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Abstract—Processing-in-memory (PIM) architectures have1

emerged as an attractive computing paradigm for acceler-2

ating deep neural network (DNN) training and inferencing.3

However, a plethora of PIM devices, e.g., resistive random-4

access memory, ferroelectric field-effect transistor, phase change5

memory, MRAM, static random-access memory, exists and each6

of these devices offers advantages and drawbacks in terms7

of power, latency, area, and nonidealities. A heterogeneous8

architecture that combines the benefits of multiple devices in a9

single platform can enable energy-efficient and high-performance10

DNN training and inference. 3-D integration enables the design11

of such a heterogeneous architecture where multiple planar tiers12

consisting of different PIM devices can be integrated into a single13

platform. In this work, we propose the HuNT framework, which14

hunts for (finds) an optimal DNN neural layer mapping, and15

planar tier configurations for a 3-D heterogeneous architecture.16

Overall, our experimental results demonstrate that the HuNT-17

enabled 3-D heterogeneous architecture achieves up to 10× and18

3.5× improvement with respect to the homogeneous and existing19

heterogeneous PIM-based architectures, respectively, in terms20

of energy-efficiency (TOPS/W). Similarly, the proposed HuNT-21

enabled architecture outperforms existing homogeneous and22

heterogeneous architectures by up to 8× and 2.4×, respectively, in23

terms of compute-efficiency (TOPS/mm2) without compromising24

the final DNN accuracy.25

Index Terms—DNN, FeFET, PIM, ReRAM, SRAM.26

I. INTRODUCTION27

DEEP neural networks (DNNs) are widely employed to28

solve complex problems in a variety of application29

domains, including computer vision, natural language process-30

ing (NLP), and time-series sensor data analytics [1]. However,31
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DNNs have hundreds of millions of trainable parameters, 32

which need to be tuned using large and complex datasets. The 33

high latency and energy cost of data movement between the 34

processing cores and memory units in traditional computing 35

platforms based on the von-Neuman architecture (e.g., CPUs 36

and GPUs) impose significant performance bottlenecks while 37

executing DNN workloads, which is referred to as the memory 38

wall challenge [2]. Consequently, there has been a growing 39

demand for domain-specific computing platforms that seam- 40

lessly integrate both storage and computing, thereby enabling 41

high-performance and energy-efficient acceleration of DNN 42

workloads [3]. 43

Processing-in-memory (PIM)-based computing platforms 44

have emerged as a promising alternative for executing 45

DNN workloads. This is due to their ability to perform 46

energy-efficient computation within the memory to eliminate 47

unnecessary data movement, thus addressing the memory- 48

wall challenge. Specifically, the use of CMOS-based memory 49

devices, such as static random-access memory (SRAM), and 50

nonvolatile memory (NVM) devices, such as resistive random- 51

access memory (ReRAM), phase change memory (PCM), 52

ferroelectric field-effect transistors (FeFETs), and spintronic 53

memory (MRAM), have been widely studied as suitable can- 54

didates for accelerating DNN training and inferencing [2], [3], 55

[4], [5], [6]. However, each of these PIM devices offers specific 56

advantages and drawbacks in terms of dynamic and leakage 57

power, area, latency, retention, endurance, and nonidealities, 58

when used as the PIM device in DNN accelerators [3]. For 59

example, ReRAM devices have almost ∼30× higher write 60

latency compared to FeFET devices. However, ReRAMs can 61

have a write endurance of as high as ∼1012 programming 62

cycles whereas FeFETs have an endurance of ∼105 cycles [7]. 63

An ideal memory device suitable for energy-efficient and 64

high-performance PIM-based DNN accelerators should have 65

low read/write latency (< 1 ns), low dynamic and leakage 66

energy (< 3 pJ), high write endurance (> 1017 cycles), small 67

memory cell footprint (< 4F2), and excellent scalability to 68

lower technology nodes (< 10 nm) [8]. However, so far, 69

no particular PIM device has all the ideal characteristics. 70

At the same time, DNN workloads are composed of neural 71

layers, which can differ significantly in terms of the number 72

of layers, weight parameters, kernel size, input and output 73

information across layers in the forward-propagation, and 74
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frequency of weight updates during the back-propagation step.75

These characteristics determine the suitability of each neural76

layer in the forward- and back-propagation phase of the DNN77

workload to be executed on a specific PIM-enabled processing78

element (PE) in terms of area, latency, power, and endurance.79

Hence, this PE-level heterogeneity in PIM-based architectures80

needs to be exploited to achieve the best tradeoff in terms of81

power, area, performance, and DNN accuracy while designing82

a suitable accelerator platform.83

Integrating different memory devices in a single platform84

presents unique challenges. Specifically, manufacturing tech-85

nologies of NVM devices vary and they are not always86

CMOS-compatible [9]. Hence, this hinders the feasibility87

of integrating such heterogeneous PEs into a single planar88

architecture. 3-D integration enables the mapping of disparate89

technologies to different planar tiers [9], [10]. However,90

existing implementations of 3-D heterogeneous architectures91

are not well optimized for PIM devices, as they do not consider92

the device-level characteristics in their design optimization93

flow. For example, 3-D architectures are known to give rise to94

thermal hotspots. PIM devices, such as ReRAM and FeFET,95

are susceptible to nonidealities due to thermal noise, which96

potentially degrades the accuracy of trained DNNs [11], [12].97

As a result, critical DNN model layers mapped to PEs placed98

in planar tiers that are away from heat sinks can potentially99

degrade the test accuracy of the DNN due to thermal hotspots.100

Hence, in order to meet the high accuracy demand of DNN101

applications, suitable placement of the PEs on planar tiers in102

a 3-D system is important.103

Furthermore, existing heterogeneous DNN accelerators do104

not consider the characteristics of DNN workloads and the105

properties of different PIM devices while mapping DNN106

neural layers to PEs in the overall architecture [2], [4]. For107

example, neural layers with large number of weights and108

activations mapped to a PE with high read/write energy109

would consume more power compared to a PE with less110

read/write energy. In addition, different neural layers have111

varying impact on DNN accuracy [13]. Hence, they need to112

be suitably mapped to appropriate PEs on a planar tier in113

the 3-D architecture without degrading the final predictive114

accuracy. Hence, the layer-to-PE and PE-to-tier mapping in a115

3-D heterogeneous system impact the overall performance in116

terms of latency, area, power, and accuracy while executing117

DNN workloads.118

In this article, we propose a design space exploration119

methodology called HuNT that undertakes neural layer-to-120

PE and PE-to-planar tier mapping to design an optimized121

3-D heterogeneous manycore architecture for training DNN122

workloads. We consider SRAM, ReRAM, and FeFET PIM-123

enabled PEs for studying the efficacy of the HuNT framework.124

These heterogeneous PIM devices largely vary in terms of125

area, power, latency, and endurance. This variation pro-126

vides HuNT with the scope of optimizing across multiple127

conflicting, yet crucial objectives, namely: latency, accu-128

racy, area, and power. We capture these objectives using129

three performance evaluation metrics: 1) energy-efficiency130

(TOPS/W); 2) compute-efficiency (TOPS/mm2); and 3) DNN131

predictive accuracy. Recent work has proposed optimization132

methodologies aimed at exploring device-level heterogeneity133

in PIM accelerators [14], [15], [16]. However, these techniques 134

are focused on DNN inference scenarios, and cannot 135

handle the more challenging scenario of DNN training. 136

Specifically, the computation of the weight- and activation- 137

gradients in the back-propagation phase requires multiple write 138

operations and high-precision computation. However, NVM 139

devices have limited write endurance, and store weights and 140

activations in fixed-point representation [3], [17]. These criti- 141

cal drawbacks limit the applicability of existing NVM-based 142

PIM accelerators to DNN training. In this work, in addition 143

to the energy-efficient NVM devices (ReRAM and FeFET), 144

we have also incorporated a CMOS-based memory device 145

(SRAM) which can perform high-precision computation in 146

the back-propagation phase, and has a high write endurance 147

into the HuNT framework. This heterogeneity in PIM devices 148

enables reliable, energy-efficient, and high-performance DNN 149

training on 3-D heterogeneous PIM architectures. The key 150

contributions of this work are as follows. 151

1) We propose the HuNT framework that determines the 152

mappings of DNN layer to heterogeneous PEs and the 153

corresponding PE to planar tier mapping to design a 154

3-D heterogeneous manycore architecture tailor-made 155

for DNN training. The heterogeneity enables significant 156

improvement in energy-efficiency, area-efficiency, and 157

endurance compared to its homogeneous counterparts. 158

2) We demonstrate the transferability of the HuNT-enabled 159

3-D heterogeneous manycore architecture for diverse 160

datasets. The hardware architecture optimized with 161

CIFAR-10 dataset is equally effective for larger datasets, 162

such as CIFAR-100 and TinyImageNet. Hence, this 163

reduces the cost of repeated optimization as no extra 164

training is required for complex datasets. 165

3) Our experimental results show that the HuNT-enabled 166

3-D heterogeneous PIM architecture outperforms state- 167

of-the-art heterogeneous PIM architectures, namely, 168

AccuReD and HyperX by up to 3.5× and 4.5×, respec- 169

tively, in terms of energy-efficiency (TOPS/W), and 170

2.2× and 3.2× in terms of area-efficiency (TOPS/mm2), 171

respectively. 172

To the best of our knowledge, HuNT is the first-of-its 173

kind framework that jointly incorporates DNN layer-to-PE and 174

PE-to-planar tier mapping in a 3-D architecture to achieve 175

high-performance, energy-efficient, and reliable DNN training. 176

II. BACKGROUND AND RELATED PRIOR WORK 177

In this section, we discuss relevant prior work on PIM-based 178

architectures for accelerating DNN workloads. Specifically, 179

we focus on homogeneous PIM architectures solely based on 180

either SRAM, ReRAM, or FeFET devices, as well as their 181

advantages and limitations. Table I compares the characteris- 182

tics of SRAM, ReRAM, and FeFET PIM devices. Next, we 183

discuss heterogeneous architectures that combine two or more 184

of these devices, and finally shed more light on 2.5-D and 185

3-D-based PIM accelerators for DNNs. 186

A. Homogeneous PIM Architectures 187

SRAM cells have been used as a crossbar-based PIM device 188

for high accuracy DNN training and inference [18], [19]. This 189
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TABLE I
COMPARISON OF VARIOUS PIM DEVICES

is due to their low device variability, high write endurance,190

low susceptibility to noise, and low write latency as shown191

in Table I [3]. However, the 6T-cell configuration of SRAMs192

with a cell size of 150F2 (as shown in Table I) leads to the193

high area overhead of SRAM-based crossbar arrays [3], [14].194

Additionally, SRAMs suffer from high leakage energy and195

have low density storage (i.e., can only store 1-bit per-cell)196

thereby making them less energy- and area-efficient compared197

to other PIM-devices. Hence, this makes SRAM-based PIM198

platforms infeasible for large DNN models with large number199

of weights and activations and many neural layers. Recent200

work has also leveraged DRAM technology for PIM-based201

architectures due to its small cell area [20]. However, DRAM202

suffers from high leakage power and refresh energy due203

to its volatile nature. Moreover, the 1T1C structure of the204

DRAM cell lacks in-situ compute capability, hence cannot205

enable parallel energy-efficient matrix–vector multiply (MVM)206

operations required for DNN training [20]. Consequently, this207

has led researchers to explore NVM devices, such as FeFET208

and ReRAMs.209

ReRAM-based NVM device enables high-density storage210

due to its multibit cell storage capability [3], [4]. Additionally,211

ReRAM devices have relatively small cell area and low-212

leakage energy compared to SRAMs, as shown in Table I.213

However, despite these advantages, ReRAM cells suffer from214

low write endurance, high write energy, and latency com-215

pared to SRAMs. As a result, this limits the applicability of216

ReRAM-based PIM architectures for DNN training scenarios,217

as the back-propagation phase requires a significant number218

of write operations [3]. Additionally, ReRAM cells become219

less reliable as temperature increases over time, which can220

cause errors, thereby leading to a degradation in the DNN221

predictive accuracy. Also, despite the small cell area of222

ReRAMs (∼ 4F2), the high-resolution ADCs required by the223

ReRAM crossbar array introduces significant area and energy224

overhead [4]. Hence, this potentially limits the benefits of225

using ReRAM-devices in PIM-based architectures.226

FeFET devices have been explored as another possibility227

for PIM-based DNN accelerators. FeFET PIM devices are228

particularly attractive due to their relatively low cell area (∼35229

F2) compared to SRAMs, high read and write speeds, low230

write energy, and low-leakage energy. Moreover, they exhibit231

relatively better temperature stability compared to ReRAM [7].232

However, as shown in Table I, a key drawback of FeFET233

PIM devices is their low write endurance compared to other234

memory technologies, such as SRAMs and ReRAMs. This235

is due to the collapse of the separation between the ON236

and OFF states of the FeFET device (also known as the 237

memory window) after repeated program/erase cycles [5]. 238

Consequently, this can cause read errors during DNN training 239

and inference. 240

Overall, homogeneous architectures built solely using either 241

SRAM, ReRAM, or FeFET PIM devices have their unique 242

advantages, as well as drawbacks that limit their applicability 243

for DNN training and inference workloads. Therefore, explor- 244

ing heterogeneous PIM architectures that combine one or 245

more PIM devices is necessary to achieve better performance, 246

power, area, and DNN predictive accuracy tradeoffs compared 247

to the homogeneous ones. For the scope of this work, we 248

have considered SRAM CMOS-based devices, FeFET and 249

ReRAM NVM-based devices, as examples to demonstrate 250

the viability of our proposed framework to design optimized 251

heterogeneous PIM accelerators. Note however that other types 252

of PIM devices, such as PCMs and MRAMs, can also be 253

considered for heterogeneous systems. 254

B. Heterogeneous PIM Architectures 255

Prior work has proposed heterogeneous architectures that 256

combine two or more PIM devices for accelerating DNN work- 257

loads. Various hybrid ReRAM/SRAM-based PIM architectures 258

have been proposed to address the nonidealities in ReRAM 259

devices, and reduce the high area overhead of SRAM. Some of 260

these approaches involve encoding the MSBs using SRAMs, 261

and RRAMs for the LSBs of multibit weights, while main- 262

taining high energy-efficiency [21]. Other methods involve the 263

use of ReRAM and SRAM to perform the DNN forward- and 264

back-propagation operations, respectively, thereby mitigating 265

the limited endurance challenge of ReRAM. In fact, a recent 266

hybrid architecture incorporates SRAM macros to perform 267

output compensation of the nonideal output of ReRAM cross- 268

bars, thereby enabling robust DNN inference [16]. However, 269

these methods do not consider the layer-wise characteristics 270

of DNN workloads (e.g., number of neural layers, weights, 271

activations, size of kernels, etc.) while mapping neural layers 272

to the heterogeneous PIM-based architectures. As a result, this 273

can lead to suboptimal performance while executing DNN 274

training and inference tasks. 275

A recent work called HyDe has proposed a design space 276

exploration methodology for finding an optimal mapping of 277

DNN layers to either SRAM, FeFET, or PCM devices in 278

a hybrid platform [14]. This approach leverages the char- 279

acteristics of each DNN layer to find its affinity toward 280

a specific type of PIM device. However, this approach 281

is aimed only at inferencing, and considered a scalarized 282

single-objective optimization formulation. However, linear 283

scalarization is known to perform poorly due to its inability 284

to explore nonconvex regions of the Pareto front. Moreover, 285

HyDe follows a differentiable optimization approach, which 286

is not possible for all hardware design objectives and requires 287

training DNN weights by considering the device character- 288

istics. Hence, this is not practical for the DNN training 289

task. Other works, such as HyperX, have proposed a hybrid 290

SRAM/ReRAM architecture, where some DNN layer weights 291

remain static, and are mapped to ReRAMs, while other layers 292

are mapped to SRAMs for fine-tuning [22]. 293
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Despite the advantages of heterogeneity, previous solutions294

do not consider the challenges of integrating different PIM295

devices into a single platform. Moreover, they are mostly tar-296

geted at DNN inferencing/fine-tuning applications and cannot297

be used for end-to-end training of large DNNs. Hence, suitable298

heterogeneous PIM architectures for DNN training scenarios299

need to be explored.300

C. 2.5-D/3-D-Based PIM Architectures301

To address the challenges associated with integrating302

different PIM technologies in a single platform, various303

heterogeneous integration methods have been proposed.304

Specifically, chiplet-based (2.5-D) integration techniques have305

been proposed for DNN accelerators [14]. However, the306

long-range on-chip communication in planar 2.5-D systems307

presents a significant performance bottleneck in the execution308

of DNN workloads [23]. Hence, 3-D heterogeneous integration309

methods that stack planar tiers consisting of PEs connected to310

each other using through-silicon-via (TSV)-based vertical links311

have been proposed [23]. For example, a 3-D heterogeneous312

architecture for accelerating DNN training known as AccuReD313

was recently proposed. AccuReD leverages ReRAM-based314

PEs, and GPUs for accelerating all types of DNN layers to315

enable high accuracy DNN training [23].316

Despite offering the advantages of 3-D heterogeneous inte-317

gration, existing architectures do not consider the properties318

of the neural layers while determining the mapping for DNN319

workloads. Moreover, 3-D architectures inherently suffer from320

thermal issues, which have a varying impact on PEs with NVM321

devices (FeFET and ReRAM). Prior work does not adequately322

consider thermal issues while finding a suitable DNN layer-323

to-PE mapping in 3-D heterogeneous PIM architectures. As324

a result, this potentially leads to degradation of predictive325

accuracy, power, and latency when DNN workloads are exe-326

cuted. Hence, the properties of the DNN neural layers, PIM327

device characteristics of the PEs, as well as the PE to 3-D328

planar tier mapping should be jointly considered to enable329

high performance, energy-efficient, and reliable DNN training330

on heterogeneous PIM platforms.331

III. HUNT FRAMEWORK332

This section presents the problem formulation and333

optimization methodology of the HuNT framework to find the334

optimal neural layer-to-PE and PE-to-tier mapping in a 3-D335

heterogeneous architecture for DNN training.336

A. Problem Setup337

We consider a manycore system with C PIM-based PEs338

distributed over Z planar tiers and stacked using TSV-based339

vertical links. We use a conventional mesh-based network on340

chip (NoC) as the communication backbone [23]. Each planar341

tier consists of PEs of one particular type of PIM device, i.e.,342

either SRAM (S), ReRAM (R), or FeFET (F). Fig. 1 illustrates343

an example of a three-tier (i.e., Z = 3) 3-D heterogeneous344

manycore architecture. Given the characteristics of the DNN345

neural layers, and the physical properties of the PIM devices346

in the PEs, our goal is to find an optimized neural layer to347

PE mapping, and the corresponding PE to planar tier mapping348

Fig. 1. Illustration of layer-to-PE and PE-to-tier mapping of DNN workload
with K-layers on to a 3-D heterogeneous PIM-based architecture. Here, DNN
layer L1 is mapped to ReRAM-based PEs and placed on Tier 1 as an example.

that achieves a suitable tradeoff between the training accuracy, 349

area, latency, and power. 350

Without loss of generality, Fig. 1 shows a DNN workload 351

mapped on to a 3-D heterogeneous architecture. Here, each 352

neural layer (Li) of the DNN can be mapped onto either 353

SRAM-/FeFET-/ReRAM-based PEs, which can be located 354

either in tier-1, 2, or 3 as shown in Fig. 1. In addition, 355

each neural layer is characterized by its corresponding kernel 356

size, the number of input and output features, and the bit 357

precision of weights/activations, and can be mapped to one 358

or more PEs in a planar tier of the 3-D architecture. DNN 359

training requires the high-precision computation of weight- 360

and activation-gradients for each neural layer in the back- 361

propagation phase. This process requires a significant number 362

of write operations, which influences the choice of PIM device 363

for the computation of the back-propagation phase. 364

Furthermore, the PIM devices in the PEs have their corre- 365

sponding physical properties, such as write endurance limit, 366

area, energy, latency, and temperature-dependent nonideal 367

effects. Additionally, the distance of a planar tier from the 368

heat sink in the 3-D architecture determines the degree of 369

vulnerability of the PIM device to thermal noise, which can 370

potentially lead to significant loss in DNN accuracy [23]. 371

Consequently, this leads to a multiobjective optimization 372

(MOO) problem of finding the suitable mapping of each neural 373

layer to one of the C PIM-based PEs (i.e., either SRAM- 374

/ReRAM-/FeFET-based PE), as well as its appropriate location 375

in one of the Z planar tiers, that achieves the best latency, 376

area, power, and accuracy tradeoff. 377

B. HuNT MOO Formulation 378

Fig. 2 shows the overview of the proposed HuNT frame- 379

work. The inputs to the framework are the number of planar 380

tiers (Z), total number of PEs (C), PIM device choices, and 381

DNN workload characteristics (e.g., number of neural layers, 382

their weights, activations, etc.). We define the mapping vector 383

π to characterize the mapping of K neural layers on to PEs in 384

the 3-D architecture and the corresponding PE to planar tier 385

mapping α = [t1, t2, . . . , tZ], where ti is the device type of 386

the PEs in the ith planar tier. Subsequently, let d = (π, α) be 387

a candidate design in the design space D which corresponds 388

to a specific neural layer mapping on to the heterogeneous 389

PEs (π) and PE-to-tier mapping (α). In each optimization 390

iteration, one design d is evaluated using power, latency, area, 391

and DNN accuracy estimation models. Our goal is to minimize 392

the 1) loss in DNN accuracy (Err) due to various PIM device 393
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Fig. 2. Overall workflow of the HuNT framework, showing input stage, optimization phase, and the final validation phase.

nonidealities; 2) the area in terms of the number of PEs needed394

to map all the DNN layers (Ar); 3) the latency (Lat); and395

4) power consumption (Pwr) while executing a given DNN396

training on the 3-D heterogeneous architecture. We represent397

the MOO formulation as398

D∗ = MOO(OBJ = Pwr(d), Ar(d), Lat(d), Err(d)) (1)399

where D∗ is the set of Pareto-optimal designs. A design is400

called Pareto optimal if it cannot be improved in any of the401

design objectives without compromising some other objective.402

The goal is to first find the Pareto-optimal set D∗ ⊆ D using a403

MOO solver. Next, we select feasible designs from the Pareto404

set that meet the constraint (e.g., less than ∼1% accuracy loss405

compared to the ideal accuracy). Finally, we select the best406

design dbest from the feasible designs that achieves the best407

performance in-terms of either energy-efficiency (TOPS/W) or408

compute-efficiency (TOPS/mm2).409

Next, we discuss the key elements of our MOO formulation.410

1) Inputs: The inputs to the HuNT framework are the411

number of planar tiers (Z), total number of PEs (C), PIM412

device choices (ReRAM, SRAM, and FeFET), and DNN413

workload characteristics (e.g., weights, activations, etc.).414

2) Design Variables: There are two types of design vari-415

ables for the optimization for a given DNN model. Each416

candidate solution represents 1) a neural layer mapping to PEs417

(π) and 2) a PE-to-tier mapping (α), i.e., [t1, t2, . . . , tz], where418

the planar tiers t1 and tz are closest and farthest from the heat419

sink, respectively, resulting in higher temperature on planar420

tier tz compared to t1.421

3) Design Objectives: Next, we explain the evaluation of422

the design objectives: latency, area, accuracy, and power.423

We can get accurate values for all these objectives for any424

candidate design by performing cycle-accurate simulations,425

which are very expensive. Since we need to evaluate many426

design choices to solve the MOO problem shown in (1),427

we consider surrogate design objectives elaborated below for428

tractable optimization.429

Latency (Lat): We evaluate end-to-end latency incurred in430

DNN training for a candidate design (Lat(d)) considering a431

3-D mesh-based NoC architecture. The latency for a candidate432

design is proportional to the sum of the computation and433

communication latency while executing the training task on the434

3-D heterogeneous architecture given by (2). Computation dur- 435

ing DNN training involves computing activations (Act), and 436

gradients [activations gradients (�AG) and weight gradients 437

(�WG)] in the forward- and back-propagation phases, respec- 438

tively. Both phases have different precision requirements. In 439

contrast to Act computation, �AG and �WG computation 440

requires PEs with a PIM device that has high precision 441

and high endurance due to large number of repeated write 442

operations [24]. Hence, the neural layer computation in a 443

training task is spread out on different 3-D planar tiers, where 444

each tier consists of PEs constituting of a specific device type. 445

This generates on-chip communication traffic, which depends 446

on the layer-to-PE, and the PE-to-tier mapping. The end-to-end 447

compute latency for a DNN workload depends on the compute 448

latency incurred by the individual neural layers mapped to 449

either SRAM-, ReRAM-, or FeFET-based PEs (LatencyS|R|F), 450

as shown in (3). Similarly, the latency associated with sending 451

Act, �AG, or �WG from PEi to PEj depends on the placement 452

of PEs and contributes to the communication latency given by 453

(4), where Fij is either Act, �AG, or �WG as defined above. 454

The parameter Mij is the corresponding Manhattan distance 455

between PEi and PEj 456

Lat(d ∝ L)compute + Lcomm (2) 457

Lcompute ∝
K∑

i=1

[
LatencyS|R|F(Wi + Acti)

]
(3) 458

Lcomm(i, j) ∝ Fij ·Mij ∀Fij ∈ {Act, �AG,�WG}. (4) 459

Area (Ar): It is desirable to execute a given DNN training 460

task using less resources (PEs) to improve the compute 461

efficiency (TOPS/mm2). The number of PEs needed to map a 462

given neural layer depends on its device type. For example, 463

SRAMs have larger footprint (150F2) compared to ReRAM 464

cells (4F2), where F is the minimum feature size as mentioned 465

in Table I. Hence, a neural layer mapped to SRAM-based PEs 466

would require a higher number of PEs than if it were otherwise 467

mapped to ReRAM-based PEs, leading to comparatively lower 468

TOPS/mm2. The design objective Ar corresponds to the sum of 469

computational resources needed to execute K layers of a DNN, 470

where PEs needed for the ith neural layer (weights wi and 471
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activations Acti), depending on the PIM-device (AreaS|R|F)472

Ar(d) ∝
K∑

i=1

[
AreaS|R|F(wi + Acti)

]
. (5)473

Accuracy (Err): Prior work has shown that DNN models474

can be trained to be robust against conductance drift in NVM475

devices using techniques, such as adaptive noise injection,476

negative feedback training, etc. [25], [26]. For example,477

the injection of Gaussian noise is widely used to improve478

robustness of DNN training executed on NVM-based architec-479

tures [13]. In a 3-D manycore architecture, the thermal noise480

mainly depends on the placement of the PEs and their mutual481

interactions. Hence, the exact noise and specific layer-wise482

weight deviation (σ ) is not known prior to neural layer-to-483

PE and PE-to-tier mapping on a given architecture. Thus,484

even with a model trained with conductance drift incorporated,485

the actual thermal noise depends on the neural layer-to-PE486

mapping and the location of the planar tier where the PE487

is placed. This necessitates the consideration of accuracy as488

one of the objectives in the MOO formulation. It should be489

noted that executing DNN training for each mapping candidate490

solution d in the optimization phase is costly. Hence, we491

model the loss in accuracy by capturing the deviation in stored492

weights and activations due to thermal noise.493

3-D architectures with multiple stacked planar tiers are494

prone to thermal hotspots, which causes variations in stored495

DNN weights and activations especially in NVM devices496

(FeFET and ReRAM). This leads to a degradation in the DNN497

accuracy. However, SRAM is known to be more tolerant to the498

thermal noise compared to ReRAM and FeFET devices [14].499

Hence, to achieve high DNN accuracy, it is desirable to execute500

high precision computations (involved in the back-propagation501

phase) on PEs with a PIM device that is more resilient to502

thermal noise. Thus, computations involved in a neural layer503

in different DNN training phases, i.e., forward- and back-504

propagation phases need to be mapped on different types505

of PEs to achieve high training accuracy. Furthermore, these506

different PEs can be mapped to planar tiers such that loss in507

DNN accuracy due to thermal noise is mitigated. For example,508

PEs with NVM devices should be placed closer to the heat509

sink, while SRAM-based PEs can be mapped to a planar tier510

farther from the heat sink.511

In addition, a layer-to-PE and PE-to-tier mapping also needs512

to be considered for different NVM devices. This is crucial513

because thermal noise impacts variations in weights/activation514

of various NVM devices differently. For example, weights515

and activations of the neural layers are stored in ReRAM516

cells as conductance states. As the temperature increases,517

the OFF-state conductance of ReRAM cells increases expo-518

nentially, and the noise margin reduces [23]. On the other519

hand, the noise margin of FeFET devices, characterized by the520

memory window, reduces linearly with the increase in tem-521

perature [5]. For weight variation (�w), we adopt a Gaussian522

distribution with �w ∼ G(0, σ 2), where σ represents standard523

deviation of weights, consistent with prior work [13]. The524

variation of weights/activations belonging to different DNN525

layers impact the model accuracy differently. The impact of526

weights/activations variations due to thermal noise is captured 527

by loss in accuracy (Err) given by (6) and (7). Hence, 528

Err depends on the neural layer mapping, PEi temperature Qi, 529

and DNN layer weights wi and activations Acti 530

Err(d) =
C∑

i=1

(wi + Acti) ·N(i) (6) 531

N(i) =
⎧
⎨

⎩

exp[Qi], ReRAM
Qi, FeFET
∼ 0, SRAM

(7) 532

To estimate the temperature Qi of each PE, our framework 533

utilizes the thermal model from prior work, which considers 534

both vertical and horizontal heat flow, given by [27] 535

Qo,z =
{

z∑

u=1

(
Po,u

u∑

v=1

Rv

)
+ Rb

z∑

u=1

Po,u

}
∗�H (8) 536

where Po,u is the power consumption of the PEs u tiers away 537

from the sink in a vertical stack o and is a function of the 538

neural layer to PE mapping, �H represents the lateral heat 539

flow, Rv is the thermal resistance in vertical direction, and Rb 540

is the thermal resistance of the base layer on which the die 541

is placed and z represents the zth tier where PEs are located. 542

Values of Rv and Rb depend on the material characteristics and 543

are calibrated using HotSpot [28]. 544

Power (Pwr): The PE power consumption Po,u in (8) 545

depends on the DNN training task, layer-to-PE, and PE-to- 546

tier mapping. The total computation power corresponds to 547

the power incurred while computing the individual neural 548

layers mapped to either SRAM-, ReRAM-, or FeFET-based 549

PEs (PowerS|R|F), as shown in (10). Further, routers and links 550

associated with the PEs dissipate significant power due to high 551

data exchange between the neural layers. If two subsequent 552

neural layers exchanging large number of activations are 553

mapped on to the PEs far apart, then such mapping creates 554

traffic bottleneck due to frequent long distance data transfer. 555

This creates unnecessary congestion resulting in increase in 556

the communication power. The communication power required 557

to transfer data from PEi to PEj is given by (11), where 558

Fij is either activations (Act) in forward phase, or activation 559

gradients (�AG) and weight gradients (�WG) in back- 560

propagation phase, communicated from PEi to PEj and Mij is 561

the corresponding Manhattan distance between PEi and PEj 562

Pwr(d) ∝ Pcompute + Pcomm. (9) 563

Pcompute ∝
K∑

i=1

[
PowerS|R|F(wi + Acti)

]
(10) 564

Pcomm.(i, j) ∝ Fij ·Mij ∀Fij ∈ {Act, �AG, �WG}. (11) 565

AMOSA-Based MOO Approach: In this section, we discuss 566

the algorithmic procedure to compute the Pareto-optimal 567

set of designs (neural layer-to-PE and PE-to-tier mappings). 568

Algorithm 1 shows a high-level pseudocode for our design 569

optimization methodology based on the well-known AMOSA 570

solver [29]. The goal is to distribute the computations of K 571

DNN layers (forward- and back-propagation phases) across C 572

PEs on Z planar tiers of different device types to obtain optimal 573
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Algorithm 1: Neural Layer-to-PE and PE-to-3-D Planar
Tier Mapping

Input: Target manycore system with C PEs of PIM
device types- SRAM, ReRAM or FeFET
APP = DNN training task
Output: D∗, the Pareto optimal set of designs (optimized
neural layer-to-PE mapping and PE-to-tier mappings)

1 Initialize: D = non-dominated set of solutions; A =
Archive

2 Input variables (−→x ) = neural layer-to-PE mapping
(π) and PE-to-tier mapping (α)

3 Repeat
4 Select one −→x from A and Perturb−→x to get a

design d
5 design d← Candidate mapping of neural

layer-to-PEs and PEs-to-3-D planar tiers
6 Evaluate(design d, APP)/∗ using power, area,

latency, and accuracy models [Section III-B]∗/
7 Update non-dominated set of solutions D via

Pwr(d), Ar(d), Lat(d), Err(d)

8 Update Archive A
9 Until convergence or maximum iterations

10 Pareto optimal set of designs D∗ ← D
11 return D∗, the Pareto optimal set of designs

(optimized neural layer-to-PE mapping and PE-to-tier
mappings)

tradeoffs between Pwr, Ar, Lat, and Err. The input variables−→x574

in our MOO approach are the neural layer-to-PE mapping (π)575

and PE-to-tier mapping (α). A candidate configuration of −→x576

corresponds to the design d which is a candidate mapping of577

neural layer-to-PEs and PEs-to-3-D planar tiers (Algorithm 1,578

line 5). First, we start with a randomly chosen mapping of579

DNN layers to PEs and PEs to planar tiers satisfying the580

mapping constraints: 1) a neural layer is mapped on to PEs581

of one device type and 2) a planar tier consists of PEs of582

one device type. It should be noted that it is possible for a583

neural layer to be mapped to different types of PEs in different584

tiers. However, this gives rise to synchronization issues as each585

type of PE has different latency and throughput. Computations586

involved in one neural layer need to be completed and the587

activations must then be sent to the next neural layer. If a layer588

is mapped on two different types of PEs with unequal timing589

characteristics, then the computation latency for a particular590

neural layer will be bottlenecked by the PE with the worst-case591

delay. This will lead to a degradation in the overall training592

performance. Hence, each neural layer is mapped on to PEs593

of one device type. Also, due to fabrication challenges, we594

refrain from integrating different types of NVM devices on595

the same tier.596

Next, we perturb a candidate mapping solution to get a597

new layer-to-PE and PE-to-tier mapping (Algorithm 1, line598

4). Here, a valid perturbation is defined as allocating a599

randomly chosen neural layer to a different PE such that the600

mapping constraints mentioned above, are satisfied. In each601

AMOSA iteration, the selected design is evaluated using the602

TABLE II
PIM ARCHITECTURE SPECIFICATIONS

surrogate objectives for latency, area, power, and accuracy 603

(Algorithm 1, line 6) and the nondominated set of designs 604

and Archive are updated based on this new design evaluation. 605

At convergence or after maximum iterations, we get the 606

Pareto-optimal set of designs D∗ from the MOO solver. We 607

first select the feasible designs from D∗ fulfilling the DNN 608

accuracy constraint mentioned above (e.g., 1% accuracy loss 609

with respect to ideal condition) by performing cycle-accurate 610

simulations. Finally, we select the best design dbest from the 611

feasible designs that achieves the best performance in-terms 612

of either energy-efficiency (TOPS/W) or compute-efficiency 613

(TOPS/mm2). It should be noted that the HuNT framework 614

optimizes layer-to-PE and PE-to-tier mapping at the design 615

time for a given DNN workload and any other MOO solver 616

can also be used to the same effect. 617

IV. EXPERIMENTAL RESULTS AND ANALYSIS 618

In this section, we present comprehensive experimental 619

results for the HuNT-enabled 3-D heterogeneous PIM archi- 620

tecture for DNN training. 621

A. Experimental Setup 622

The HuNT optimization phase (described in Algorithm 1) 623

is executed for 100 iterations, as this is sufficient to ensure 624

the convergence of the AMOSA-based MOO. Algorithm 1 is 625

executed at the design time; hence the time overhead is a 626

one-time cost. The overall time complexity of the adapted 627

AMOSA-based MOO solver is given by O(T × N × (M + 628

log(N))), where T is the total iterations of the algorithm, N is 629

the maximum number of nondominated solutions stored in the 630

Archive, and M is the number of design objectives [29]. HuNT 631

generates the optimized neural layer-to-PE mapping, and the 632

corresponding PE-to-tier mapping, which is then mapped to 633

the proposed 3-D heterogeneous PIM-based architecture. 634

3-D Heterogeneous PIM Architecture: The PIM architecture 635

considered in this work consists of a total of 64 PEs distributed 636

over four planar tiers and connected using TSV-based vertical 637

links. Each PIM-based PE has its unique configuration, such 638

as crossbar size, cell resolution, number of crossbars/6T cells, 639

etc., as shown in Table II. We consider an iso-PE area setting, 640

such that all PEs (irrespective of their device type) have 641

the same area but different amount of storage and compute 642

capability. Considering the storage capacity of each PIM-based 643

PE, the HuNT-enabled architecture can have a storage capacity 644

of up to ∼75 MB. Each planar tier consists of 16 PEs of a 645

particular PIM device type (SRAM/ReRAM/FeFET). 646
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TABLE III
DNN WORKLOADS WITH CIFAR-10 DATASET

The area, energy, and latency of the SRAM, ReRAM,647

and FeFET devices and their associated peripheral circuits,648

such as ADC, sense-amps (S/A), DACs, buffers, column-649

/row-decoders, and nonlinear activation units (ReLU), were650

modeled via NeuroSim [24]. The connectivity between PEs651

follows the 3-D mesh topology and the workload-dependent652

inter-PE traffic is given as input to BookSim to estimate653

communication power and latency [30]. We employ HotSpot’s654

default ambient temperature setting of 300 K to conduct ther-655

mal analysis with the power traces generated using NeuroSim656

and BookSim [28]. Finally, we model the thermal effects657

[shown in (6) and (7)] on the DNN accuracy using the PyTorch658

wrapper in NeuroSim for the different DNN models and659

datasets considered in this work. Following prior work, we use660

16-bit fixed-point precision for the storage and computation661

of the DNN weights and activations in the forward pass, and662

32-bit floating-point precision for the weight- and activation-663

gradient computation in the back-propagation phase [31]. The664

3-D heterogeneous architecture utilizes a multicast-enabled665

3-D mesh NoC as the interconnection backbone for com-666

municating between the PEs during DNN training [23]. In667

our experimental evaluation, we consider energy-efficiency668

(TOPS/W) and compute-efficiency (TOPS/mm2) as the two669

relevant performance metrics that capture the latency, area, and670

power objectives considered in Section III of this work.671

DNN Models and Datasets: We evaluate the performance672

of the HuNT design optimization framework considering the673

CIFAR-10, CIFAR-100, and TinyImageNet datasets with five674

diverse DNN models, namely: VGG11, VGG16, ResNet18,675

ResNet34, and DenseNet40. Table III shows the characteristics676

and parameters of the DNN models executed on the HuNT-677

enabled 3-D heterogeneous PIM architecture. As shown in678

Table III, the largest network considered in this work (VGG16)679

has about 2.2M parameters which requires∼4.4 MB of storage,680

hence it can be easily stored on the HuNT-enabled 3-D681

heterogeneous architecture (with a storage capacity of up to682

∼75 MB) along with its activations and layer-wise gradients.683

However, for larger networks where the neural network size684

exceeds the total storage capacity of the PEs in the system,685

then we need to read/write weights and activations from/to686

main memory (DRAM). As a result, there will be an additional687

latency penalty corresponding to that. However, the layer-to-PE688

and PE-to-tier mapping obtained from the HuNT optimization689

framework is unimpacted by the off-chip memory accesses in the690

case of very large DNNs. In this work, we train the DNN models691

on the HuNT-enabled 3-D heterogeneous PIM architecture for692

200 epochs using the Stochastic Gradient Descent method to693

ensure their training convergence without overfitting.694

Fig. 3. Layer-to-PE and PE-to-tier mapping tradeoffs while running the DNN
training task for ResNet34 model on the CIFAR-10 dataset.

B. Layer-to-PE and PE-to-Tier Mapping Tradeoffs 695

The neural layer-to-PE and PE-to-tier mapping affect the 696

overall latency, power, area, and DNN accuracy. The aim of the 697

HuNT framework is to determine the optimum configuration 698

of the heterogeneous 3-D manycore architecture that achieves 699

a suitable balance among all these metrics. Fig. 3 presents the 700

Pareto front considering the above-mentioned design objectives, 701

while executing the training task on ResNet34 model using 702

the CIFAR-10 dataset as an example. Recall, the PE-to-tier 703

mapping is represented by α = [t1, t2, . . . , tz], where a planar 704

tier tz has PEs of one device type—ReRAM (R), FeFET (F), 705

and SRAM (S). Fig. 3 shows a representative Pareto-optimal 706

set of designs D∗ highlighted in black. It should be noted that 707

all the Pareto-optimal configurations with heterogeneous PEs 708

have the SRAM devices at the bottom tier, away from the 709

heat sink, which is used for the gradient calculation during 710

back-propagation. Further, to minimize the on-chip hardware 711

resources for gradient computation, we do not need to process all 712

the layers simultaneously, but just perform layer-by-layer weight 713

gradient computation, following prior work [24]. Therefore, 714

one tier of SRAM-based PEs is enough to support the layer 715

with largest size of activation gradients for the DNN models 716

considered here. Due to the necessity of the SRAM tier for 717

the back-propagation, the homogeneous configurations where 718

we have only one type of NVM PIM device like FeFET or 719

ReRAM are: [F1, F2, F3, S4] and [R1, R2, R3, S4]. Alternatively, 720

the homogeneous configuration with only SRAM device is: 721

[S1, S2, S3, S4]. All the design objectives shown in Fig. 3 are 722

normalized with respect to a mapping corresponding to α = 723

[S1, F2, F3, R4] (shown in green), since it has the worst DNN 724

accuracy. As mentioned earlier, impact of thermal noise on 725

ReRAM-based PEs is more severe compared to FeFET- or 726

SRAM-based PEs. Thus, the mapping [S1, F2, F3, R4] has the 727

worst DNN accuracy because 1) the high power consuming 728

FeFET-based PEs on two planar tiers lead to thermal hotspots 729

and 2) ReRAM-based PEs are mapped to the planar tier 730

farthest from the heat sink. On the other hand, candidate 731

mappings with all thermal noise resilient SRAM-based PEs, 732

i.e., [S1, S2, S3, S4], achieve the highest DNN accuracy, but 733

at the cost of extremely high area. The FeFET-based PEs 734

contribute to high power density in the mapping corresponding 735

to [F1, F2, F3, S4], resulting in peak temperature of 380 K and 736
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(a)

(b)

Fig. 4. Comparison of various Pareto-optimal layer-to-PE and PE-to-tier
mappings in terms of (a) TOPS/W and (b) TOPS/mm2, while running training
task for VGG16 model on the CIFAR-10 dataset as an example.

lower DNN accuracy compared to [R1, R2, R3, S4]. However,737

the mapping [R1, R2, R3, S4] incurs high write latency due to738

predominantly ReRAM-based PEs when compared to mappings739

on predominantly SRAM- or FeFET-based PEs. Thus, all740

homogeneous architectures score high in one specific design741

metric neglecting the others. On the other hand, heterogeneous742

3-D architectures, such as [R1, F2, F3, S4] and [R1, R2, F3, S4],743

exploit device heterogeneity with optimal layer-to-PE and PE-744

to-tier mapping, and achieve suitable tradeoffs between power,745

latency, area, and DNN accuracy.746

Next, we implement the HuNT-enabled Pareto-optimal747

set of designs D∗ and evaluate their performance in real-748

istic settings. Fig. 4(a) and (b) shows the comparative749

performance evaluation of the architectures in terms of energy-750

efficiency (TOPS/W) and compute-efficiency (TOPS/mm2)751

for DNN training task on VGG16 model with CIFAR-10752

dataset as an example. As shown in Fig. 4, neural layer753

mapping corresponding to a homogeneous SRAM-based PE754

configuration, i.e., [S1, S2, S3, S4], leads to the lowest TOPS/W755

and TOPS/mm2 due to higher power and area consumption756

when compared to FeFET- and ReRAM-based architectures.757

Similarly, [F1, F2, F3, S4] achieves low TOPS/W due to high758

power FeFET-based PEs. As shown in Fig. 4, the layer-to-759

PE and PE-to-tier mapping corresponding to [R1, R2, F3, S4]760

(highlighted in red) achieves highest TOPS/W and TOPS/mm2
761

compared to rest of the Pareto-optimal candidate mappings.762

This mapping utilizes the ReRAM and FeFET-based PEs763

(on planar tiers 1–3) for low precision computation in the764

forward phase and SRAM-based PEs (on planar tier 4) for765

high precision gradients computation in the back-propagation766

phase. Further, the DNN layers processing high number of767

activations are mapped to dense ReRAM-based PEs, result-768

ing in higher TOPS/mm2 and closer to the SRAM tier,769

reducing the communication energy specifically during the770

back-propagation phase. Hence, this results in higher TOPS/W.771

Next, we discuss the DNN layers’ characteristics and772

their role in layer-to-PE and PE-to-tier mapping for the773

best-performing [R1, R2, F3, S4] architecture. Fig. 5 shows774

layer-wise mapping on to PEs and 3-D planar tiers for775

training DenseNet40 and VGG16 models with CIFAR-10776

dataset as an example. As discussed earlier, high precision777

gradients are calculated in the bottom tier (tier S4) and the778

forward phase computation is executed on tiers 1–3 of the779

[R1, R2, F3, S4] architecture. As shown in Fig. 5(a), initial 780

layers in DenseNet40 process higher number of activations 781

than the latter layers and need more crossbars to store weights 782

and activations. Therefore, these layers are mapped to dense, 783

low power ReRAM-based PEs (R2) as well as closer to tier S4 784

for faster exchange of gradients. On the contrary, latter layers 785

with comparatively fewer activations and smaller kernels, are 786

mapped on tier F3 (layers 14–24) and R1 (layers 30–40). 787

However, as shown in Fig. 5(b), the layer-wise characteristics 788

of VGG16 are different than that of DenseNet40, i.e., initial 789

layers process higher number of activations but have less 790

crossbars requirement for storage and computation, due to the 791

layers’ input/output feature map and kernel size. Thus, the 792

initial layers of VGG16 are mapped to FeFET-based PEs on 793

tier F3 that have low latency but less dense when compared 794

to ReRAMs. On the contrary, the middle layers consist of 795

wider kernels and require more crossbars. Thus, these layers 796

are mapped to dense, low power ReRAM-based PEs on tier 797

R2. This highlights the importance of considering DNN layers’ 798

characteristics while finding optimal layer-to-PE and PE-to- 799

tier mapping to achieve high compute- and energy-efficiency. 800

C. Overall Performance Evaluation 801

In this section, we present a thorough performance evalu- 802

ation of the HuNT-enabled DNN layer-to-PE and PE-to-tier 803

mapping for the proposed 3-D heterogeneous PIM architecture 804

during DNN training. Fig. 6(a)–(c) compares the energy-, 805

compute-efficiency, and accuracy of the HuNT-enabled 3-D 806

heterogeneous architecture (simply referred to as HuNT here 807

after) with the homogeneous and existing heterogeneous 808

counterparts for all DNN workloads considered in this work 809

with the CIFAR-10 dataset, respectively. For this compar- 810

ison, the homogenous configurations are [F1, F2, F3, S4], 811

[R1, R2, R3, S4], and [S1, S2, S3, S4] as mentioned earlier. The 812

existing heterogeneous counterparts considered in our com- 813

parative performance evaluation include the HyperX and 814

AccuReD architectures [22], [23]. As discussed in the related 815

work, HyperX leverages both ReRAM (R) and SRAM (S), 816

while AccuReD leverages ReRAM- and GPU-based PEs to 817

achieve high-performance DNN training. In our comparative 818

performance evaluation with respect to HuNT, we use the two 819

tiers of ReRAM and two GPU tiers [R1, R2, GPU3, GPU4] 820

configuration, and the [R1, S2, S3, S4] configuration for the 821

AccuReD and HyperX architectures, respectively [22], [23]. 822

As shown in Fig. 6(a) and (b), HuNT achieves up to 20 823

TOPS/W and 10.73 TOPS/mm2 on the CIFAR-10 dataset 824

which corresponds to a ∼10× and ∼8× improvement in 825

energy- and compute-efficiency, respectively, over the all- 826

SRAM homogenous counterpart. As shown earlier in Table I, 827

and corroborated in the literature, SRAM-based PIM architec- 828

tures generally suffer from low energy- and compute-efficiency 829

due to their high leakage power and significant area overhead, 830

respectively [3]. Hence, they achieve a relatively low energy- 831

and compute-efficiency of 2.2 TOPS/W and 1.1 TOPS/mm2
832

on average across all DNN models as shown in Fig. 6(a) 833

and (b), respectively. HuNT exploits device heterogeneity and 834

DNN workload awareness to achieve up to a 1.2× and 1.3× 835

improvement in TOPS/W and TOPS/mm2, respectively, over 836
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(a) (b) (c)

Fig. 5. Layer-to-PE and PE-to-tier mapping for DNN training task on (a) DenseNet40 and (b) VGG16 models with CIFAR-10 dataset on (c) optimized
[R1, R2, F3, S4] architecture. Here, R1 and R2 refer to Tiers 1 and 2 with ReRAM-based PEs, respectively, F3 refers to Tier 3 with FeFET-based PEs, and
S4 refers to Tier 4 with SRAM-based PEs.

(a) (b) (c)

Fig. 6. Performance evaluation of the HuNT-enabled 3-D PIM architecture with state of the art in terms of (a) energy-efficiency (TOPS/W), (b) compute-
efficiency (TOPS/mm2), and (c) accuracy of DNN workloads executed on the CIFAR-10 dataset. Here, for brevity, we use FFFS, RRRS, and SSSS to refer
to [F1, F2, F3, S4], [R1, R2, R3, S4], and [S1, S2, S3, S4] homogeneous configurations, respectively.

the homogeneous ReRAM configuration ([R1, R2, R3, S4]).837

Similarly, HuNT achieves an improvement of up to 2.6×838

and 1.5× in TOPS/W and TOPS/mm2, respectively, over the839

homogeneous FeFET configuration ([F1, F2, F3, S4]) on the840

CIFAR-10 dataset. Overall, HuNT outperforms HyperX and841

AccuReD by 3.1× and 1.4×, respectively, on average in terms842

of energy-efficiency, and by 2.7× and 1.5×, respectively, on843

average in terms of compute efficiency on the CIFAR-10844

dataset. This is because the high power and area of the SRAM-845

based PEs and the GPU-based PEs in HyperX and AccuReD,846

respectively, make them less compute- and energy-efficient.847

As shown in Fig. 6(c), we compare HuNT with the homoge-848

nous and heterogeneous counterparts in terms of the accuracy.849

Here, the all-SRAM configuration achieves the highest accu-850

racy due its high reliability, and less vulnerability to thermal851

issues in the 3-D architecture [23]. However, the homoge-852

neous FeFET and ReRAM counterparts suffer up to 4%853

and 2.5% accuracy loss. This is due to high power con-854

sumption of FeFET-based PEs and limited thermal endurance855

of ReRAM-based PEs when placed away from the heat856

sink. Overall, HuNT achieves less than 1% accuracy drop857

compared to the all-SRAM counterpart. In summary, our858

performance evaluation demonstrates that the HuNT-enabled859

3-D heterogeneous PIM architecture achieves high energy-860

and compute-efficiency over the homogenous counterparts and861

the existing heterogeneous PIM-based architectures (AccuReD862

and HyperX). Overall, the HuNT-enabled 3-D PIM archi-863

tecture achieves the highest TOPS/W and TOPS/mm2 with864

negligible loss in DNN accuracy.865

D. Transferability Across Datasets866

In this section, we demonstrate that the HuNT-enabled867

optimized layer-to-PE and PE-to-tier mapping (dbest) obtained868

using the CIFAR-10 dataset can be transferred to another 869

dataset for training on 3-D heterogeneous PIM architecture 870

without compromising the DNN training accuracy, and overall 871

performance. Here, the dbest for a given DNN workload is 872

generated with a source dataset via the HuNT framework, 873

and then mapped to the 3-D heterogeneous architecture for 874

training using a target dataset. Figs. 7 and 8 demonstrate the 875

transferability of dbest generated using the CIFAR-10 dataset 876

(as the source dataset) to the CIFAR-100 and TinyImageNet 877

datasets (as the target datasets), respectively. In Figs. 7 878

and 8, we consider dbest generated using CIFAR-100 and 879

TinyImageNet, respectively, via the HuNT framework in 880

each case as the baseline. In this work, we compare the 881

performance of dbest obtained using the CIFAR-10 dataset 882

with respect to the baselines in terms of energy-efficiency 883

(TOPS/W), compute-efficiency (TOPS/mm2), and the final 884

DNN test accuracy as shown in Figs. 7(a) and 8(a), Figs. 7(b) 885

and 8(b), and Figs. 7(c) and 8(c), respectively. Here, the 886

configurations are denoted as DS → DT, where DS represents 887

the “source” dataset and DT represents the “target” dataset. 888

In our analysis, we consider the CIFAR-10→CIFAR-100 889

and CIFAR-10→TinyImageNet configurations for the sake of 890

brevity. However, it is worth noting that the HuNT framework 891

is compatible with other image datasets, and the results shown 892

here are reproducible for other configurations. 893

As shown in Fig. 7(a) and (b), we observe less than 894

an average of 2% and 1.5% loss in energy- and compute- 895

efficiency, respectively, compared to the baseline across all the 896

DNN models for the CIFAR-10→CIFAR-100 configuration. 897

Similarly, we also observe an average of 3.1% and 1.9% loss 898

in energy- and compute-efficiency, respectively, compared to 899

the baseline for the CIFAR-10→TinyImageNet configurations, 900

respectively, as shown in Fig. 8(a) and (b). Overall, we 901
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(a) (b) (c)

Fig. 7. Transferability from CIFAR-10 to CIFAR-100 dataset for (a) energy-efficiency (TOPS/W), (b) compute-efficiency (TOPS/mm2), and (c) accuracy.

(a) (b) (c)

Fig. 8. Transferability from CIFAR-10 to TinyImageNet dataset for (a) energy-efficiency (TOPS/W), (b) compute-efficiency (TOPS/mm2), and (c) accuracy.

observe a negligible accuracy loss of less than 1% across902

all DNN models considered in both the CIFAR-10→CIFAR-903

100 and CIFAR-10→TinyImageNet configurations as shown904

in Figs. 7(c) and 8(c), respectively. Here, the transferability905

of the optimal neural layer mapping of dbest across datasets906

is possible because the general DNN model behavior is907

often transferable between datasets. This idea is similar to908

transfer learning, where a model trained on one dataset can909

be reused with slight changes for another dataset [32]. Hence,910

the neural layer mapping of dbest for a given DNN model911

can also be used with other datasets, and achieve similar912

levels of performance (energy- and compute-efficiency) with913

negligible accuracy loss. However, it is worth noting that the914

absolute values of the achievable performance in terms of915

TOPS/W and TOPS/mm2 vary across datasets due to their916

unique characteristics. For example, the TinyImageNet dataset917

generates more activations during training compared to the918

CIFAR-10 dataset. This requires more PEs. Hence, for the919

same system configuration, HuNT achieves lower compute-920

and area-efficiencies for TinyImageNet compared to both921

CIFAR-10 and CIFAR-100 datasets. The dataset characteristics922

influence the absolute achievable performance. However, the923

overall trend is agnostic to the dataset. In addition, the924

transferability of dbest across datasets eliminates the cost of925

implementing repeated MOO for more complex datasets. In926

essence, this further demonstrates the scalability and versatility927

of the HuNT-enabled optimized layer-to-PE and PE-to-tier928

mapping (dbest) to other datasets for DNN training on 3-D929

heterogeneous PIM accelerators.930

E. Lifetime and Endurance Analysis931

Lifetime and write endurance of NVM-based PIM devices932

are crucial for DNN training due to significant number of933

write operations required for the weight- and activation- 934

gradient calculations as well as weight updates in the back- 935

propagation phase. For our analysis, we consider realistic write 936

endurance limit for the FeFET-, ReRAM-, and SRAM-based 937

PEs reported in prior work, as shown in Table I. As discussed 938

earlier, the HuNT-enabled layer-to-PE mapping maps the 939

weights in the DNN layers to both ReRAM- and FeFET-based 940

PEs, and the weight- and activation-gradient computation is 941

performed on SRAM-based PEs (i.e., the [R1, R2, F3, S4] 942

configuration). Therefore, the weights mapped to the ReRAM- 943

and FeFET-based PEs need to be reprogrammed during the 944

weight update phase. However, ReRAM and FeFET devices 945

suffer from low write endurance, which limits the number of 946

times that they can be reprogrammed before they fail due to 947

faults [17]. 948

In Fig. 9, we present a comparative performance trade- 949

off analysis between the energy-efficiency and endurance 950

of the homogeneous architectures, and the HuNT-enabled 951

heterogeneous architecture ([R1, R2, F3, S4]) executing the 952

VGG-11 DNN workload with the CIFAR-10 dataset. We 953

observe that beyond the endurance limit for each device, 954

the achievable performance (TOPS/W) begins to reduce, as 955

the number of resources (PEs) available to perform reliable 956

computation reduces due to failures of the NVM devices. 957

The [S1, S2, S3, S4] configuration achieves the lowest TOPS/W 958

due to its significant leakage power, however, it has the 959

highest endurance. Overall, the HuNT-enabled heterogeneous 960

architecture achieves an improvement of 10×, 3×, and 1.2× 961

in terms of TOPS/W compared to the homogeneous SRAM- 962

, FeFET-, and ReRAM-based architectures, respectively. At 963

the same time, HuNT achieves similar write endurance as the 964

homogeneous configurations with at least one type of NVM 965

device ([R1, R2, R3, S4] and [F1, F2, F3, S4]). 966
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Fig. 9. Comparison of HuNT-enabled architecture with other homogeneous
architectures in terms of energy-efficiency (TOPS/W) and endurance for
training on VGG11 model with CIFAR-10 dataset as an example.

V. CONCLUSION967

PIM-based architectures enable high-performance and968

energy-efficient hardware accelerators for DNN training.969

However, each PIM device has specific advantages and draw-970

backs. Hence, a heterogeneous architecture that combines971

multiple PIM devices in a single system is necessary to achieve972

the suitable balance between all the required design metrics.973

A 3-D architecture enables the design of such a heterogeneous974

platform where each planar tier consists of PEs designed with975

one type of device. This also avoids the fabrication challenges976

of integrating disparate technologies on a single tier. In this977

work, we propose the HuNT framework, which finds an978

optimal layer-to-PE and PE-to-tier mapping for 3-D PIM-979

based heterogeneous architectures. Overall, the HuNT-enabled980

3-D heterogeneous architecture achieves up to a 10× and 8×981

improvement in energy- and compute-efficiency, respectively,982

over the homogenous counterparts and existing heterogeneous983

PIM-based architectures without compromising accuracy.984

REFERENCES985

[1] W. Liu et al., “A survey of deep neural network architectures and their986

applications,” Neurocomputing, vol. 234, pp. 11–26, Apr. 2017.987

[2] L. Song, X. Qian, L. Hai, and Y. Chen, “PipeLayer: A pipelined988

ReRAM-based accelerator for deep learning,” in Proc. IEEE HPCA,989

2017, pp. 541–552.990

[3] K. Roy, I. Chakraborty, M. Ali, A. Ankit, and A. Agrawal, “In-memory991

computing in emerging memory technologies for machine learning: An992

overview,” in Proc. IEEE DAC, 2020, pp. 1–6.993

[4] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator994

with in-situ analog arithmetic in crossbars ali,” in Proc. ISCA, 2016,995

pp. 14–26.996

[5] T. Soliman et al., “First demonstration of in-memory computing crossbar997

using multi-level cell FeFET,” Nat. Commun., vol. 14, no. 1, p. 6348,998

2023.999

[6] Y. Long et al., “A ferroelectric FET-based processing-in-memory archi-1000

tecture for DNN acceleration,” IEEE J. Explor. Solid-State Computat.1001

Devices Circuits, vol. 5, no. 2, pp. 113–122, Dec. 2019.1002

[7] A. Keshavarzi, K. Ni, W. Van Den Hoek, S. Datta, and1003

A. Raychowdhury, “FerroElectronics for edge intelligence,” IEEE Micro,1004

vol. 40, no. 6, pp. 33–48, Nov./Dec. 2020.1005

[8] A. Yusuf, T. Adegbija, and D. Gajaria, “Domain-specific STT-MRAM-1006

based in-memory computing: A survey,” IEEE Access, vol. 12, 2024,1007

pp. 28036–28056.1008

[9] G. Murali, X. Sun, S. Yu, and S. K. Lim, “Heterogeneous mixed-signal1009

monolithic 3-D in-memory computing using resistive RAM,” IEEE1010

Trans. Very Large Scale Integr. Syst., vol. 29, no. 2, pp. 386–396,1011

Feb. 2021.1012

[10] X. Peng et al., “Benchmarking monolithic 3D integration for compute-1013

in-memory accelerators: Overcoming ADC bottlenecks and maintaining1014

scalability to 7nm or beyond,” in Proc. IEEE IEDM, 2020, pp. 30.4.1–1015

30.4.4.1016

[11] A. Kaul et al., “3-D heterogeneous integration of RRAM-based 1017

compute-in-memory: Impact of integration parameters on inference 1018

accuracy,” IEEE Trans. Electron Devices, vol. 70, no. 2, pp. 485–492, 1019

Feb. 2023. 1020

[12] M. Yayla et al., “FeFET-based binarized neural networks under 1021

temperature-dependent bit errors,” IEEE Trans. Comput., vol. 71, no. 7, 1022

pp. 1681–1695, Jul. 2022. 1023

[13] X. Yang et al., “Multi-objective optimization of ReRAM crossbars for 1024

robust DNN inferencing under stochastic noise,” in Proc. IEEE/ACM 1025

ICCAD, 2021, pp. 1–9. 1026

[14] A. Bhattacharjee, A. Moitra, and P. Panda, “HyDe: A hybrid 1027

PCM/FeFET/SRAM device-search for optimizing area and energy- 1028

efficiencies in analog IMC platforms,” IEEE J. Emerg. Sel. Topics 1029

Circuits Syst., vol. 13, no. 4, pp. 1073–1082, Dec. 2023. 1030

[15] Y. Sun et al., “CREAM: Computing in ReRAM-assisted energy- and 1031

area-efficient SRAM for reliable neural network acceleration,” IEEE 1032

Trans. Circuits Syst. I, Reg. Papers, vol. 70, no. 8, pp. 3198–3211, 1033

Aug. 2023. 1034

[16] G. Krishnan et al., “Hybrid RRAM/SRAM in-memory computing for 1035

robust DNN acceleration,” IEEE Trans. Comput.-Aided Design Integr. 1036

Circuits Syst., vol. 41, no. 11, pp. 4241–4252, Nov. 2022. 1037

[17] W. Wen, Y. Zhang, and J. Yang, “ReNEW: Enhancing lifetime for 1038

ReRAM crossbar based neural network accelerators,” in Proc. IEEE 1039

ICCD, 2019, pp. 487–496. 1040

[18] C. Eckert et al., “Neural cache: Bit-serial in-cache acceleration of deep 1041

neural networks,” in Proc. 45th ISCA, 2018, pp. 383–396. 1042

[19] S. Spetalnick and A. Raychowdhury, “A practical design-space analysis 1043

of compute-in-memory with SRAM,” IEEE Trans. Circuits Syst. I, Reg. 1044

Papers, vol. 69, no. 4, pp. 1466–1479, Apr. 2022. 1045

[20] S. Roy, M. Ali, and A. Raghunathan, “PIM-DRAM: Accelerating 1046

machine learning workloads using processing in commodity 1047

DRAM,” IEEE J. Emerg. Sel. Topics Circuits Syste., vol. 11, no. 4, 1048

pp. 701–710, Dec. 2021. 1049

[21] M. R. Haq Rashed, S. K. Jha, and R. Ewetz, “Hybrid analog- 1050

digital in-memory computing,” in Proc. IEEE/ACM ICCAD, 2021, 1051

pp. 1–9. 1052

[22] A. Kosta et al., “HyperX: A hybrid RRAM-SRAM partitioned system for 1053

error recovery in memristive Xbars,” in Proc. DATE, 2022, pp. 88–91. 1054

[23] B. K. Joardar, J. R. Doppa, P. P. Pande, H. Li, and K. 1055

Chakrabarty, “AccuReD: High accuracy training of CNNs on 1056

ReRAM/GPU heterogeneous 3D architecture,” IEEE Trans. Comput.- 1057

Aided Design Integr. Circuits Syst., vol. 40, no. 5, pp. 971–984, 1058

May 2021. 1059

[24] X. Peng et al., “DNN+NeuroSim V2.0: An end-to-end benchmarking 1060

framework for compute-in-memory accelerators for on-chip training,” 1061

2020, arXiv:2003.06471. 1062

[25] N. Ye et al., “Improving the robustness of analog deep neural networks 1063

through a Bayes-optimized noise injection approach,” Commun. Eng., 1064

vol. 2, no. 1, p. 25, 2023. 1065

[26] Y. Qin, Z. Yan, W. Wen, X. S. Hu, and Y. Shi, “Negative feedback 1066

training: A novel concept to improve robustness of NVCiM DNN 1067

accelerators,” 2023, arXiv:2305.14561. 1068

[27] J. Cong, J. Wei, and Y. Zhang, “A thermal-driven floorplan- 1069

ning algorithm for 3D ICs,” in Proc. IEEE/ACM ICCAD, 2004, 1070

pp. 306–313. 1071

[28] R. Zhang, M. Stan, and K. Skadron, “Hotspot 6.0: Validation, accel- 1072

eration and extension,” IBM T. J. Watson Res. Center, Univ. Virginia, 1073

Charlottesville, VA, USA, Rep. CS-2015-04, 2015. 1074

[29] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A 1075

simulated annealing-based multiobjective optimization algorithm: 1076

AMOSA,” IEEE Trans. Evol. Comput., vol. 12, no. 3, pp. 269–283, 1077

Jun. 2008. 1078

[30] N. Jiang et al., “A detailed and flexible cycle-accurate network-on-chip 1079

simulator,” in Proc. IEEE ISPASS, 2013, pp. 86–96. 1080

[31] H. Jin et al., “ReHy: A ReRAM-based digital/analog hybrid PIM archi- 1081

tecture for accelerating CNN training,” IEEE Trans. Parallel Distrib. 1082

Syst., vol. 33, no. 11, pp. 2872–2884, Nov. 2022. 1083

[32] C. O. Ogbogu et al., “Accelerating graph neural network training on 1084

ReRAM-based PIM architectures via graph and model pruning,” IEEE 1085

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 42, no. 8, 1086

pp. 2703–2716, Aug. 2023. 1087

[33] D. Niu et al., “Design of cross-point metal-oxide ReRAM empha- 1088

sizing reliability and cost,” in Proc. IEEE/ACM ICCAD, 2013, 1089

pp. 17–23. 1090



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


