D. Performance Estimator

Once the code generator has created the scheduling functions
and timing variables for the target microarchitecture during
the simulation build-up, they are compiled and linked to the
performance estimator. In addition, any manually generated
external models referenced in the structural microarchitecture
description are also linked to the performance estimator. During
the execution of the simulation, the performance estimator
uses the established library of scheduling functions to update
the timing variables according to the order of the executed
instructions of the target SW. The external models support this
process by dynamically resolving complex timing behaviors
based on the additional information provided in the instruction
trace.

Fig. 12 outlines the functionality of the performance esti-
mator during the simulation execution. The performance
estimator is invoked when the ISS executing the target SW
updates the instruction trace as follows. ① Whether the ISS
provides these updates continuously for every instruction or
transmits them block-wise is conceptually irrelevant to the
estimator. For each new instruction the performance estimator
receives, it first identifies the instruction type, ι. Based on this
information, it selects the corresponding scheduling function
from the library. ② In preparation for the function’s execution,
it then reads the current values of all the relevant timing

variables and passes them as inputs to the scheduling function.
③ If applicable, the estimator requests any additional input
value from the corresponding external model. ④ Upon such a
request, the external model reads the appropriate information
from the instruction trace to compute the requested value and
update its internal state. For example, a resource model repre-
senting an instruction cache typically requires the instruction’s
PC to establish whether the access would result in a hit or
a miss. Based on the outcome, it returns the respective delay
to the scheduling function. In case of a miss, it likely also
updates its internal state to express that the instruction has
been loaded to the cache, which will thus result in a cache hit
on the next access. Once all the required inputs are provided,
the performance estimator executes the selected scheduling
function. ⑤ After the execution, the estimator updates the
appropriate timing variables and, if applicable, any associated
external connector models with the outputs provided by the
scheduling function. ⑥ The estimator might then start to
operate on the next instruction.

E. Scope and Current Limitations

Our approach targets the performance behavior of single-
core processors. However, conceptually, the presented method
can also be applied to the multicore processors by dupli-
cating the performance estimator. If the cores provide
individual instruction traces, they could be represented by sep-
arate performance estimators synchronized through a shared
external resource model of the memory system.

Our approach is currently limited to the in-order processors.
The implication of handling the instruction in order of the ISS
trace is that the timing of an instruction can only be affected
by the previous instructions but not by subsequent ones. This,
however, does not apply to out-of-order processors. As a
potential solution for the future work, the performance estima-
tor could be extended to speculatively handle the instructions
in trace order and retro-actively correct erroneous assumptions.

IV. EXPERIMENTAL RESULTS

We demonstrate the flexibility of our approach and its capa-
bility of generating accurate and fast performance simulators
by applying it to the two open-source state-of-the-art RISC-V
processors. The CV32E40P [7] is a 32-bit single-issue four-
stage processor with a static branch prediction scheme suitable
for low-power use cases. In contrast, the CVA6 [8] is a 64-bit
application class processor. While it is classified as a single-
issue processor because its issue stage, IS, can only issue
one instruction per cycle (cf. Fig. 6), it implements several
multi-issue concepts, such as a scoreboard and dual-commits.
It features a dynamic branch prediction scheme as well as L1
instruction and data caches.

A. Setup and Flexibility

Following the presented approach, we generate scheduling
functions and timing variables for the two target processors.
Table I shows the parameters of the input description, external
models, and generated items. Due to the limited documentation

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE I
PARAMETERS DURING ESTIMATOR SETUP

of the third-party processors, considerably more effort was
required to extract microarchitectural details from the RTL
than to generate the required input description and external
models. However, the small number of lines of code (LOC)
indicates that designers familiar with the target processor
should be able to establish these files quickly. Once estab-
lished, modifications to evaluate the processor variants require
little effort.

Our simulation environment contains the proposed
performance estimator and an ISS, called ETISS [19], which
executes the target SW. An additional RTL simulation provides
a cycle-accurate baseline to evaluate the estimator’s accuracy.
It uses Verilator [10] representations of the target processors
embedded in a simple SystemC environment and executes
the same target SW as the ISS. All the simulations run on a
Linux computer with an Intel i5-7500 processor. We use the
Embench benchmark suite [20] as the target SW and compile
it with gcc for the RV32IM and RV64IM instruction sets,
respectively.

B. Accuracy

Table II lists the observed cycle counts from the RTL
simulation and the corresponding estimates for both the target
processors. Our approach can consistently provide accurate
estimates, even though the CPI varies over the benchmarks.
This also highlights the benefits of our approach compared to
the pure ISS-based simulations, which assume a fixed CPI.

For the CV32E40P processor, the performance estimator
delivers highly accurate cycle counts with a negligible relative
error of maximal 0.0035% and 0.0015% on average.

For the CVA6, the error rate is on average 3.88%. We
observe a maximal error of 8.91%. The larger error stems from
two effects as follows.

1) The CVA6 implements more complex microarchitectural
components, such as an instruction fetch queue and the
more advanced load-store unit. Some timing deviations
for the CVA6 are caused by unidentified details of the
RTL behavior, resulting in missing timing constraints or
imperfect external models. However, once identified, our
approach can conceptually cover these missing details
by improving the pipeline model.

2) Part of the deviations arise from effects that cannot
be captured by the current version of our approach.
One such effect is caused by unintentionally fetched
instructions due to branch mispredictions. While these
instructions are never committed, they still alter the state
of processor components, such as the instruction cache.
However, an ISS only simulates instructions that execute
to completion. Unintentionally fetched instructions are
thus not part of the provided instruction trace, and the

performance estimator cannot consider their effect on
the processor’s timing.

Even though the error rates for the CVA6 are higher com-
pared to the CV32E40P, the results show a clear improvement
over a pure ISS-based simulation, both when using the naive
assumption that the CPI = 1 and average CPI as well as over
the existing approaches as presented in Section IV-D.

C. Simulation Speed

Table III shows the combined execution times of the
performance estimator and the ISS for both the target pro-
cessors, running the benchmarks with varying iterations. The
columns marked with short list the execution times corre-
sponding to the simulations that yield the results presented in
Table II. For these simulations, the required execution times
are similar for both the target processors, averaging 0.73 and
0.75 s, respectively. Considering the number of simulated
instructions, the execution times correspond to an average
simulation speed of roughly 4 MIPS.

While these simulation speeds are already considerably
faster than an RTL simulation, they do not represent the
performance estimator’s performance. Instead, they are pri-
marily caused by the ISS. The ISS applies binary translation
to the target SW and caches the result for reuse. This imposes
a computational overhead at the beginning of the simulation.
However, the overhead diminishes for each iteration of the
target SW. We compensate for the imposed overhead by
increasing the number of iterations for the benchmarks. To
better compare our results to the other approaches, we increase
the number of instructions to a similar amount as used
during the evaluation of the RISC-V VP [4]. The columns
in Table III marked long present the corresponding results.
For the CV32E40P, the performance estimator achieves an
average simulation speed of roughly 24 MIPS. Due to the
increased complexity of the utilized scheduling functions and
the required external models, the average simulation speed for
the CVA6 settles at around 15 MIPS.

D. Comparison

We relate our approach to the other existing methods
for performance simulation based on the results presented
above. Table IV presents an overview of this comparison.
As discussed above, our approach provides significantly
more accurate performance estimates than a pure ISS-based
approach. At the same time, our approach utilizes a nonfunc-
tional timing model, which allows it to run considerably faster
than the RTL simulations.

Similar to our proposal, the HARMLESS approach is
generator-based and thus offers high flexibility. However, the
complexity of its FSM-based model results in comparatively
low simulation speeds. The performance of the approach is
evaluated in [6] by modeling a simplified artificial six-stage
single-issue processor supporting a set of ten instructions. The
resulting FSM requires 43 200 states, and the corresponding
simulator achieves a simulation speed of roughly 4 MIPS
over a simulation of 100 million instructions. Similar results

FOIK et al.: FLEXIBLE GENERATION OF FAST AND ACCURATE SOFTWARE PERFORMANCE SIMULATORS 11

TABLE II
OBSERVED AND ESTIMATED CYCLE COUNTS FOR THE CV32E40P AND CVA6 PROCESSORS OVER THE EMBENCH BENCHMARK SUITE

TABLE III
SIMULATION SPEED OF ISS WITH PERFORMANCE ESTIMATOR FOR THE EMBENCH BENCHMARK SUITE

TABLE IV
OVERVIEW OF APPROACHES TO SOFTWARE PERFORMANCE SIMULATION

are reported for the simulation of the four-stage single-issue
e200z1 processor [16]. In comparison, our approach is more
than five times faster, considering a simulation of similar
complexity and length.

The GVSoC [5] uses manually created models but offers
some level of flexibility through a configurable simulation
setup that enables the quick selection of models as well as
the adaptation of architectural parameters, such as the latency
of instructions. Experimental results indicate that the GVSoC
achieves higher simulation speeds than our approach but has
a reduced accuracy. However, a direct comparison between
the GVSoC and our approach is difficult since the GVSoC
primarily focuses on simulating the multicore platforms.

The authors of the RISC-V VP [4] evaluate their approach
by modeling the HiFive1 board and executing the Embench
benchmark suite. The HiFive1 board implements the 32-bit
single-issue four-stage SiFive E31 RISC-V processor with
dynamic branch prediction and data and instruction caches [21].
As such, the E31 provides more features than the CV32E40P
but is less complex than the CVA6. Even though the RISC-
V VP achieves a higher average simulation performance, the
simulation speeds of our approach are in a similar range.
Likewise, the simulators achieve similar levels of accuracy, with
our approach resulting in a slightly lower error rate for designs
with comparable complexity. However, while the RISC-VP
is manually created, our approach can be generated and thus
flexibly adapted to new microarchitecture variants.

E. Average Absolute Cycle Error Per Instruction

A major advantage of the proposed approach is that it does
not only supply average timing values over program sections or
full program execution but the cycle estimates at the instruc-
tion level. To illustrate this, we also provide the error of each
individual instruction as the deviation between the observed
and estimated number of cycles added by that instruction.
Fig. 13 presents the distribution of this deviation over the

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 13. Distribution of cycle deviation over the nettle-sha256 benchmark
for CVA6 (solid line marks total number of instructions).

TABLE V
AVERAGE ABSOLUTE ERROR PER INSTRUCTION (IN CYCLES)

nettle-sha256 benchmark for the CVA6, using a logarithmic
scale to account for the outliers. Even though the benchmark
has an observed overall CPI close to one (c.f. Table II), the
purely ISS-based approach inserts an absolute error of one
or more cycles to 24% of the simulated instructions. On
average, the ISS mispredicts each instruction by about 0.3
cycles. In contrast, our approach correctly predicts 93% of all
the instructions, with an average absolute error of roughly 0.1
cycles per instruction. This illustrates that reporting accuracy
over full program execution can include compensation effects
due to accumulating negative and positive errors.

Thus, even though the ISS reports a higher accuracy in terms
of the overall cycle count for the nettle-sha256 benchmark,
our approach more accurately represents variations in the
processor’s performance during the program. Table V lists the
average absolute error per instruction for all the benchmarks,
showing consistently better results for our approach than for
an ISS.

V. CONCLUSION

This article presents a new flexible approach to SW
performance simulation, supporting quick adaptation to new
microarchitecture variants, based on the code generation.

We apply our approach to the state-of-the-art low-power
and application class RISC-V processors and achieve highly
accurate performance estimates with an average error rate of
0.0015% and 3.88%, respectively. Our approach reaches high
simulation speeds comparable to manually created simulators.

REFERENCES

[1] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proc.
Annu. Conf. USENIX Annu. Tech. Conf., 2005, p. 41.

[2] “Spike RISC-V ISA simulator.” Accessed: May 5, 2022. [Online].
Available: https://github.com/riscv-software-src/riscv-isa-sim

[3] I. Böhm, B. Franke, and N. Topham, “Cycle-accurate performance
modelling in an ultra-fast just-in-time dynamic binary translation instruc-
tion set simulator,” in Proc. Int. Conf. Embed. Comput. Syst., Archit.,
Model. Simul., 2010, pp. 1–10.

[4] V. Herdt, D. Große, and R. Drechsler, “Fast and accurate performance
evaluation for RISC-V using virtual prototypes,” in Proc. Design, Autom.
Test Europe Conf. Exhibit. (DATE), 2020, pp. 618–621.

[5] N. Bruschi, G. Haugou, G. Tagliavini, F. Conti, L. Benini, and D. Rossi,
“GVSoC: A highly configurable, fast and accurate full-platform simu-
lator for RISC-V based IoT processors,” in Proc. IEEE 39th Int. Conf.
Comput. Design (ICCD), 2021, pp. 409–416.

[6] R. Kassem, M. Briday, J.-L. Béchennec, Y. Trinquet, and G. Savaton,
“Simulator generation using an automaton based pipeline model for
timing analysis,” in Proc. Int. Multiconf. Comput. Sci. Inf. Technol.,
2008, pp. 6570–664.

[7] OpenHW Group. “CV32E40P user manual.” 2023. Accessed: Mar. 20,
2024. [Online]. Available: https://docs.openhwgroup.org/projects/
cv32e40p-user-manual/

[8] OpenHW Group. “CVA6 user manual.” 2023. Accessed: Mar. 20,
2024. [Online]. Available: https://docs.openhwgroup.org/projects/cva6-
user-manual/

[9] S. Vinco, V. Guarnieri, and F. Fummi, “Code manipulation for vir-
tual platform integration,” IEEE Trans. Comput., vol. 65, no. 9,
pp. 2694–2708, Sep. 2016.

[10] W. Snyder. “Verilator.” 2003. Accessed: Jun. 14, 2024. [Online].
Available: https://verilator.org

[11] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Proc. 30th Annu. Int. Symp. Comput. Architect., 2003,
pp. 84–95.

[12] E. K. Ardestani and J. Renau, “ESESC: A fast multicore simulator using
time-based sampling,” in Proc. 19th Int. Symp. High Perform. Comput.
Archit. (HPCA), 2013, pp. 448–459.

[13] D. C. Powell and B. Franke, “Using continuous statistical machine
learning to enable high-speed performance prediction in hybrid
instruction-/cycle-accurate instruction set simulators,” in Proc. 7th
IEEE/ACM Int. Conf. Hardw./Softw. Codesign Syst. Synth., 2009,
pp. 315–324.

[14] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, Aug. 2011.

[15] D. Thach, Y. Tamiya, S. Kuwamura, and A. Ike, “Fast cycle estimation
methodology for instruction-level emulator,” in Proc. Design, Autom.
Test Eur. Conf. Exhibit. (DATE), 2012, pp. 248–251.

[16] R. Kassem, M. Briday, J.-L. Béchennec, G. Savaton, and Y. Trinquet,
“Harmless, a hardware architecture description language dedicated to
real-time embedded system simulation,” J. Syst. Archit., vol. 58, no. 8,
pp. 318–337, Sep. 2012.

[17] A. Bullich, M. Briday, J.-L. Béchennec, and Y. Trinquet, “A compiled
cycle accurate simulation for hardware architecture,” in Proc. 5th Int.
Conf. Adv. Syst. Simul. (SIMUL), 2013, pp. 213–225.

[18] C. Foik, D. Mueller-Gritschneder, and U. Schlichtmann, “CorePerfDSL:
A flexible processor description language for software performance
simulation,” in Proc. Forum Specif. Design Lang. (FDL), 2022, pp. 1–8.

[19] D. Mueller-Gritschneder, M. Dittrich, M. Greim, K. Devarajegowda,
W. Ecker, and U. Schlichtmann, “The extendable translating instruction
set simulator (ETISS) interlinked with an MDA framework for fast RISC
prototyping,” in Proc. Int. Symp. Rapid Syst. Prototyp. (RSP), 2017,
pp. 79–84.

[20] (Free and Open Source Silicon Found., Halifax, U.K.). Embench: A
Modern Embedded Benchmark Suite. (2021). Accessed: Mar. 20, 2024.
[Online]. Available: https://www.embench.org/

[21] (SiFive, Santa Clara, CA, USA). SiFive FE310-G002 Manual. (2022).
Accessed: Mar. 22, 2024. [Online]. Available: https://www.sifive.com/
documentation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

